
17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 1/10

Mesh generation

Regard boundary value problems for PDEs in a �nite domain
Solution spaces for PDEs are in�nite dimensional develop �nite dimensional approximations
One way of de�ning such approximations is based on the subdivision of into a �nite number
of elementary closed subsets , called mesh or grid
Elementary shapes:

triangles or quadrilaterals ()
tetrahedra or cuboids ()
more general cases possible

During this course:
Assume the domain is polygonal, its boundary is the union of a �nite number of
subsets of hyperplanes in (line segments for , planar polygons for)
Focus on simplexes (triangles, tetrahedra)

Geometrically most �lexible
Starting point for more general methods

Focus on

Admissible grids
De�niton: A grid of is admissible if

 is the union of the elementary cells:
If consists of exactly one point, then this point is a common vertex of and .
If for , consists of more than one point, then is a common edge (or a
common facet for) of and .

Image (Source: Braess): Le�t - admissible mesh, right - mesh with "hanging" nodes

There are generalizations of �nite element and �nite volume methods which can work with
hanging nodes, however we will not go into these details in the course.

begin
 using Pkg
 Pkg.activate(mktempdir())
 Pkg.add(["PyPlot","PlutoUI","Triangulate"])
 using Triangulate
 using PlutoUI
 using PyPlot

 ENV["LC_NUMERIC"]="C" # prevent pyplot from essing up string2float conversion

 PyPlot.svg(true)
 using Printf
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 2/10

Voronoi diagram
A�ter G. F. Voronoi, 1868-1908

De�nition: Let . The set of points is the half
space of points closer to than to .

De�nition: Given a �nite set of points , the Voronoi region (Voronoi cell) of a point is the
set of points closer to than to any other point :

The Voronoi diagram of is the collection of the Voronoi regions of the points of .

The Voronoi diagram subdivides the whole space into ``nearest neigbor'' regions
Being intersections of half planes, the Voronoi regions are convex sets

Delaunay triangulation
A�ter B.N. Delaunay (Delone), 1890-1980

Given a �nite set of points
Assume that the points of are in general position, i.e. no points of are on one sphere (in
2D: no 4 points on one circle)

Connect each pair of points whose Voronoi regions share a common edge with a line
Delaunay triangulation of the convex hull of

pts=[0 0;
 0.5 1;
0.6 0.6;
0.1 0.1;
0.1 0.7;
 1 0];

⋅
⋅
⋅
⋅
⋅
⋅

points=[0 0;
 0.5 0.5;
0.5 -0.1;
0.5 0.1;
 1 0;];

⋅
⋅
⋅
⋅
⋅

17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 3/10

Another Interactive example via GEOGRAM. This smoothes the point set a�ter insertion, but you get a
good impression about the Duality between Voronoi and Delaunay.

The circumsphere (circumcircle in 2D) of a -dimensional simplex is the unique sphere containing
all vertices of the simplex
The circumball (circumdisc in 2D) of a simplex is the unique (open) ball which has the
circumsphere of the simplex as boundary

De�nition: A triangulation of the convex hull of a point set has the Delaunay property if each simplex
(triangle) of the triangulation is Delaunay, i.e. its circumsphere (circumcircle) is empty wrt. , i.e. it
does not contain any points of .

The Delaunay triangulation of a point set , where all points are in general position is unique
and has the Delaunay property
Otherwise there is an ambiguity - if e.g. 4 points are one circle, there are two ways to connect
them resulting in Delaunay triangles

Edge �ips and locally Delaunay edges (�D only)
For any two triangles and sharing a common edge , there is the edge �lip operation
which reconnects the points in such a way that two new triangles emerge: and .
An edge of a triangulation is locally Delaunay if it either belongs to exactly one triangle, or if it
belongs to two triangles, and their respective circumdisks do not contain the points opposite
wrt. the edge
If an edge is locally Delaunay and belongs to two triangles, the sum of the angles opposite to
this edge is less or equal to .
If all edges of a triangulation of the convex hull of are locally Delaunay, then the triangulation
is the Delaunay triangulation
If an edge is not locally Delaunay and belongs to two triangles, the edge emerging from the
corresponding edge �lip will be locally Delaunay

Flip edge to make the triangles Delaunay:

http://homepages.loria.fr/BLevy/GEOGRAM/geogram_demo_Delaunay2d.html

17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 4/10

Lawson's Edge �ip algorithm for constructing a
Delaunay triangulation
This is one of the most elementary mesh generation algorithms

Input: A stack of edges of a given triangulation of a set of points
While

pop an edge from
If is not locally Delaunay

Flip to
Push edges onto

This algorithm is known to terminate a�ter operations. A�ter termination, all edges will be
locally Delaunay, so the output is the Delaunay triangulation of .

