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Mesh generation

Regard boundary value problems for PDEs in a �nite domain 
Solution spaces for PDEs are in�nite dimensional  develop �nite dimensional approximations
One way of de�ning such approximations is based on the subdivision of  into a �nite number
of elementary closed subsets , called mesh  or grid
Elementary shapes:

triangles or quadrilaterals ( )
tetrahedra or cuboids ( )
more general cases possible

During this course:
Assume the domain is polygonal, its boundary  is the union of a �nite number of
subsets of hyperplanes in  (line segments for , planar polygons for )
Focus on simplexes (triangles, tetrahedra)

Geometrically most �lexible
Starting point for more general methods

Focus on 

Admissible grids
De�niton:  A grid  of  is admissible if

 is the union of the elementary cells: 
If  consists of exactly one point, then this point is a common vertex of  and .
If for ,  consists of more than one point, then  is a common edge (or a
common facet for ) of  and .

Image (Source: Braess): Le�t - admissible mesh, right - mesh with "hanging" nodes

There are generalizations of �nite element and �nite volume methods which can work with
hanging nodes, however we will not go into these details in the course.

begin 
    using Pkg
    Pkg.activate(mktempdir())
    Pkg.add(["PyPlot","PlutoUI","Triangulate"])
    using Triangulate
    using PlutoUI
    using PyPlot
    
    ENV["LC_NUMERIC"]="C" # prevent pyplot from essing up string2float conversion
 
    PyPlot.svg(true)
    using Printf
end

⋅
⋅
⋅
⋅
⋅
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⋅
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⋅
⋅
⋅
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Voronoi diagram
A�ter G. F. Voronoi, 1868-1908

De�nition: Let . The set of points  is the half
space  of points  closer to  than to .

De�nition: Given a �nite set of points , the Voronoi region (Voronoi cell)  of a point  is the
set of points  closer to  than to any other point : 

The Voronoi diagram  of  is the collection of the Voronoi regions of the points of .

The Voronoi diagram subdivides the whole space into ``nearest neigbor'' regions
Being intersections of half planes, the Voronoi regions are convex sets

Delaunay triangulation
A�ter B.N. Delaunay (Delone), 1890-1980

Given a �nite set of points 
Assume that the points of  are in general position, i.e. no  points of  are on one sphere (in
2D: no 4 points on one circle)

Connect each pair of points whose Voronoi regions share a common edge with a line 
Delaunay triangulation  of the convex hull of 

pts=[0 0;
     0.5 1;
#    0.6 0.6;
#    0.1 0.1;
#    0.1 0.7;
     1 0];

⋅
⋅
⋅
⋅
⋅
⋅

points=[0 0;
        0.5 0.5;
#       0.5 -0.1;
#       0.5 0.1;
        1 0;]; 

⋅
⋅
⋅
⋅
⋅
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Another Interactive example via GEOGRAM. This smoothes the point set a�ter insertion, but you get a
good impression about the Duality between Voronoi and Delaunay.

The circumsphere  (circumcircle  in 2D) of a -dimensional simplex is the unique sphere containing
all vertices of the simplex
The circumball  (circumdisc in 2D) of a simplex is the unique (open) ball which has the
circumsphere of the simplex as boundary

De�nition: A triangulation of the convex hull of a point set  has the Delaunay property  if each simplex
(triangle) of the triangulation is Delaunay, i.e. its circumsphere (circumcircle) is empty wrt. , i.e. it
does not contain any points of .

The Delaunay triangulation of a point set , where all points are in general position is unique
and has the Delaunay property
Otherwise there is an ambiguity - if e.g. 4 points are one circle, there are two ways to connect
them resulting in Delaunay triangles

Edge �ips and locally Delaunay edges (�D only)
For any two triangles  and  sharing a common edge , there is the edge �lip  operation
which reconnects the points in such a way that two new triangles emerge:  and .
An edge of a triangulation is locally Delaunay if it either belongs to exactly one triangle, or if it
belongs to two triangles, and their respective circumdisks do not contain the points opposite
wrt. the edge
If an edge is locally Delaunay and belongs to two triangles, the sum of the angles opposite to
this edge is less or equal to .
If all edges of a triangulation of the convex hull of  are locally Delaunay, then the triangulation
is the Delaunay triangulation
If an edge is not locally Delaunay and belongs to two triangles, the edge emerging from the
corresponding edge �lip will be locally Delaunay

