
23.3.2021 🎈 nb20-vfvm-recap-v02.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=aa4864b6-8bdd-11eb-09ed-4b4a4791d3a6# 1/8

VoronoiFVM.jl: Tipps and Examples

Grid generation
VoronoiFVM works on simplicial grids provided by the package ExtendableGrids.jl

There are several ways to create a grid.

�D grids
1D grids are created from a vector of monotonicaly increasing x-axis positions.

X
Float64[0.0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0
 =

grid1d_a ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 1 nodes: 21 cells: 20 bfaces: 2

 =

As we see, the grid is chacracterized by interior points, and boundary points. Each grid cell is endowed
with a region number (for allowing di�ferent physics, parameters etc. for di�ferent regions). Each
boundary node has a boundary region number, which is meant to be used to distinguish di�ferent
boundary conditions.

More sophisticated grids can be created, as we see in the following example:

grid1d_b ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 1 nodes: 53 cells: 52 bfaces: 3

 =

Create a 1D vector:
X=collect(range(0,1,length=21))

⋅
⋅

Create grid from vector:
grid1d_a=ExtendableGrids.simplexgrid(X)

⋅
⋅

Visualize grid
GridVisualize.gridplot(grid1d_a,resolution=(600,200),Plotter=PyPlot)

⋅
⋅

grid1d_b=let
 hmax=0.1
 hmin=0.01
 # Create vectors with geometric distributions of interval sizes
 X1=ExtendableGrids.geomspace(0.0,1.0,hmax,hmin)
 X2=geomspace(1.0,2.0,hmin,hmax)
 # Glue them together at common point x=1 (this is different from vcat!)
 X3=glue(X1,X2)
 grid1d_b=simplexgrid(X3)
 # Mark an additional interior boundary point at x=1
 ExtendableGrids.bfacemask!(grid1d_b,[1.0],[1.0],3)
 # Change cell region number at the right part
 ExtendableGrids.cellmask!(grid1d_b,[1.0],[2.0],2)
 grid1d_b
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://github.com/j-fu/ExtendableGrids.jl

23.3.2021 🎈 nb20-vfvm-recap-v02.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=aa4864b6-8bdd-11eb-09ed-4b4a4791d3a6# 2/8

�D Tensor product grids
These are created from two vectors of x and y coordinates, respectively. This results in the creation of a
grid of quadrilaterals. Then, each of them is subdivided into two triangles, resulting in a boundary
conforming Delaunay grid.

grid2d_a ExtendableGrids.ExtendableGrid{Float64, Int32};
dim: 2 nodes: 121 cells: 200 bfaces: 40

 =

Once again, we see a default distrbution of cell regions and boundary regions. This can be modi�ed in
a similar manner as in the 1D case.

grid2d_b
InterruptException:

 =

InterruptException:

�D Unstructured grids
These can be created using the mesh generator Triangle (by J. Shewchuk) via the packages
Triangulate.jl and SimplexGridFactory.jl.

InterruptException:

gridplot(grid1d_b,resolution=(600,200),Plotter=PyPlot,aspect=0.5)⋅

grid2d_a=let
 X=collect(range(0,1,length=11))
 Y=collect(range(0,1,length=11))
 simplexgrid(X,Y)
end

⋅
⋅
⋅
⋅
⋅

gridplot(grid2d_a,resolution=(600,200),Plotter=PyPlot,legend_location=(1.5,0))⋅

grid2d_b=let
 X=collect(range(0,1,length=11))
 Y=collect(range(0,1,length=11))
 grid=simplexgrid(X,Y)
 cellmask!(grid,[0.3,0.3],[0.7,0.7],2)
 bfacemask!(grid,[0.3,0.3],[0.3,0.7],5)
 bfacemask!(grid,[0.3,0.7],[0.7,0.7],6)
 bfacemask!(grid,[0.7,0.3],[0.7,0.7],7)
 bfacemask!(grid,[0.3,0.3],[0.7,0.3],8)
 grid
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

gridplot(grid2d_b,resolution=(600,200),Plotter=PyPlot,legend_location=(1.5,0))⋅

function builder2d()
 b=SimplexGridFactory.SimplexGridBuilder(Generator=Triangulate)
 p1=point!(b,0,0)
 p2=point!(b,0,1)
 p3=point!(b,0.5,0)
 facetregion!(b,1)
 facet!(b,p1,p2)
 facetregion!(b,2)
 facet!(b,p2,p3)
 facetregion!(b,3)

