VoronoiFVM.jl: Tipps and Examples

Grid generation

VoronoifVM works on simplicial grids provided by the package ExtendableGrids.j]
There are several ways to create a grid.

1D grids

1D grids are created from a vector of monotonicaly increasing x-axis positions.

```
X =
    Float64[0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0
    # # Create a 1D vector:
    X=collect(range(0,1, length=21))
grid1d_a = ExtendableGrids.ExtendableGrid{Float64, Int32};
                dim: 1 nodes: 21 cells: 20 bfaces: 2
    # Create grid from vector:
    grid1d_a=ExtendableGrids.simplexgrid(X)
```



```
\# Visualize grid GridVisualize.gridplot(grid1d_a, resolution=(600,200), Plotter=PyPlot)
```

As we see, the grid is chacracterized by interior points, and boundary points. Each grid cell is endowed with a region number (for allowing different physics, parameters etc. for different regions). Each boundary node has a boundary region number, which is meant to be used to distinguish different boundary conditions.

More sophisticated grids can be created, as we see in the following example:

```
grid1d_b = ExtendableGrids.ExtendableGrid{Float64, Int32};
    dim: 1 nodes: 53 cells: 52 bfaces: 3
```

```
grid1d_b=let
    hmax=0.1
    hmin=0.01
    # Create vectors with geometric distributions of interval sizes
    X1=ExtendableGrids.geomspace(0.0,1.0,hmax,hmin)
    X2=geomspace(1.0,2.0,hmin, hmax)
    # Glue them together at common point x=1 (this is different from vcat!)
    X3=glue(X1,X2
    grid1d_b=simplexgrid(X3)
    # Mark an additional interior boundary point at x=1
    ExtendableGrids.bfacemask!(grid1d_b,[1.0],[1.0],3)
    # Change cell region number at the right part
    ExtendableGrids.cellmask!(grid1d_b,[1.0],[2.0],2)
    grid1d_b
end
```


gridplot(grid1d_b,resolution=(600,200),Plotter=PyPlot,aspect=0.5)

2D Tensor product grids

These are created from two vectors of x and y coordinates, respectively. This results in the creation of a grid of quadrilaterals. Then, each of them is subdivided into two triangles, resulting in a boundary conforming Delaunay grid.
$\begin{aligned} \text { grid2d_a }= & \text { ExtendableGrids. ExtendableGrid\{Float64, Int32\}; } \\ & \text { dim: } 2 \text { nodes: } 121 \text { cells: } 200 \text { bfaces: } 40\end{aligned}$

```
grid2d_a=let
    X=collect(range(0,1,length=11))
    Y=collect(range(0,1,length=11))
    simplexgrid(X,Y)
end
```


- gridplot(grid2d_a,resolution=(600,200),Plotter=PyPlot,legend_location=(1.5,0))

Once again, we see a default distrbution of cell regions and boundary regions. This can be modified in a similar manner as in the 1D case.

```
grid2d_b =
InterruptException:
    grid2d_b=let
        X=collect(range(0,1, length=11))
        Y=collect(range(0,1, length=11))
        grid=simplexgrid(X,Y)
        cellmask!(grid,[0.3,0.3],[0.7,0.7],2)
        bfacemask!(grid,[0.3,0.3],[0.3,0.7],5)
        bfacemask!(grid,[0.3,0.7],[0.7,0.7],6)
        bfacemask!(grid,[0.7,0.3],[0.7,0.7],7)
        bfacemask!(grid,[0.3,0.3],[0.7,0.3],8)
        grid
    end
```


InterruptException

- gridplot(grid2d_b,resolution=(600,200),Plotter=PyPlot,legend_location=(1.5,0))

2D Unstructured grids

These can be created using the mesh generator Triangle (by J. Shewchuk) via the packages Triangulate.jI and SimplexGridFactory.jI.

