
21.1.2021 🎈 nb16-fv-dirichlet.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=181994f8-5be9-11eb-1e1b-859d43155359 1/7

true

Finite volume method: further aspects

Julia packages supporting PDE solution
Up to now we used the Triangulate.jl in order to access mesh generation, for all other functionality,
standard Julia packages were used.

There are a number of PDE solution packages in Julia, in particular for the �nite element method.
During this course, we will use a number of recently developed packages supporting basic
functionality for the solution of PDEs. They emerged from the WIAS pdelib project and from scienti�c
computing courses from previous years. These are:

ExtendableGrids.jl: unstructured grid management library
GridVisualize.jl: grid and function visualization related to ExtendableGrids.jl
SimplexGridFactory.jl: uni�ed high level mesh generator interface
ExtendableSparse.jl: convenient and e��cient sparse matrix assembly

We will use all of them in this lecture.

Contents

Finite volume method: further aspects
Julia packages supporting PDE solution
Dirichlet boundary conditions

Three main possibilities to implement Dirichlet boundary conditions:
Algebraic manipulation
Modi�cation of boundary equations
Penalty method: the "lazy" way
Matrix assembly

Calculation example
Grid generation

Desired number of triangles
Solving the problem

Problem data
Convergence test

Conclusions

Dirichlet boundary conditions

Three main possibilities to implement Dirichlet
boundary conditions:

begin 
    ENV["LC_NUMERIC"]="C"
    using Pkg
    Pkg.activate(mktempdir())
    Pkg.add(["PyPlot","PlutoUI","Triangulate","SimplexGridFactory", 
            "ExtendableGrids","GridVisualize","ExtendableSparse"])
    using PlutoUI,PyPlot, 
Triangulate,SimplexGridFactory,ExtendableGrids,ExtendableSparse,GridVisualize,SparseA
rrays, Printf
    PyPlot.svg(true);
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅

https://github.com/j-fu/ExtendableGrids.jl
https://github.com/j-fu/GridVisualize.jl
https://github.com/j-fu/SimplexGridFactory.jl
https://github.com/j-fu/ExtendableSparse.jl


21.1.2021 🎈 nb16-fv-dirichlet.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=181994f8-5be9-11eb-1e1b-859d43155359 2/7

Eliminate Dirichlet BC algebraically a�ter building of the matrix, i.e. �x ``known unknowns'' at
the Dirichlet boundary  highly technical
Modi�y matrix such that equations at boundary exactly result in Dirichlet values  loss of
symmetry of the matrix
Penalty method: replace the Dirichlet boundary condition by a Robin boundary condition with
high transfer coe��cient

We discuss these possibilities for a 1D problem in  with tridiagonal matrix:

Algebraic manipulation
Matrix  of homogeneous Neumann problem - no regard to boundary values.

 is diagonally dominant, but neither idd, nor sdd.
Fix the value of  and eliminate the corresponding equation:

 is idd and stays symmetric

This operation is quite technical to implement, even more so for triangular meshes or for systems with
multiple PDEs.

Modi�cation of boundary equations
Modify equation at boundary to exactly represent Dirichlet values

 is idd ?
Loss of symmetry  problem e.g. with CG method

Penalty method: the "lazy" way
This corresponds to replacing the Dirichlet boundary condition  with a Robin boundary
condition

In practice we perform this operation on a discrete level:



21.1.2021 🎈 nb16-fv-dirichlet.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=181994f8-5be9-11eb-1e1b-859d43155359 3/7

 is idd, symmetric, and the realization is technically easy.
If  is small enough,  will be satis�ed exactly within

�loating point accuracy.

Drawback: this creates a large condition number
Iterative methods should be initialized with Dirichlet values, so we start in a subspace where
this is not relevant
Works also nonlinear problems, �nite volume methods

Matrix assembly
trifactors! (generic function with 1 method)

bfacefactors! (generic function with 1 method)

assemble! (generic function with 1 method)
function assemble!(matrix, # System matrix
                   rhs,    # Right hand side vector
                   δ,      # heat conduction coefficient 
                   f::Function, # Source/sink function
                   g::Function,  # boundary condition function
                   pointlist,    
                   trianglelist,
                   segmentlist)
    penalty=1.0e30
    num_nodes_per_cell=3;
    num_edges_per_cell=3;
    num_nodes_per_bface=2
    ntri=size(trianglelist,2)
    nbface=size(segmentlist,2)
    