Flip edge to make the triangles Delaunay: 

http://homepages.loria.fr/BLevy/GEOGRAM/geogram_demo_Delaunay2d.html
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Lawson's Edge �ip algorithm for constructing a
Delaunay triangulation
This is one of the most elementary mesh generation algorithms

Input: A stack  of edges of a given triangulation of a set  of  points
While 

pop an edge  from 
If  is not locally Delaunay

Flip  to 
Push edges  onto 

This algorithm is known to terminate a�ter  operations. A�ter termination, all edges will be
locally Delaunay, so the output is the Delaunay triangulation of .

Among all triangulations of a �nite point set , the Delaunay triangulation maximises the
minimum angle of all triangles2
The set of all possible triangulations of  is connected via the �lip graph. Each edge of this graph
corresponds to one particular �lip operation

Randomized incremental �ip algorithm (�D
only)

Create Delaunay triangulation of point set  by inserting points one a�ter another, and creating
the Delaunay triangulation of the emerging subset of  using the �lip algorithm
Estimated complexity: 
In 3D, there is no simple �lip algorithm, generalizations are active research subject

Open source codes implementing mesh
generation

CGAL: The Computational Geometry Algorithms Library
ND: qhull  mostly for pointsets
2D: Triangle  by J.R.Shewchuk (UC Berkeley)
3D: TetGen  by H. Si (WIAS Berlin)
3D: NetGen  by J. Schöberl and coworkers

Triangle

https://www.cgal.org/
http://www.qhull.org/
https://www.cs.cmu.edu/~quake/triangle.html
http://tetgen.org/
https://github.com/NGSolve/netgen
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During this course, we will focus on Triangle. It can be compiled to a standalone executable reading
and writing �les or to a library which can be called from applications.

In Julia it is accessible via the package Triangulate.jl.

The following examples have been taken from that package and slightly modi�ed for Pluto.

General use

Triangle communicates via a data structure TriangulateIO  which contains possible input and
output information
It processes an input structure and returns on output the triangulation, and possibly, the
Voronoi diagram.
It is controlled via a string containing switches
The switch '-Q' makes Triangle quiet

Delaunay triangulation of the convex hull of a pointset
Create a set of random points in the plane and calculate the Delaunay triangulation of this set of
points. It is a triangulation where for each triangle, the interior of its circumcircle does not contain any
points of the trianglation.

The Delaunay triangulation of a set of points in general position (no 4 of them on a circle) is unique.
At the same time, it is a triangulation of the convex hull of these points.

Given an input list of points, without any further �lags, Triangle creates just this triangulation (the "Q"
�lag suppresses the text output of Triangle). For this and the next examples, the input list of points is
created randomly, but on a raster, preventing the appearance of too close points.

example_convex_hull (generic function with 1 method)

(TriangulateIO( 
pointlist=[0.729408 0.268405 … 0.0471536 0.670108; 0.0860627 0.19834 … 0.203296 0.234648
) 

Delaunay triangulation of point set with boundary
Same as the previous example, but in addition specify the "c" �lag In this case, Triangle outputs an
additional list of segments describing the boundary of the convex hull. In fact this is a constrained
Delaunay triangulation (CDT) where the boundary segments are the constraining edges which must
appear in the output.

example_convex_hull_with_boundary (generic function with 1 method)

function example_convex_hull(;n=10)
    triin=TriangulateIO()
    triin.pointlist=rand(Cdouble,2,n)
    (triout, vorout)=triangulate("Q", triin)
    triin,triout
end

⋅
⋅
⋅
⋅
⋅
⋅

triin,triout=example_convex_hull(n=10)⋅

function example_convex_hull_with_boundary(;n=10)
    triin=TriangulateIO()
    triin.pointlist=rand(Cdouble,2,n)

⋅
⋅
⋅

https://github.com/JuliaGeometry/Triangulate.jl
https://www.cs.cmu.edu/~quake/triangle.switch.html
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(TriangulateIO( 
pointlist=[0.285658 0.246788 … 0.174594 0.806665; 0.359657 0.772696 … 0.743857 0.234212]
) 

Delaunay triangulation of point set with Voronoi
diagram
Same as the previous example, but instead of "c" specify the "v" �lag In this case, Triangle outputs
information about the Voronoi diagram of the point set which is a structure dual to the Delaunay
triangulation.