InterruptException:

function builder2d()

$\mathrm{b}=$ SimplexGridFactory.SimplexGridBuilder(Generator=Triangulate)
p1=point! (b,0,0)
p2=point! (b,0,1)
p3=point! (b, 0.5,0)
facetregion! (b,1)
facet!(b,p1,p2)
facetregion! (b,2)
facet! (b, p2, p3)
facetregion!(b,3)
\qquad

```
    facet!(b,p1,p3)
    point!(b,0.1,0.1)
    b
end
```

builder =
InterruptException:

For debugging purposes, the current state of the builder and its possible output can be visualized:

InterruptException:

builderplot(builder,Plotter=PyPlot)

Finally, we can create a grid from the builder:
grid2d_c =
InterruptException:
grid2d_c=simplexgrid(builder, maxvolume=0.001)

InterruptException:
gridplot(grid2d_c, resolution=(600,200), Plotter=PyPlot,legend_location=(2,0))

Stationary scalar problems

Diffusion with Dirichlet boundary conditions

This is mathematically similar to heat conduction and other problems.

$$
\begin{aligned}
-\nabla \cdot D \nabla u & =10 \\
u_{\Gamma_{\text {east }}} & =0 \\
u_{\Gamma_{\text {west }}} & =1 \\
\left.D \nabla u \cdot \vec{n}\right|_{\partial \Omega \backslash\left(\Gamma_{\text {east }} \cup \Gamma_{\text {west }}\right)} & =0
\end{aligned}
$$

Besides of the domain and its boundary it is characterize by a flux term and a source term.

```
solve_diffproblem_dirichlet (generic function with 1 method)
    - function solve_diffproblem_dirichlet(grid;D=1.0)
    species1=1
    # Use finite difference flux between disretization points.
    # Division by distance and multiplication by interface size
    # is done by the VoronoiFVM Module.
        function flux(f,u0,edge)
            u=unknowns(edge,u0)
            f[species1]=D*(u[species1,1]-u[species1,2])
        end
        # Specify a constant source term
        function source(f,node)
            f[species1]=10
        end
    # Combine flux and source to "physics"
    physics=VoronoiFVM.Physics(flux=flux, source=source)
    # Create system from physics and grid
    system=VoronoiFVM.System(grid,physics)
    # Enable species in cellregion 1
    enable_species!(system,species1,[1])
    # Enable boundary conditions. For those boundary regions
    # which are not specified here, by default, homogeneous
    # Neumann boundary conditions are assumed.
    west=dim_space(grid)==1 ? 1:4
    east=2
    boundary_dirichlet!(system, species1, west, 0)
    boundary_dirichlet!(system, species1, east, 1)
    # Solve with given initial value
    solve(unknowns(system,inival=0),system)
    end
```

solution1d_a =
1×21 Matrix\{Float64\}:
$\begin{array}{llllllllllll}6.0 & \mathrm{e}-30 & 0.2875 & 0.55 & 0.7875 & 1.0 & \ldots & 1.6875 & 1.6 & 1.4875 & 1.35 & 1.1875\end{array} 1.0$
solution1d_a=solve_diffproblem_dirichlet(grid1d_a)


```
solution2d_a =
1\times121 Matrix{Float64}:
3.0e-31 0.55 1.0 1.35 1.6 1.75 1.8 ... 1.6 1.75 1.8 1.7 1.75 1.6 1.35 1.0
    solution2d_a=solve_diffproblem_dirichlet(grid2d_a)
```


scalarplot(grid2d_a,solution2d_a[1,:],Plotter=PyPlot)

Diffusion with Robin boundary conditions

$$
\begin{aligned}
-\nabla \cdot D \nabla u & =10 \\
D \nabla u \cdot \vec{n}+a u & =0 \text { on } \Gamma_{\text {east }} \\
D \nabla u \cdot \vec{n}+a u & =a \text { on } \Gamma_{\text {east }} \\
\left.D \nabla u \cdot \vec{n}\right|_{\partial \Omega \backslash\left(\Gamma_{\text {east }} \cup \Gamma_{\text {west }}\right)} & =0
\end{aligned}
$$

```
solve_diffproblem_robin (generic function with 1 method)
    function solve_diffproblem_robin(grid;D=1.0,a=0.5)
        species1=1
        function flux(f,u0,edge)
            u=unknowns(edge,u0)
            f[species1]=D*(u[species1,1]-u[species1,2])
        end
        function source(f,node)
            f[species1]=10
        end
        physics=VoronoiFVM.Physics(flux=flux, source=source)
        system=VoronoiFVM.System(grid,physics)
        enable_species!(system,species1,[1])
        west=dim_space(grid)==1 ? 1 : 4
        east=2
        boundary_robin!(system, species1, west, a, 0)
        boundary_robin!(system, species1, east, a, a*1)
        solve(unknowns(system,inival=0),system)
    end
```