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://github.com/JuliaGeometry/Triangulate.jl
https://github.com/j-fu/SimplexGridFactory.jl

23.3.2021 🎈 nb20-vfvm-recap-v02.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=aa4864b6-8bdd-11eb-09ed-4b4a4791d3a6# 3/8

builder
InterruptException:

 =

For debugging purposes, the current state of the builder and its possible output can be visualized:

InterruptException:

Finally, we can create a grid from the builder:

grid2d_c
InterruptException:

 =

InterruptException:

Stationary scalar problems

Di�usion with Dirichlet boundary conditions
This is mathematically similar to heat conduction and other problems.

Besides of the domain and its boundary it is characterize by a �lux term and a source term.

solve_diffproblem_dirichlet (generic function with 1 method)

solution1d_a
1×21 Matrix{Float64}:
 6.0e-30 0.2875 0.55 0.7875 1.0 … 1.6875 1.6 1.4875 1.35 1.1875 1.0

 =

 facet!(b,p1,p3)
 point!(b,0.1,0.1)
 b
end

⋅
⋅
⋅
⋅

builderplot(builder,Plotter=PyPlot)⋅

grid2d_c=simplexgrid(builder,maxvolume=0.001)⋅

gridplot(grid2d_c,resolution=(600,200),Plotter=PyPlot,legend_location=(2,0))⋅

function solve_diffproblem_dirichlet(grid;D=1.0)
 species1=1

 # Use finite difference flux between disretization points.
 # Division by distance and multiplication by interface size
 # is done by the VoronoiFVM Module.
 function flux(f,u0,edge)
 u=unknowns(edge,u0)
 f[species1]=D*(u[species1,1]-u[species1,2])
 end

 # Specify a constant source term
 function source(f,node)
 f[species1]=10
 end

 # Combine flux and source to "physics"
 physics=VoronoiFVM.Physics(flux=flux,source=source)

 # Create system from physics and grid
 system=VoronoiFVM.System(grid,physics)

 # Enable species in cellregion 1
 enable_species!(system,species1,[1])

 # Enable boundary conditions. For those boundary regions
 # which are not specified here, by default, homogeneous
 # Neumann boundary conditions are assumed.
 west=dim_space(grid)==1 ? 1 : 4
 east=2
 boundary_dirichlet!(system, species1, west, 0)
 boundary_dirichlet!(system, species1, east, 1)

 # Solve with given initial value
 solve(unknowns(system,inival=0),system)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

23.3.2021 🎈 nb20-vfvm-recap-v02.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=aa4864b6-8bdd-11eb-09ed-4b4a4791d3a6# 4/8

solution2d_a
1×121 Matrix{Float64}:
 3.0e-31 0.55 1.0 1.35 1.6 1.75 1.8 … 1.6 1.75 1.8 1.75 1.6 1.35 1.0

 =

Di�usion with Robin boundary conditions

solve_diffproblem_robin (generic function with 1 method)

solution1d_robin
1×21 Matrix{Float64}:
 5.33333 5.5875 5.81667 6.02083 6.2 … 6.4 6.25417 6.08333 5.8875 5.66667