The Voronoi cell around a point  a point set  is de�ned as the set of points  such that 
 for all  such that .

The Voronoi cells of boundary points of the convex hull are of in�nite size. The corners of the Voronoi
cells are the circumcenters of the triangles. They can be far outside of the triangulated domain.

example_convex_hull_voronoi (generic function with 1 method)

    triout, vorout=triangulate("cQ", triin)
    triin,triout
end

⋅
⋅
⋅

example_convex_hull_with_boundary(n=5)⋅

plot_in_out(PyPlot,example_convex_hull_with_boundary(n=20)...);gcf()⋅

function 
example_convex_hull_voronoi(;points=rand(Cdouble,2,10),show_tria=true,circumcircles=f
alse)
    triin=Triangulate.TriangulateIO()
    triin.pointlist=points
    (triout, vorout)=triangulate("vQ", triin)
    if !show_tria
       triout.trianglelist=zeros(Cint,2,0)
    end
    plot_in_out(PyPlot,triin,triout,voronoi=vorout,circumcircles=circumcircles)
    gcf().set_size_inches(8,4)
    gcf()
end
 

⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
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Boundary conforming Delaunay triangulation of point
set
Specify "c" �lag for convex hull segments, "v" �lag for Voronoi and "D" �lag for creating a boundary
conforming Delaunay triangulation of the point set. In this case additional points are created which
split the boundary segments and ensure that all triangle circumcenters lie within the convex hull. Due
to random input, there may be situations where Triangle fails with this task, so we check for the
corresponding exception.

example_convex_hull_voronoi_delaunay (generic function with 1 method)

Constrained Delaunay triangulation (CDT) of a
domain given by a segment list specifying its
boundary.
Constrained Delaunay triangulation (CDT) of a point set with additional constraints given a priori. This
is obtained when specifying the "p" �lag and an additional list of segments each described by two
points which should become edges of the triangulation. Note that the resulting triangulation is not
Delaunay in the sense given above.

example_domain_cdt (generic function with 1 method)

example_convex_hull_voronoi(points=rand(Cdouble,2,10),circumcircles=true)⋅

function example_convex_hull_voronoi_delaunay(;n=10,circumcircles=false)
    triin=Triangulate.TriangulateIO()
    triin.pointlist=rand(Cdouble,2,n)
    (triout, vorout)=triangulate("vcDQ", triin)
    plot_in_out(PyPlot,triin,triout,voronoi=vorout,circumcircles=circumcircles)
end

⋅
⋅
⋅
⋅
⋅
⋅

example_convex_hull_voronoi_delaunay(;n=5,circumcircles=true);gcf()⋅

function example_domain_cdt(;Plotter=nothing)⋅
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Constrained Delaunay triangulation (CDT) of a domain given
by a segment list specifying its boundary together with a
maximum area constraint.
This constraint is spec�ed as a �loating point number given a�ter the -a �lag. Be careful to not give it in
the exponential format as Triangle would be unable to analyse it. Therefore it is dangerous to give a
number in the string interpolation and it is better to convert it to a string before using @sprintf .
Specifying only the maximum area constraint does not prevent very thin triangles from occuring at
the boundary.

example_domain_cdt_area (generic function with 1 method)

    triin=Triangulate.TriangulateIO()
    triin.pointlist=Cdouble[0.0 0.0 ; 1.0 0.0 ; 1.0  1.0 ; 0.8 0.6; 0.0 1.0]'
    triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 1 ]'
    triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5]
    (triout, vorout)=triangulate("pQ", triin)
    plot_in_out(PyPlot,triin,triout;voronoi=vorout)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