solution1d_robin =
1×21 Matrix\{Float64\}:
$\begin{array}{llllllllllll}5.33333 & 5.5875 & 5.81667 & 6.02083 & 6.2 & \ldots . & 6.4 & 6.25417 & 6.08333 & 5.8875 & 5.66667\end{array}$
- solution1d_robin=solve_diffproblem_robin(grid1d_a, a=1)

scalarplot(grid1d_a, solution1d_robin[1,:],Plotter=PyPlot)

solution2d_robin =

1×121 Matrix\{Float64\}
$\begin{array}{lllllllllllll}5.33333 & 5.81667 & 6.2 & 6.48333 & 6.66667 & \ldots & 6.73333 & 6.61667 & 6.4 & 6.08333 & 5.66667\end{array}$
solution2d_robin=solve_diffproblem_robin(grid2d_a, a=1)

scalarplot(grid2d_a, solution2d_robin[1,:],Plotter=PyPlot)

Stationary Reaction-Diffusion problem

Here, we regard two species u_{1}, u_{2}, and a reaction converting u_{1} into u_{2}. Dirichlet boundary conditions "inject" u_{1} an "remove" u_{2}.

$$
\begin{aligned}
-\nabla \cdot D_{1} \nabla u_{1}+r\left(u_{1}\right) & =0 \\
-\nabla \cdot D_{2} \nabla u_{2}-r\left(u_{1}\right) & =0 \\
r\left(u_{1}\right) & =k u_{1} \\
\left.u_{1}\right|_{\text {weest }} & =1 \\
\left.u_{2}\right|_{\Gamma_{\text {east }}} & =0
\end{aligned}
$$

Boundary conditons not specified are assumed to be homogeneous Neumann.

```
solve_readiff (generic function with 1 method)
    function solve_readiff(grid;D_1=1.0,D_2=1.0,k=1)
    species1=1
    species2=2
    function flux(f,u0, edge)
        u=unknowns(edge,u0)
        f[species1]=D_1*(u[species1,1]-u[species1,2])
        f[species2]=D_2*(u[species2,1]-u[species2,2])
    end
        function reaction(f,u0,node)
            u=unknowns(node,u0)
            r=k*u[species1]
            f[species1]=r
            f[species2]=-r
        end
        physics=VoronoiFVM.Physics(num_species=2,flux=flux,reaction=reaction)
        system=VoronoiFVM.System(grid,physics)
        enable_species!(system,species1,[1])
        enable_species!(system,species2,[1])
        west=dim_space(grid)==1 ? 1 : 4
        east=2
        boundary_dirichlet!(system, species1, west,1)
        boundary_dirichlet!(system, species2, east,0)
        solve(unknowns(system,inival=0),system)
    end
```

solution_readiff_1d =
2×21 Matrix\{Float64\}:

1.0	0.854464	0.730289	0.624372	\ldots	0.0890498	0.0858439	0.0847841
2.24551	2.23301	2.19915	2.14703		0.311807	0.156976	$3.16072 \mathrm{e}-30$

- solution_readiff_1d=solve_readiff(grid1d_a,k=10, D_2=1)

solution_readiff_2d =
2×121 Matrix\{Float64\}:

1.0	0.884085	0.785851	0.703335	0.634885	\ldots	0.478053	0.464174	0.459578
0.71873	0.70873	0.681048	0.63765	0.580184		0.233355	0.121319	$6.29576 \mathrm{e}-32$

