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Finite volumes: transient problems

Construction of control volumes
Start with a triangulation of a polygonal domain (intervals in 1D,triangles in 2D, tetrahedra in
3D).
Join triangle circumcenters by lines  create Voronoi cells which can serve as control volumes,
akin to representative elementary volumes (REV) used to derive conservation laws.

Black + green: triangle nodes
Gray: triangle edges
Blue: triangle circumcenters
Red: Boundaries of Voronoi cells

Condition on triangulation
There is a 1:1 incidence between triangulation nodes and Voronoi cells. Moreover, the angle
between the interface between two Voronoi cells and the edge between their corresponding
nodes is .
Requires (in 2D) that sums of angles opposite to triangle edges are less than  and that angles
opposite to boudary edges are less than .
"boundary conforming Delaunay property". It has di�ferent equivalent de�nitions and analogues
in 3D.
Construction:

"by hand" (or script) from tensor product meshes
Mesh generators: Triangle, TetGen
Julia packages: Triangulate.jl, TetGen.jl; SimplexGridFactory.jl

The discretization approach
Use Voronoi cells as REVs aka control volumes aka �nite volume cells.

begin 
    ENV["LANG"]="C"
    using Pkg
    Pkg.activate(mktempdir())
    using Revise
    Pkg.add("Revise")
    Pkg.add(["PyPlot","PlutoUI","ExtendableGrids","GridVisualize", "VoronoiFVM"])
    using PlutoUI,PyPlot,ExtendableGrids,VoronoiFVM,GridVisualize
    PyPlot.svg(true)
end;
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Given a continuity equation  in a domain , integrate this over a contol volume 
with associated node  and apply Gauss theorem:

Here,  is the set of neighbor control volumes, , , 
, where  denotes the measure (length resp. area) of a geometrical entity.

Flux functions
For instance, for the di�fusion �lux , we use .

For a convective di�fusion �lux , one can chose the upwind �lux

where  Fluxes also can depend nonlinearily on .

So�ware API and implementation

The entities describing the discrete system can be subdivided into two categories:

geometrical data:  together with the connectivity information of the triangles
physical data: the number  and the functions  describing the particular problem,
where  is a �lux function approximating .

This structure allows to describe the problem to be solved by data derived from the discretization grid
and by the functions describing the physics, giving rise to a so�tware API.

The solution of the nonlinear systems of equations can be performed by Newton's method combined
with various direct and iterative linear solvers.

The generic programming capabilities of Julia allow for an implementation of the method which
results in an API which consists in the implementation of functions  without the need to write
code for their derivatives.

Examples

General settings
Initial value problem with homgeneous Neumann boundary conditions
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evolution (generic function with 1 method)

fpeak (generic function with 2 methods)

create_grid (generic function with 1 method)

Di�usion problem

diffusion (generic function with 1 method)

# Function describing evolution of system with initial value inival 
# using the Implicit Euler method
function evolution(inival, # initial value
                   sys,    # finite volume system
                   grid,   # simplex grid
                   tstep,  # initial time step 
                   tend,   # end time 
                   dtgrowth  # time step growth factor
                   )
    time=0.0
    # record time and solution
    times=[time]
    solutions=[copy(inival)]
    
    solution=copy(inival)
    while time<tend
        time=time+tstep
        solve!(solution,inival,sys,tstep=tstep) # solve implicit Euler time step 
        inival.=solution  # copy solution to inivalue
        push!(times,time) 
        push!(solutions,copy(solution))
        tstep*=dtgrowth  # increase timestep by factor when approaching stationary 
state
    end
    # return result and grid 
    (times=times,solutions=solutions,grid=grid)
end
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# Define function for initial value $u_0$ with two methods - for 1D and 2D problems
begin
    fpeak(x)=exp(-100*(x-0.25)^2)
    fpeak(x,y)=exp(-100*((x-0.25)^2+(y-0.25)^2))
end

⋅
⋅
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# Create discretization grid in 1D or 2D with approximately n nodes
function create_grid(n,dim)
    nx=n
    if dim==2
        nx=ceil(sqrt(n))
    end
    X=collect(0:1.0/nx:1)
    if dim==1
      grid=simplexgrid(X)
    else
      grid=simplexgrid(X,X)
    end
end
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function diffusion(;n=100,dim=1,tstep=1.0e-4,tend=1, D=1.0, dtgrowth=1.1)
    grid=create_grid(n,dim)
    
    ## Diffusion flux between neigboring control volumes
    function flux!(f,u,edge)
        uk=viewK(edge,u)  
        ul=viewL(edge,u)
        f[1]=D*(uk[1]-ul[1])
    end
 
    ## Storage term (under time derivative)
    function storage!(f,u,node)
        f[1]=u[1]
    end
 
    ## Create a physics structure
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time=

Reaction-di�usion problem
Di�fusion + physical process which "eats" species

reaction_diffusion (generic function with 1 method)

    physics=VoronoiFVM.Physics(
        flux=flux!,
        storage=storage!)
    
    sys=VoronoiFVM.DenseSystem(grid,physics)
    enable_species!(sys,1,[1])
    