 =

solution1d_a=solve_diffproblem_dirichlet(grid1d_a)⋅

scalarplot(grid1d_a,solution1d_a[1,:],Plotter=PyPlot)⋅

solution2d_a=solve_diffproblem_dirichlet(grid2d_a)⋅

scalarplot(grid2d_a,solution2d_a[1,:],Plotter=PyPlot)⋅

function solve_diffproblem_robin(grid;D=1.0,a=0.5)
 species1=1

 function flux(f,u0,edge)
 u=unknowns(edge,u0)
 f[species1]=D*(u[species1,1]-u[species1,2])
 end

 function source(f,node)
 f[species1]=10
 end

 physics=VoronoiFVM.Physics(flux=flux,source=source)

 system=VoronoiFVM.System(grid,physics)

 enable_species!(system,species1,[1])

 west=dim_space(grid)==1 ? 1 : 4
 east=2
 boundary_robin!(system, species1, west, a, 0)
 boundary_robin!(system, species1, east, a, a*1)

 solve(unknowns(system,inival=0),system)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

solution1d_robin=solve_diffproblem_robin(grid1d_a,a=1)⋅

23.3.2021 🎈 nb20-vfvm-recap-v02.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=aa4864b6-8bdd-11eb-09ed-4b4a4791d3a6# 5/8

solution2d_robin
1×121 Matrix{Float64}:
 5.33333 5.81667 6.2 6.48333 6.66667 … 6.73333 6.61667 6.4 6.08333 5.66667

 =

Stationary Reaction-Di�usion problem
Here, we regard two species , and a reaction converting into . Dirichlet boundary
conditions "inject" an "remove" .

Boundary conditons not speci�ed are assumed to be homogeneous Neumann.

solve_readiff (generic function with 1 method)

scalarplot(grid1d_a,solution1d_robin[1,:],Plotter=PyPlot)⋅

solution2d_robin=solve_diffproblem_robin(grid2d_a,a=1)⋅

scalarplot(grid2d_a,solution2d_robin[1,:],Plotter=PyPlot)⋅

function solve_readiff(grid;D_1=1.0,D_2=1.0,k=1)
 species1=1
 species2=2

 function flux(f,u0,edge)
 u=unknowns(edge,u0)
 f[species1]=D_1*(u[species1,1]-u[species1,2])
 f[species2]=D_2*(u[species2,1]-u[species2,2])
 end

 function reaction(f,u0,node)
 u=unknowns(node,u0)
 r=k*u[species1]
 f[species1]=r
 f[species2]=-r
 end

 physics=VoronoiFVM.Physics(num_species=2,flux=flux,reaction=reaction)

 system=VoronoiFVM.System(grid,physics)

 enable_species!(system,species1,[1])
 enable_species!(system,species2,[1])

 west=dim_space(grid)==1 ? 1 : 4
 east=2
 boundary_dirichlet!(system, species1, west,1)
 boundary_dirichlet!(system, species2, east,0)

 solve(unknowns(system,inival=0),system)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

23.3.2021 🎈 nb20-vfvm-recap-v02.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=aa4864b6-8bdd-11eb-09ed-4b4a4791d3a6# 6/8

solution_readiff_1d
2×21 Matrix{Float64}:
 1.0 0.854464 0.730289 0.624372 … 0.0890498 0.0858439 0.0847841
 2.24551 2.23301 2.19915 2.14703 0.311807 0.156976 3.16072e-30

 =

solution_readiff_2d
2×121 Matrix{Float64}:
 1.0 0.884085 0.785851 0.703335 0.634885 … 0.478053 0.464174 0.459578
 0.71873 0.70873 0.681048 0.63765 0.580184 0.233355 0.121319 6.29576e-32

 =

Transient Reaction-Di�usion problem
Here, we regard two species , and a reaction converting into . Dirichlet boundary
conditions "inject" an "remove" .