    # Local edge-node connectivity
    local_edgenodes=[ 2 3; 3 1; 1 2]'
   
    # Storage for form factors
    e=zeros(num_nodes_per_cell)
    ω=zeros(num_edges_per_cell)
    γ=zeros(num_nodes_per_bface)
    
    # Initialize right hand side to zero
    rhs.=0.0
    
    # Loop over all triangles
    for itri=1:ntri
        trifactors!(ω,e,itri,pointlist,trianglelist)
    # Assemble nodal contributions to right hand side
        for k_local=1:num_nodes_per_cell
            k_global=trianglelist[k_local,itri]
            x=pointlist[1,k_global]
            y=pointlist[2,k_global]
            rhs[k_global]+=f(x,y)*ω[k_local]
        end
    
        # Assemble edge contributions to matrix
        for iedge=1:num_edges_per_cell
            k_global=trianglelist[local_edgenodes[1,iedge],itri]
            l_global=trianglelist[local_edgenodes[2,iedge],itri]
            matrix[k_global,k_global]+=δ*e[iedge]
            matrix[l_global,k_global]-=δ*e[iedge]
            matrix[k_global,l_global]-=δ*e[iedge]
            matrix[l_global,l_global]+=δ*e[iedge]
        end
    end
    
    # Assemble boundary conditions
    
    for ibface=1:nbface
    bfacefactors!(γ,ibface, pointlist, segmentlist)
        for k_local=1:num_nodes_per_bface
            k_global=segmentlist[k_local,ibface]
            matrix[k_global,k_global]+=penalty
            x=pointlist[1,k_global]
            y=pointlist[2,k_global]
            rhs[k_global]+=penalty*g(x,y)
        end
    end
end
 

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅



21.1.2021 🎈 nb16-fv-dirichlet.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=181994f8-5be9-11eb-1e1b-859d43155359 4/7

Calculation example
Now we are able to solve our intended problem.

Grid generation
describe_grid (generic function with 1 method)

builder
SimplexGridBuilder(Triangulate, 4, 1, 1.0, 1.0e-12, Int32[1, 2, 3, 4], Array{Int32,

 = 

grid ExtendableGrids.ExtendableGrid{Float64,Int32}; 
dim: 2 nodes: 24 cells: 30 bfaces: 16 
 

 = 

Desired number of triangles
From the desired number of triangles, we can calculate a value fo the maximum area constraint
passed to the mesh generator: Desired number of triangles: 20

Solving the problem

Problem data

f (generic function with 1 method)

# We use the SimplexGridBuilder from SimplexGridFactory.jl
function describe_grid()
    # Create a SimplexGridBuilder structure which can collect
    # geometry information
    builder=SimplexGridBuilder(Generator=Triangulate)
    
    # Add points, record their numbers
    p1=point!(builder,-1,-1)
    p2=point!(builder,1,-1)
    p3=point!(builder,1,1)
    p4=point!(builder,-1,1)
    
    # Connect points by respective facets (segments)
    facetregion!(builder,1)
    facet!(builder,p1,p2)
    facetregion!(builder,2)
    facet!(builder,p2,p3)
    facetregion!(builder,3)
    facet!(builder,p3,p4)
    facetregion!(builder,4)
    facet!(builder,p4,p1)
    options!(builder,maxvolume=0.1)
    builder
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

builder=describe_grid()⋅

# We can plot the input and the possible output of the builder.
builderplot(builder,Plotter=PyPlot)

⋅
⋅

# The simplexgrid method creates an object of type ExtendableGrid which is
# defined in ExtendableGrids.jl. We can overwrite the maxvolume default
# which we used in `describe_grid`.
grid=simplexgrid(builder,maxvolume=4/desired_number_of_triangles)

⋅
⋅
⋅
⋅

f(x,y)=sinpi(x)*sinpi(y)⋅



21.1.2021 🎈 nb16-fv-dirichlet.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=181994f8-5be9-11eb-1e1b-859d43155359 5/7

g (generic function with 1 method)

δ 1 = 

Data of the grid are accessed in a Dictionary like fashion. Coordinates , CellNodes  and BFaceNodes
are abstract types de�ned in ExtendableGrids.jl . Behind this is a dictionary with types as keys
allowing type-stable access of the contents like in a struct and easy extension by de�ning additional
key types. See here for more information.

solve_example (generic function with 1 method)

solution
Float64[7.58983e-63, -1.58037e-62, 1.56301e-62, -1.8106e-62, 0.00546284, 1.23156e-32,

 = 

Convergence test
How good is our implementation and the choice of the penalty method for Dirichlet boundary
conditions ? - Perform a convergence test on ever �ner grids!