    ## Create a solution array
    inival=unknowns(sys)
 
    ## Broadcast the initial value
    inival[1,:].=map(fpeak,grid)
 
    evolution(inival,sys,grid,tstep,tend,dtgrowth)
end 
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result_diffusion=diffusion(dim=1,n=1000);⋅

 
function reaction_diffusion(;
        n=1000,
        dim=1,
        tstep=1.0e-4,
        tend=1, 
        D=1.0, 
        R=10.0, 
        dtgrowth=1.1)
 
    grid=create_grid(n,dim)
    ## Diffusion flux between neigboring control volumes
    function flux!(f,u,edge)
        uk=viewK(edge,u)  
        ul=viewL(edge,u)
        f[1]=D*(uk[1]-ul[1])
    end
 
    ## Storage term (under time derivative)
    function storage!(f,u,node)
        f[1]=u[1]
    end
 
    ## Reaction term
    function reaction!(f,u,node)
        f[1]=R*u[1]
    end
 
  
    ## Create a physics structure
    physics=VoronoiFVM.Physics(
        flux=flux!,
        reaction=reaction!,
        storage=storage!)
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Convection-Di�usion problem

convection_diffusion (generic function with 1 method)

    sys=VoronoiFVM.DenseSystem(grid,physics)
    enable_species!(sys,1,[1])
    ## Create a solution array
    inival=unknowns(sys)
    
    ## Broadcast the initial value
    inival[1,:].=map(fpeak,grid)
 
    evolution(inival,sys,grid,tstep,tend,dtgrowth)  
end

⋅
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result_reaction_diffusion=reaction_diffusion(dim=1,n=1000,R=10);⋅

function convection_diffusion(;
        n=20,
        dim=1,
        tstep=1.0e-4, 
        tend=1, 
        D=0.01, 
        vx=10.0,
        vy=10.0,
        dtgrowth=1.1, 
        scheme="expfit")
   grid=create_grid(n,dim)
   # copy vx, vy into vector
   if dim==1
        V=[vx]
   else
        V=[vx,vy]
   end
   # Bernoulli function
    
    
    B(x)=x/(exp(x)-1)
 
    function flux_expfit!(f,u,edge)
        uk=viewK(edge,u)  
        ul=viewL(edge,u)
        vh=project(edge,V)  # Calculate projection v * (x_L-x_K)
        f[1]=D*(B(-vh/D)*uk[1]- B(vh/D)*ul[1])
    end
    
    function flux_centered!(f,u,edge)
        uk=viewK(edge,u)  
        ul=viewL(edge,u)
        vh=project(edge,V)
        f[1]=D*(uk[1]-ul[1])+ vh*0.5*(uk[1]+ul[1])
    end
    
    function flux_upwind!(f,u,edge)
        uk=viewK(edge,u)  
        ul=viewL(edge,u)
        vh=project(edge,V)
        f[1]=D*(uk[1]-ul[1])+ ( vh>0.0 ? vh*uk[1] : vh*ul[1] )
    end
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scheme: 

centered
expfit
upwind

time=

Brusselator system
Two species interacting via a reaction:

brusselator (generic function with 1 method)

    
    flux! =flux_upwind!
    if scheme=="expfit"
        flux! =flux_expfit!
    elseif scheme=="centered"
        flux! =flux_centered!
    end
    
    
    ## Storage term (under time derivative)
    function storage!(f,u,node)
        f[1]=u[1]
    end
 
    ## Create a physics structure
    physics=VoronoiFVM.Physics(
        flux=flux!,
        storage=storage!)
    
    sys=VoronoiFVM.DenseSystem(grid,physics)
    enable_species!(sys,1,[1])
    ## Assume homogeneous Neumann boundary conditions, so do nothig
    
    ## Create a solution array
    inival=unknowns(sys)
    
    ## Broadcast the initial value
    inival[1,:].=map(fpeak,grid)
    evolution(inival,sys,grid,tstep,tend,dtgrowth)  
end 
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result_convection_diffusion=convection_diffusion(n=100,
    dim=1,
    scheme=scheme[1],
    vx=10,vy=10);

⋅
⋅
⋅
⋅

function brusselator(;n=100,dim=1,A=4.0,B=6.0,D1=0.01,D2=0.1,perturbation=0.1,
    tstep=0.05, tend=150,dtgrowth=1.05)
 
    grid=create_grid(n,dim)
    function storage!(f,u,node)
        f.=u
    end
 
    
function bruss_diffusion!(f,_u,edge)
        u=unknowns(edge,_u)
    f[1]=D1*(u[1,1]-u[1,2])
    f[2]=D2*(u[2,1]-u[2,2])
end
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time=
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# Reaction:
function bruss_reaction!(f,u,node)
    f[1]= (B+1.0)*u[1]-A-u[1]^2*u[2]
    f[2]= u[1]^2*u[2]-B*u[1]
end
# Create system
bruss_physics=VoronoiFVM.Physics(flux=bruss_diffusion!,storage=storage!,
                                 num_species=2,reaction=bruss_reaction!)
brusselator_system=VoronoiFVM.DenseSystem(grid,bruss_physics)
enable_species!(brusselator_system,1,[1])
enable_species!(brusselator_system,2,[1])
 
    inival=unknowns(brusselator_system)
for i=1:num_nodes(grid)
    inival[1,i]=1.0+perturbation*randn()
    inival[2,i]=1.0+perturbation*randn()
end
 
    evolution(inival,brusselator_system,grid,tstep,tend,dtgrowth)   
end
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result_brusselator=brusselator(n=500,dim=1);⋅