Boundary conditons not speci�ed are assumed to be homogeneous Neumann.

transient_reaction_diffusion (generic function with 1 method)

solution_readiff_1d=solve_readiff(grid1d_a,k=10, D_2=1)⋅

let
 v=GridVisualizer(Plotter=PyPlot)
 scalarplot!(v[1,1],grid1d_a, solution_readiff_1d[1,:],label="spec1", color=:red)
 scalarplot!(v[1,1],grid1d_a, solution_readiff_1d[2,:],label="spec2",
color=:green,show=true,clear=false)
end

⋅
⋅
⋅
⋅

⋅

solution_readiff_2d=solve_readiff(grid2d_a,k=2)⋅

let
 v=GridVisualizer(Plotter=PyPlot,layout=(1,2))
 scalarplot!(v[1,1],grid2d_a, solution_readiff_2d[1,:],label="spec1",flimits=
(0,1))
 scalarplot!(v[1,2],grid2d_a, solution_readiff_2d[2,:],label="spec2",flimits=
(0,1), show=true)
end

⋅
⋅
⋅

⋅

⋅

function transient_reaction_diffusion(grid;D_1=1.0,D_2=1.0,k=1,
 tstep=1.0e-3,tend=1,dtgrowth=1.1)
 species1=1
 species2=2

 function flux(f,u0,edge)
 u=unknowns(edge,u0)
 f[species1]=D_1*(u[species1,1]-u[species1,2])
 f[species2]=D_2*(u[species2,1]-u[species2,2])
 end

 function reaction(f,u0,node)

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

23.3.2021 🎈 nb20-vfvm-recap-v02.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=aa4864b6-8bdd-11eb-09ed-4b4a4791d3a6# 7/8

time step number: 23

Table of Contents

VoronoiFVM.jl: Tipps and Examples
Grid generation

1D grids
2D Tensor product grids
2D Unstructured grids

Stationary scalar problems
Di�fusion with Dirichlet boundary conditions
Di�fusion with Robin boundary conditions

Stationary Reaction-Di�fusion problem
Transient Reaction-Di�fusion problem

 u=unknowns(node,u0)
 r=k*u[species1]
 f[species1]=r
 f[species2]=-r
 end

 function storage(f,u,node)
 f.=u
 end

physics=VoronoiFVM.Physics(num_species=2,flux=flux,reaction=reaction,storage=storage)

 system=VoronoiFVM.System(grid,physics)

 enable_species!(system,species1,[1])
 enable_species!(system,species2,[1])

 west=dim_space(grid)==1 ? 1 : 4
 east=2
 boundary_dirichlet!(system, species1, west,1)
 boundary_dirichlet!(system, species2, east,0)
 ## Create a solution array
 inival=unknowns(system,inival=0)

 control=VoronoiFVM.NewtonControl()
 control.Δt_min=0.01*tstep
 control.Δt=tstep
 control.Δt_max=0.1*tend
 control.Δu_opt=0.1
 control.Δt_grow=dtgrowth

 tsol=solve(inival,system,[0,tend];control=control)
 return grid,tsol
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

grid_readiff,tsol_readiff=transient_reaction_diffusion(grid1d_a,k=1,tend=100);⋅

begin
 ENV["LANG"]="C"
 using Pkg
 Pkg.activate(mktempdir())

Pkg.add(["PyPlot","PlutoUI","ExtendableGrids","SimplexGridFactory","VoronoiFVM","Grid
Visualize","Triangulate"])

⋅
⋅
⋅
⋅
⋅

23.3.2021 🎈 nb20-vfvm-recap-v02.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=aa4864b6-8bdd-11eb-09ed-4b4a4791d3a6# 8/8

 Status `/tmp/jl_2UEMWi/Project.toml`
 [cfc395e8] ExtendableGrids v0.7.4
 [5eed8a63] GridVisualize v0.1.5
 [7f904dfe] PlutoUI v0.7.4
 [d330b81b] PyPlot v2.9.0
 [57bfcd06] SimplexGridFactory v0.5.1
 [f7e6ffb2] Triangulate v1.0.1
 [82b139dc] VoronoiFVM v0.10.9

 using
PlutoUI,PyPlot,ExtendableGrids,SimplexGridFactory,VoronoiFVM,GridVisualize,Triangulat
e
 PyPlot.svg(true)
end;

⋅

⋅
⋅