For this purpose we need to calculate error norms. Based on the L2-Norm

we implement a discrete analogon for a discrete solution 

 g(x,y)=0⋅

function solve_example(grid)
    # Initialize sparse matrix and right hand side
    n=num_nodes(grid)
    matrix=spzeros(n,n)
    rhs=zeros(n)
    # Call the assemble function.
    assemble!(matrix,rhs,δ,f,g,
          grid[Coordinates],
          grid[CellNodes],
          grid[BFaceNodes])
    # Solve
    sol=matrix\rhs
end 

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

solution=solve_example(grid)⋅

# scalarplot from GridVisualize.jl allows easy handling of plotting
# on unstructured grids with reasonable defaults. 
scalarplot(grid,solution,Plotter=PyPlot,resolution=
(300,300),isolines=11,colormap=:bwr)

⋅
⋅
⋅

https://docs.julialang.org/en/v1/base/collections/#Base.Dict
https://j-fu.github.io/ExtendableGrids.jl/stable/tdict/


21.1.2021 🎈 nb16-fv-dirichlet.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=181994f8-5be9-11eb-1e1b-859d43155359 6/7

Further, we implement the "h1"-norm wich measures the error in the gradient. We may discuss the
details later.

fvnorms (generic function with 1 method)

Run convergence test for a number of grid re�nement levels

convergence_test (generic function with 1 method)

(Any[0.316228, 0.158114, 0.0790569, 0.0395285, 0.0197642, 0.00988212, 0.00494106], A

# ## Calculate norms of solution
function fvnorms(u,pointlist,trianglelist)
    local_edgenodes=[ 2 3; 3 1; 1 2]'
    num_nodes_per_cell=3;
    num_edges_per_cell=3;
    e=zeros(num_nodes_per_cell)
    ω=zeros(num_edges_per_cell)
    l2norm=0.0
    h1norm=0.0
    ntri=size(trianglelist,2)
    for itri=1:ntri
        trifactors!(ω,e,itri,pointlist,trianglelist)
        for k_local=1:num_nodes_per_cell
            k=trianglelist[k_local,itri]
            x=pointlist[1,k]
            y=pointlist[2,k]
            l2norm+=u[k]^2*ω[k_local]
        end
        for iedge=1:num_edges_per_cell
            k=trianglelist[local_edgenodes[1,iedge],itri]
            l=trianglelist[local_edgenodes[2,iedge],itri]
            h1norm+=(u[k]-u[l])^2*e[iedge]
        end
    end
    return (sqrt(l2norm),sqrt(h1norm));
end
 

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function convergence_test(;nref0=0, nref1=1,k=1,l=1,extsparse=false)
    allh=[]
    alll2=[]
    allh1=[]
    
    gbc(x,y)=0
    
    # We know the anayltical expression for the right hand side which
    # corresponds to this solution
    fexact(x,y)=sinpi(k*x)*sinpi(l*y);
    
    frhs(x,y)=(k^2+l^2)*pi^2*fexact(x,y);
    
    for iref=nref0:nref1
     # define the refinement level via the maximum area constraint
        area=0.1*2.0^(-2*iref)
        h=sqrt(area)
        grid=simplexgrid(builder,maxvolume=area)
        
        n=num_nodes(grid)
        rhs=zeros(n)
         
        # Optionally, use the sparse matrix from ExtendableGrids
        if extsparse
            matrix=ExtendableSparseMatrix(n,n)
        else
            matrix=spzeros(n,n)
        end
        rhs=zeros(n)
        
        assemble!(matrix,rhs,δ,frhs,gbc,
          grid[Coordinates],grid[CellNodes],grid[BFaceNodes])
        sol=matrix\rhs
        uexact=map(fexact,grid)
        
        (l2norm,h1norm)=fvnorms(uexact-sol,grid[Coordinates],grid[CellNodes])
        
        push!(allh,h)
        push!(allh1,h1norm)
        push!(alll2,l2norm)
    end
    allh,alll2,allh1
end
 

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅



21.1.2021 🎈 nb16-fv-dirichlet.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=181994f8-5be9-11eb-1e1b-859d43155359 7/7

Conclusions
We see the second order convergence of the solution and �rst order convergence of the gradient. This
is the typical behavior which we also would expect from the �nite element method.

Concerning the complexity, the ExtendableSparseMatrix uses an intermediate data structure for
collecting the matrix entries. If we directly insert data into a compressed column data structure, there
is a considerable overhead for reorganization of the long arrays describing the matrix.

allh,alll2,allh1=convergence_test(nref0=0,nref1=6,extsparse=false)⋅