- let
v=GridVisualizer (Plotter=PyPlot, layout=(1,2))
scalarplot! (v[1,1],grid2d_a, solution_readiff_2d[1,:], label="spec1", flimits= $(0,1)$)
scalarplot!(v[1,2],grid2d_a, solution_readiff_2d[2,:],label="spec2",flimits= (0,1), show=true)
end

Transient Reaction-Diffusion problem

Here, we regard two species u_{1}, u_{2}, and a reaction converting u_{1} into u_{2}. Dirichlet boundary conditions "inject" u_{1} an "remove" u_{2}.

$$
\begin{aligned}
\partial_{t} u_{1}-\nabla \cdot D_{1} \nabla u_{1}+r\left(u_{1}\right) & =0 \\
\partial_{t} u_{2}-\nabla \cdot D_{2} \nabla u_{2}-r\left(u_{1}\right) & =0 \\
r\left(u_{1}\right) & =k u_{1} \\
\left.u_{1}\right|_{\Gamma_{\text {west }}} & =1 \\
\left.u_{2}\right|_{\text {east }} & =0 \\
\left.u_{1}\right|_{t=0} & =0 \\
\left.u_{2}\right|_{t=0} & =0
\end{aligned}
$$

Boundary conditons not specified are assumed to be homogeneous Neumann.

```
transient_reaction_diffusion (generic function with 1 method)
    function transient_reaction_diffusion(grid;D_1=1.0,D_2=1.0,k=1,
        tstep=1.0e-3,tend=1,dtgrowth=1.1)
        species1=1
        species2=2
        function flux(f,u0,edge)
            u=unknowns (edge,u0)
            f[species1]=D_1*(u[species1,1]-u[species1,2])
            f[species2]=D_2*(u[species2,1]-u[species2,2])
        end
        function reaction(f,u0,node)
```

```
        u=unknowns(node,u0)
        r=k*u[species1]
        f[species1]=r
        f[species2]=-r
    end
    function storage(f,u,node)
        f.=u
    end
```

physics=VoronoiFVM.Physics(num_species=2, $f l u x=f l u x$, reaction=reaction,storage=storage)
system=VoronoiFVM.System(grid,physics)
enable_species!(system,species1, [1])
enable_species!(system,species2,[1])
west=dim_space(grid)==1 ? $1: 4$
east=2
boundary_dirichlet!(system, species1, west,1)
boundary_dirichlet! (system, species2, east,0)
\#\# Create a solution array
inival=unknowns(system,inival=0)
control=VoronoiFVM. NewtonControl()
control. Δt _min=0.01*tstep
control. $\Delta t=t s t e p$
control. Δt _max $=0.1 *$ tend
control. $\Delta u_{\text {_opt }}=0.1$
control. Δ t_grow=dtgrowth
tsol=solve(inival, system, [0, tend]; control=control)
return grid,tsol
end

- grid_readiff,tsol_readiff=transient_reaction_diffusion(grid1d_a,k=1,tend=100);
time step number: $\longrightarrow 23$

Table of Contents

VoronoiFVM.jl: Tipps and Examples

Grid generation
1D grids
2D Tensor product grids
2D Unstructured grids
Stationary scalar problems
Diffusion with Dirichlet boundary conditions
Diffusion with Robin boundary conditions
Stationary Reaction-Diffusion problem
Transient Reaction-Diffusion problem

```
begin
    ENV["LANG"]="C"
    using Pkg
    Pkg.activate(mktempdir())
Pkg.add(["PyPlot","PlutoUI", "ExtendableGrids","SimplexGridFactory", "VoronoiFVM","Grid
Visualize","Triangulate"])
```

using
PlutoUI, PyPlot, ExtendableGrids,SimplexGridFactory, VoronoiFVM, GridVisualize, Triangulat

```
cfc395e8] ExtendableGrids v0.7.4
5eed8a63] GridVisualize v0.1.5
[7f904dfe] PlutoUI v0.7.4
d330b81b] PyPlot v2.9.0
57bfcd06] SimplexGridFactory v0.5.1
[f7e6ffb2] Triangulate v1.0.1
[82b139dc] VoronoiFVM v0.10.9
```

