
25.2.2021 🎈 nb19-vfvm-transient.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=94c0715c-776e-11eb-2f6e-3df1a79f7129 1/7

Finite volumes: transient problems

Construction of control volumes
Start with a triangulation of a polygonal domain (intervals in 1D,triangles in 2D, tetrahedra in
3D).
Join triangle circumcenters by lines create Voronoi cells which can serve as control volumes,
akin to representative elementary volumes (REV) used to derive conservation laws.

Black + green: triangle nodes
Gray: triangle edges
Blue: triangle circumcenters
Red: Boundaries of Voronoi cells

Condition on triangulation
There is a 1:1 incidence between triangulation nodes and Voronoi cells. Moreover, the angle
between the interface between two Voronoi cells and the edge between their corresponding
nodes is .
Requires (in 2D) that sums of angles opposite to triangle edges are less than and that angles
opposite to boudary edges are less than .
"boundary conforming Delaunay property". It has di�ferent equivalent de�nitions and analogues
in 3D.
Construction:

"by hand" (or script) from tensor product meshes
Mesh generators: Triangle, TetGen
Julia packages: Triangulate.jl, TetGen.jl; SimplexGridFactory.jl

The discretization approach
Use Voronoi cells as REVs aka control volumes aka �nite volume cells.

begin
 ENV["LANG"]="C"
 using Pkg
 Pkg.activate(mktempdir())
 using Revise
 Pkg.add("Revise")
 Pkg.add(["PyPlot","PlutoUI","ExtendableGrids","GridVisualize", "VoronoiFVM"])
 using PlutoUI,PyPlot,ExtendableGrids,VoronoiFVM,GridVisualize
 PyPlot.svg(true)
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

25.2.2021 🎈 nb19-vfvm-transient.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=94c0715c-776e-11eb-2f6e-3df1a79f7129 2/7

Given a continuity equation in a domain , integrate this over a contol volume
with associated node and apply Gauss theorem:

Here, is the set of neighbor control volumes, , ,
, where denotes the measure (length resp. area) of a geometrical entity.

Flux functions
For instance, for the di�fusion �lux , we use .

For a convective di�fusion �lux , one can chose the upwind �lux

where Fluxes also can depend nonlinearily on .

So�ware API and implementation

The entities describing the discrete system can be subdivided into two categories:

geometrical data: together with the connectivity information of the triangles
physical data: the number and the functions describing the particular problem,
where is a �lux function approximating .

This structure allows to describe the problem to be solved by data derived from the discretization grid
and by the functions describing the physics, giving rise to a so�tware API.

The solution of the nonlinear systems of equations can be performed by Newton's method combined
with various direct and iterative linear solvers.

The generic programming capabilities of Julia allow for an implementation of the method which
results in an API which consists in the implementation of functions without the need to write
code for their derivatives.

Examples

General settings
Initial value problem with homgeneous Neumann boundary conditions

25.2.2021 🎈 nb19-vfvm-transient.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=94c0715c-776e-11eb-2f6e-3df1a79f7129 3/7

evolution (generic function with 1 method)

fpeak (generic function with 2 methods)

create_grid (generic function with 1 method)

Di�usion problem

diffusion (generic function with 1 method)

Function describing evolution of system with initial value inival
using the Implicit Euler method
function evolution(inival, # initial value
 sys, # finite volume system
 grid, # simplex grid
 tstep, # initial time step
 tend, # end time
 dtgrowth # time step growth factor
)
 time=0.0
 # record time and solution
 times=[time]
 solutions=[copy(inival)]

 solution=copy(inival)
 while time<tend
 time=time+tstep
 solve!(solution,inival,sys,tstep=tstep) # solve implicit Euler time step
 inival.=solution # copy solution to inivalue
 push!(times,time)
 push!(solutions,copy(solution))
 tstep*=dtgrowth # increase timestep by factor when approaching stationary
state
 end
 # return result and grid
 (times=times,solutions=solutions,grid=grid)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅

Define function for initial value u_0 with two methods - for 1D and 2D problems
begin
 fpeak(x)=exp(-100*(x-0.25)^2)
 fpeak(x,y)=exp(-100*((x-0.25)^2+(y-0.25)^2))
end

⋅
⋅
⋅
⋅
⋅

Create discretization grid in 1D or 2D with approximately n nodes
function create_grid(n,dim)
 nx=n
 if dim==2
 nx=ceil(sqrt(n))
 end
 X=collect(0:1.0/nx:1)
 if dim==1
 grid=simplexgrid(X)
 else
 grid=simplexgrid(X,X)
 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function diffusion(;n=100,dim=1,tstep=1.0e-4,tend=1, D=1.0, dtgrowth=1.1)
 grid=create_grid(n,dim)

 ## Diffusion flux between neigboring control volumes
 function flux!(f,u,edge)
 uk=viewK(edge,u)
 ul=viewL(edge,u)
 f[1]=D*(uk[1]-ul[1])
 end

 ## Storage term (under time derivative)
 function storage!(f,u,node)
 f[1]=u[1]
 end

 ## Create a physics structure

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

25.2.2021 🎈 nb19-vfvm-transient.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=94c0715c-776e-11eb-2f6e-3df1a79f7129 4/7

time=

Reaction-di�usion problem
Di�fusion + physical process which "eats" species

reaction_diffusion (generic function with 1 method)

 physics=VoronoiFVM.Physics(
 flux=flux!,
 storage=storage!)

 sys=VoronoiFVM.DenseSystem(grid,physics)
 enable_species!(sys,1,[1])

 ## Create a solution array
 inival=unknowns(sys)

 ## Broadcast the initial value
 inival[1,:].=map(fpeak,grid)

 evolution(inival,sys,grid,tstep,tend,dtgrowth)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

result_diffusion=diffusion(dim=1,n=1000);⋅

function reaction_diffusion(;
 n=1000,
 dim=1,
 tstep=1.0e-4,
 tend=1,
 D=1.0,
 R=10.0,
 dtgrowth=1.1)

 grid=create_grid(n,dim)
 ## Diffusion flux between neigboring control volumes
 function flux!(f,u,edge)
 uk=viewK(edge,u)
 ul=viewL(edge,u)
 f[1]=D*(uk[1]-ul[1])
 end

 ## Storage term (under time derivative)
 function storage!(f,u,node)
 f[1]=u[1]
 end

 ## Reaction term
 function reaction!(f,u,node)
 f[1]=R*u[1]
 end

 ## Create a physics structure
 physics=VoronoiFVM.Physics(
 flux=flux!,
 reaction=reaction!,
 storage=storage!)

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

25.2.2021 🎈 nb19-vfvm-transient.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=94c0715c-776e-11eb-2f6e-3df1a79f7129 5/7

time=

Convection-Di�usion problem

convection_diffusion (generic function with 1 method)

 sys=VoronoiFVM.DenseSystem(grid,physics)
 enable_species!(sys,1,[1])
 ## Create a solution array
 inival=unknowns(sys)

 ## Broadcast the initial value
 inival[1,:].=map(fpeak,grid)

 evolution(inival,sys,grid,tstep,tend,dtgrowth)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

result_reaction_diffusion=reaction_diffusion(dim=1,n=1000,R=10);⋅

function convection_diffusion(;
 n=20,
 dim=1,
 tstep=1.0e-4,
 tend=1,
 D=0.01,
 vx=10.0,
 vy=10.0,
 dtgrowth=1.1,
 scheme="expfit")
 grid=create_grid(n,dim)
 # copy vx, vy into vector
 if dim==1
 V=[vx]
 else
 V=[vx,vy]
 end
 # Bernoulli function

