
28.1.2021 🎈 nb17-nonlin-ad.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=f4cd2042-616e-11eb-28ad-091b95c4c4da# 1/8

true

Contents

Nonlinear systems of equations
Automatic di�ferentiation

Dual numbers
Dual numbers in Julia

Solving nonlinear systems of equations
Fixpoint iteration scheme:

Example problem
Newton iteration scheme
Linear and quadratic convergence
Automatic di�ferentiation for Newton's method
Damped Newton iteration
Parameter embedding

Nonlinear systems of equations

Automatic di�erentiation

Dual numbers
We all know the �eld of complex numbers : they extend the real numbers based on the
introduction ot with .

Dual numbers are de�ned by extending the real numbers by formally adding an number with
:

They form a ring, not a �eld.

Evaluating polynomials on dual numbers: Let . Then

This can be generalized to any analytical function. automatic evaluation of function and
derivative at once

 forward mode automatic di�ferentiation
Multivariate dual numbers: generalization for partial derivatives

begin
 ENV["LANG"]="C"
 using Pkg
 Pkg.activate(mktempdir())
 Pkg.add(["PyPlot","PlutoUI","DualNumbers","ForwardDiff","DiffResults"])
 using PlutoUI
 using PyPlot
 using DualNumbers
 using LinearAlgebra
 using ForwardDiff
 using DiffResults
 PyPlot.svg(true)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

28.1.2021 🎈 nb17-nonlin-ad.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=f4cd2042-616e-11eb-28ad-091b95c4c4da# 2/8

Dual numbers in Julia
Constructing a dual number:

d 2 + 1ɛ =

Accessing its components:

(2, 1)

Comparison with known derivative:

testdual (generic function with 1 method)

Polynomial expressions:

p (generic function with 1 method)

dp (generic function with 1 method)

((f = 34.0, f_dual = 34.0), (df = 29.0, df_dual = 29.0))

Standard functions:

((f = -0.544021, f_dual = -0.544021), (df = -0.839072, df_dual = -0.839072))

((f = 2.56495, f_dual = 2.56495), (df = 0.0769231, df_dual = 0.0769231))

Function composition:

((f = -0.506366, f_dual = -0.506366), (df = 17.2464, df_dual = 17.2464))

Conclusion: if we apply dual numbers in the right way, we can do calculations with derivatives of
complicated nonlinear expressions without the need to write code to calculate derivatives.

The forwardi�f package provides these facilities.

testdual1 (generic function with 1 method)

(f = 0.420167, df = 0.907447, df_dual = 0.907447)

Let us plot some complicated function:

g (generic function with 1 method)

d=Dual(2,1)⋅

d.value,d.epsilon⋅

function testdual(x,f,df)
 xdual=Dual(x,1)
 fdual=f(xdual)'
 (f=f(x),f_dual=fdual.value),(df=df(x),df_dual=fdual.epsilon)
end

⋅
⋅
⋅
⋅
⋅

p(x)=x^3+2x+1⋅

dp(x)=3x^2+2⋅

testdual(3.0,p,dp)⋅

testdual(10,sin,cos)⋅

testdual(13,log, x->1/x)⋅

testdual(10,x->sin(x^2),x->2x*cos(x^2))⋅

function testdual1(x,f,df)
 (f=f(x),df=df(x),df_dual=ForwardDiff.derivative(f,x))
end

⋅
⋅
⋅

testdual1(13,sin,cos)⋅

g(x)=sin(exp(0.2*x)+cos(3x))⋅

28.1.2021 🎈 nb17-nonlin-ad.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=f4cd2042-616e-11eb-28ad-091b95c4c4da# 3/8

X -5.0:0.01:5.0 =

Solving nonlinear systems of equations

Let be functions depending on unknowns . Solve the system of nonlinear
equations:

 can be seen as a nonlinar operator where is its domain of de�nition.

There is no analogon to Gaussian elimination, so we need to solve iteratively.

Fixpoint iteration scheme:
Assume where for each , is a linear operator.