example_domain_cdt();gcf()⋅

function example_domain_cdt_area(;maxarea=0.05,circumcircles=false)
    triin=Triangulate.TriangulateIO()
    triin.pointlist=Cdouble[0.0 0.0 ; 1.0 0.0 ; 1.0  1.0 ; 0.8 0.6; 0.0 1.0]'
    triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 1 ]'
    triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5]
    area=@sprintf("%.15f",maxarea) # Don't use exponential format!
    (triout, vorout)=triangulate("pa$(area)Q", triin)
    plot_in_out(PyPlot,triin,triout,voronoi=vorout,circumcircles=circumcircles)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

example_domain_cdt_area(maxarea=0.05,circumcircles=false);gcf()⋅
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Boundary conforming Delaunay triangulation (BCDT) of a
domain given by a segment list specifying its boundary
In addition to the area constraint specify the -D �lag in order to keep the triangle circumcenters within
the domain.

example_domain_bcdt_area (generic function with 1 method)

Triangulation of a domain with re�nement callback
A maximum area constraint is speci�ed in the unsuitable  callback which is activated via the "u" �lag
if it has been passed before calling triangulate. In addition, the "q" �lag allows to specify a minimum
angle constraint preventing skinny triangles.

example_domain_localref (generic function with 1 method)

function example_domain_bcdt_area(;maxarea=0.05,circumcircles=false)
    triin=Triangulate.TriangulateIO()
    triin.pointlist=Cdouble[0.0 0.0 ; 1.0 0.0 ; 1.0  1.0 ; 0.8 0.6; 0.0 1.0]'
    triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 1 ]'
    triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5]
    area=@sprintf("%.15f",maxarea)
    (triout, vorout)=triangulate("pa$(area)DQ", triin)
    plot_in_out(PyPlot,triin,triout,voronoi=vorout,circumcircles=circumcircles)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

example_domain_bcdt_area(maxarea=0.01,circumcircles=true);gcf()⋅

function example_domain_localref(;minangle=20)
    center_x=0.8
    center_y=0.6
    localdist=0.1
    function unsuitable(x1,y1,x2,y2,x3,y3,area)
        bary_x=(x1+x2+x3)/3.0
        bary_y=(y1+y2+y3)/3.0
        dx=bary_x-center_x
        dy=bary_y-center_y
        qdist=dx^2+dy^2
        qdist>1.0e-5 && area>0.1*qdist
    end
    
    triin=Triangulate.TriangulateIO()
    triin.pointlist=Cdouble[0.0 0.0 ; 1.0 0.0 ; 1.0  1.0 ;center_x center_y; 0.0 
1.0]'
    triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 1 ]'
    triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5]
  
    triunsuitable(unsuitable)
    angle=@sprintf("%.15f",minangle)
    (triout, vorout)=triangulate("pauq$(angle)Q", triin)
    plot_in_out(PyPlot,triin,triout,voronoi=vorout)
end
 

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
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Triangulation of a heterogeneous domain
The segment list speci�es its boundary and the inner boundary between subdomains. An additional
region list is speci�ed which provides "region points" in regionlist[1,:]  and regionlist[2,:] .
These kind of mark the subdomains. regionlist[3,:]  contains an attribute which labels the
subdomains. regionlist[4,:]  contains a maximum area value. size(regionlist,2)  is the number
of regions.

With the "A" �lag, the subdomain labels are spread to all triangles in the corresponding subdomains,
becoming available in triangleattributelist[1,:] . With the "a" �lag, the area constraints are
applied in the corresponding subdomains.

example_domain_regions (generic function with 1 method)

example_domain_localref();gcf()⋅

function example_domain_regions(;minangle=20)
    triin=Triangulate.TriangulateIO()
    triin.pointlist=Cdouble[0.0 0.0 ;0.5 0.0; 1.0 0.0 ; 1.0  1.0 ; 0.8 0.6; 0.0 1.0]'
    triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 6 ; 6 1 ; 2 5]'
    triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5, 6, 7]
    angle=@sprintf("%.15f",minangle)
    triin.regionlist=Cdouble[0.2 0.2 1 0.05;
                             0.8 0.2 2 0.001]'
    (triout, vorout)=triangulate("paAq$(angle)Q", triin)
    plot_in_out(PyPlot,triin,triout,voronoi=vorout)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

example_domain_regions();gcf()⋅