 B(x)=x/(exp(x)-1)

 function flux_expfit!(f,u,edge)
 uk=viewK(edge,u)
 ul=viewL(edge,u)
 vh=project(edge,V) # Calculate projection v * (x_L-x_K)
 f[1]=D*(B(-vh/D)*uk[1]- B(vh/D)*ul[1])
 end

 function flux_centered!(f,u,edge)
 uk=viewK(edge,u)
 ul=viewL(edge,u)
 vh=project(edge,V)
 f[1]=D*(uk[1]-ul[1])+ vh*0.5*(uk[1]+ul[1])
 end

 function flux_upwind!(f,u,edge)
 uk=viewK(edge,u)
 ul=viewL(edge,u)
 vh=project(edge,V)
 f[1]=D*(uk[1]-ul[1])+ (vh>0.0 ? vh*uk[1] : vh*ul[1])
 end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

25.2.2021 🎈 nb19-vfvm-transient.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=94c0715c-776e-11eb-2f6e-3df1a79f7129 6/7

scheme:

centered
expfit
upwind

time=

Brusselator system
Two species interacting via a reaction:

brusselator (generic function with 1 method)

 flux! =flux_upwind!
 if scheme=="expfit"
 flux! =flux_expfit!
 elseif scheme=="centered"
 flux! =flux_centered!
 end

 ## Storage term (under time derivative)
 function storage!(f,u,node)
 f[1]=u[1]
 end

 ## Create a physics structure
 physics=VoronoiFVM.Physics(
 flux=flux!,
 storage=storage!)

 sys=VoronoiFVM.DenseSystem(grid,physics)
 enable_species!(sys,1,[1])
 ## Assume homogeneous Neumann boundary conditions, so do nothig

 ## Create a solution array
 inival=unknowns(sys)

 ## Broadcast the initial value
 inival[1,:].=map(fpeak,grid)
 evolution(inival,sys,grid,tstep,tend,dtgrowth)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

result_convection_diffusion=convection_diffusion(n=100,
 dim=1,
 scheme=scheme[1],
 vx=10,vy=10);

⋅
⋅
⋅
⋅

function brusselator(;n=100,dim=1,A=4.0,B=6.0,D1=0.01,D2=0.1,perturbation=0.1,
 tstep=0.05, tend=150,dtgrowth=1.05)

 grid=create_grid(n,dim)
 function storage!(f,u,node)
 f.=u
 end

function bruss_diffusion!(f,_u,edge)
 u=unknowns(edge,_u)
 f[1]=D1*(u[1,1]-u[1,2])
 f[2]=D2*(u[2,1]-u[2,2])
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

25.2.2021 🎈 nb19-vfvm-transient.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=94c0715c-776e-11eb-2f6e-3df1a79f7129 7/7

time=

Table of Contents

Finite volumes: transient problems
Construction of control volumes

Condition on triangulation
The discretization approach

Flux functions
So�tware API and implementation
Examples

General settings
Di�fusion problem
Reaction-di�fusion problem
Convection-Di�fusion problem
Brusselator system

Status `/tmp/jl_op3lMf/Project.toml`
 [cfc395e8] ExtendableGrids v0.7.4
 [5eed8a63] GridVisualize v0.1.3
 [7f904dfe] PlutoUI v0.7.2
 [d330b81b] PyPlot v2.9.0
 [295af30f] Revise v3.1.12
 [82b139dc] VoronoiFVM v0.10.5

Reaction:
function bruss_reaction!(f,u,node)
 f[1]= (B+1.0)*u[1]-A-u[1]^2*u[2]
 f[2]= u[1]^2*u[2]-B*u[1]
end
Create system
bruss_physics=VoronoiFVM.Physics(flux=bruss_diffusion!,storage=storage!,
 num_species=2,reaction=bruss_reaction!)
brusselator_system=VoronoiFVM.DenseSystem(grid,bruss_physics)
enable_species!(brusselator_system,1,[1])
enable_species!(brusselator_system,2,[1])

 inival=unknowns(brusselator_system)
for i=1:num_nodes(grid)
 inival[1,i]=1.0+perturbation*randn()
 inival[2,i]=1.0+perturbation*randn()
end

 evolution(inival,brusselator_system,grid,tstep,tend,dtgrowth)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

result_brusselator=brusselator(n=500,dim=1);⋅