Then we can de�ne the iteration scheme: choose an initial value and at each iteration step, solve

Terminate if

or

Large domain of convergence
Convergence may be slow
Smooth coe��cients not necessary

fixpoint! (generic function with 1 method)

X=(-5:0.01:5)⋅

let
 clf()
 grid()
 plot(X,g.(X),label="g(x)")
 plot(X,ForwardDiff.derivative.(g,X), label="g'(x)")
 legend()
 gcf().set_size_inches(5,3)
 gcf()
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function fixpoint!(u,M,f, imax, tol)
 history=Float64[]
 for i=1:imax
 res=norm(M(u)*u-f)
 push!(history,res)

⋅
⋅
⋅
⋅
⋅

28.1.2021 🎈 nb17-nonlin-ad.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=f4cd2042-616e-11eb-28ad-091b95c4c4da# 4/8

Example problem

M (generic function with 1 method)

F Int64[1, 3] =

(Float64[19.9994, 20.0006], Float64[3.16228, 28284.3, 0.282829, 4.95196e-10, 1.81899e

contraction (generic function with 1 method)

plothistory (generic function with 1 method)

Float64[8944.27, 9.9995e-6, 1.75087e-9, 0.00367327, 0.0]

Float64[0.0, 0.0]

Newton iteration scheme
The �xed point iteration scheme assumes a particular structure of the nonlinear system. Can we do
better ?

Let be the Jacobi matrix of �rst partial derivatives of at point :

'with

 if res<tol
 return u,history
 end
 u=M(u)\f
 end
 error("No convergence after $imax iterations")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function M(u)
 [0.1+(u[1]^2+u[2]^2) -(u[1]^2+u[2]^2);
 -(u[1]^2+u[2]^2) 0.1+(u[1]^2+u[2]^2)]
end

⋅
⋅
⋅
⋅

F=[1,3]⋅

fixpt_result,fixpt_history=fixpoint!([0,0],M,F,100,1.0e-12)⋅

contraction(h)=h[2:end]./h[1:end-1]⋅

function plothistory(history)
 clf()
 semilogy(history)
 grid()
 gcf()
end

⋅
⋅
⋅
⋅
⋅
⋅

contraction(fixpt_history)⋅

plothistory(fixpt_history)⋅

M(fixpt_result)*fixpt_result-F⋅

28.1.2021 🎈 nb17-nonlin-ad.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=f4cd2042-616e-11eb-28ad-091b95c4c4da# 5/8

The one calculates in the -th iteration step:

One can split this a folows:

Calculate residual:
Solve linear system for update:
Update solution:

General properties are:

Potenially small domain of convergence - one needs a good initial value
Possibly slow initial convergence
Quadratic convergence close to the solution

Linear and quadratic convergence
Let .

Linear convergence: observed for e.g. linear systems: Asymptically constant error contraction
rate

Quadratic convergence: such that ,
As decreases, the contraction rate decreases:

In practice, we can watch or

Automatic di�erentiation for Newton's method

This is the situation where we could apply automatic di�ferentiation for vector functions of vectors.

A (generic function with 1 method)

Create a result bu�fer for

dresult
MutableDiffResult([5.0e-324, 5.0e-324], ([6.91366206214077e-310 6.91366204885713e-310; 6.91

 =

Calculate function and derivative at once:

MutableDiffResult([0.1999999999999993, 0.1999999999999993], ([8.100000000000001 -8.0; -8.0

Float64[0.2, 0.2]

A(u)=M(u)*u⋅

dresult=DiffResults.JacobianResult(ones(2))⋅

ForwardDiff.jacobian!(dresult,A,[2.0, 2.0])⋅

DiffResults.value(dresult)⋅

28.1.2021 🎈 nb17-nonlin-ad.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=f4cd2042-616e-11eb-28ad-091b95c4c4da# 6/8

2×2 Array{Float64,2}:
 8.1 -8.0
-8.0 8.1

A Newton solver with automatic di�ferentiation

newton (generic function with 1 method)

(Float64[19.9994, 20.0006], Float64[28.8467, 5.58664, 0.493295, 0.000301159, 3.69765e

Float64[0.193667, 0.0882991, 0.000610505, 1.22781e-9, 34.7848, 0.000124992]

Float64[1.81899e-12, -1.81899e-12]

Let us take a more complicated example:

A2 (generic function with 1 method)

F2 Float64[0.1, 0.1, 0.1] =

U02 Float64[1.0, 1.0, 1.0] =

(Float64[-0.248731, 0.175566, 0.663915], Float64[0.796625, 4.90091, 27.5487, 5.62444,

 DiffResults.jacobian(dresult)⋅

function newton(A,b,u0; tol=1.0e-12, maxit=100)
 result=DiffResults.JacobianResult(u0)
 history=Float64[]
 u=copy(u0)
 it=1
 while it<maxit
 ForwardDiff.jacobian!(result,(v)->A(v)-b ,u)
 res=DiffResults.value(result)
 jac=DiffResults.jacobian(result)
 h=jac\res
 u-=h
 nm=norm(h)
 push!(history,nm)
 if nm<tol
 return u,history
 end

 it=it+1
 end
 throw("convergence failed")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

newton_result,newton_history=newton(A,F,[0,0.1],tol=1.e-13)⋅

contraction(newton_history)⋅

plothistory(newton_history)⋅

A(newton_result)-F⋅

A2(x)= [x[1]+x[1]^5+3*x[2]*x[3],
 0.1*x[2]+x[2]^5-3*x[1]-x[3],
 x[3]^5+x[1]*x[2]*x[3]]

⋅
⋅
⋅

F2=[0.1,0.1,0.1]⋅

U02=[1,1.0,1.0]⋅

28.1.2021 🎈 nb17-nonlin-ad.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=f4cd2042-616e-11eb-28ad-091b95c4c4da# 7/8

Float64[0.0, -1.38778e-16, -1.38778e-17]

(63, Float64[6.15208, 5.62115, 0.204163, 0.799647, 0.80018, 0.800945, 0.803928, 0.83

Here, we observe that we have to use lots of iteration steps and see a rather erratic behaviour of the
residual. A�ter 55 steps we arrive in the quadratic convergence region where convergence is fast.

Damped Newton iteration
There are may ways to improve the convergence behaviour and/or to increase the convergence radius
in such a case. The simplest ones are:

�nd a good estimate of the initial value
damping: do not use the full update, but damp it by some factor which we increase during the
iteration process
linesearch: automatic detection of a damping factor

dnewton (generic function with 1 method)

(Float64[-0.248731, 0.175566, 0.663915], Float64[0.796625, 1.62137, 0.572359, 0.32642

(11, Float64[2.0353, 0.35301, 0.570316, 0.546644, 0.45155, 0.332823, 0.174192, 0.037

res2,hist2=newton(A2,F2,U02)⋅

A2(res2)-F2⋅

length(hist2),contraction(hist2)⋅

plothistory(hist2)⋅

function dnewton(A,b,u0; tol=1.0e-12,maxit=100,damp=0.01,damp_growth=1)
 result=DiffResults.JacobianResult(u0)
 history=Float64[]
 u=copy(u0)
 it=1
 while it<maxit
 ForwardDiff.jacobian!(result,(v)->A(v)-b ,u)
 res=DiffResults.value(result)
 jac=DiffResults.jacobian(result)
 h=jac\res
 u-=damp*h
 nm=norm(h)
 push!(history,nm)
 if nm<tol
 return u,history
 end

 it=it+1
 damp=min(damp*damp_growth,1.0)
 end
 throw("convergence failed")
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

res3,hist3=dnewton(A2,F2,U02,damp=0.5,damp_growth=1.1)⋅

28.1.2021 🎈 nb17-nonlin-ad.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=f4cd2042-616e-11eb-28ad-091b95c4c4da# 8/8

Float64[-2.77556e-17, -2.77556e-17, -1.38778e-17]

The example shows: damping indeed helps to improve the convergece behaviour. However, if we keep
the damping parameter less than 1, we loose the quadratic convergence behavior.

Parameter embedding

Another option is the use of parameter embedding for parameter dependent problems.

Problem: solve for .
Assume can be easily solved.
Choose step size

1. Solve
2. Set
3. Solve with initial value
4. Set
5. If repeat with 3.

If is small enough, we can ensure that is a good initial value for .
Possibility to adapt depending on Newton convergence
Parameter embedding + damping + update based convergence control go a long way to solve
even strongly nonlinear problems!
As we will see later, a similar apporach can be used for time dependent problems.

length(hist3),contraction(hist3)⋅

plothistory(hist3)⋅

A2(res3)-F2⋅