Among all triangulations of a �nite point set , the Delaunay triangulation maximises the
minimum angle of all triangles2
The set of all possible triangulations of is connected via the �lip graph. Each edge of this graph
corresponds to one particular �lip operation

Randomized incremental �ip algorithm (�D
only)

Create Delaunay triangulation of point set by inserting points one a�ter another, and creating
the Delaunay triangulation of the emerging subset of using the �lip algorithm
Estimated complexity:
In 3D, there is no simple �lip algorithm, generalizations are active research subject

Open source codes implementing mesh
generation

CGAL: The Computational Geometry Algorithms Library
ND: qhull mostly for pointsets
2D: Triangle by J.R.Shewchuk (UC Berkeley)
3D: TetGen by H. Si (WIAS Berlin)
3D: NetGen by J. Schöberl and coworkers

Triangle

https://www.cgal.org/
http://www.qhull.org/
https://www.cs.cmu.edu/~quake/triangle.html
http://tetgen.org/
https://github.com/NGSolve/netgen

17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 5/10

During this course, we will focus on Triangle. It can be compiled to a standalone executable reading
and writing �les or to a library which can be called from applications.

In Julia it is accessible via the package Triangulate.jl.

The following examples have been taken from that package and slightly modi�ed for Pluto.

General use

Triangle communicates via a data structure TriangulateIO which contains possible input and
output information
It processes an input structure and returns on output the triangulation, and possibly, the
Voronoi diagram.
It is controlled via a string containing switches
The switch '-Q' makes Triangle quiet

Delaunay triangulation of the convex hull of a pointset
Create a set of random points in the plane and calculate the Delaunay triangulation of this set of
points. It is a triangulation where for each triangle, the interior of its circumcircle does not contain any
points of the trianglation.

The Delaunay triangulation of a set of points in general position (no 4 of them on a circle) is unique.
At the same time, it is a triangulation of the convex hull of these points.

Given an input list of points, without any further �lags, Triangle creates just this triangulation (the "Q"
�lag suppresses the text output of Triangle). For this and the next examples, the input list of points is
created randomly, but on a raster, preventing the appearance of too close points.

example_convex_hull (generic function with 1 method)

(TriangulateIO(
pointlist=[0.729408 0.268405 … 0.0471536 0.670108; 0.0860627 0.19834 … 0.203296 0.234648
)

Delaunay triangulation of point set with boundary
Same as the previous example, but in addition specify the "c" �lag In this case, Triangle outputs an
additional list of segments describing the boundary of the convex hull. In fact this is a constrained
Delaunay triangulation (CDT) where the boundary segments are the constraining edges which must
appear in the output.

example_convex_hull_with_boundary (generic function with 1 method)

function example_convex_hull(;n=10)
 triin=TriangulateIO()
 triin.pointlist=rand(Cdouble,2,n)
 (triout, vorout)=triangulate("Q", triin)
 triin,triout
end

⋅
⋅
⋅
⋅
⋅
⋅

triin,triout=example_convex_hull(n=10)⋅

function example_convex_hull_with_boundary(;n=10)
 triin=TriangulateIO()
 triin.pointlist=rand(Cdouble,2,n)

⋅
⋅
⋅

https://github.com/JuliaGeometry/Triangulate.jl
https://www.cs.cmu.edu/~quake/triangle.switch.html

17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 6/10

(TriangulateIO(
pointlist=[0.285658 0.246788 … 0.174594 0.806665; 0.359657 0.772696 … 0.743857 0.234212]
)

Delaunay triangulation of point set with Voronoi
diagram
Same as the previous example, but instead of "c" specify the "v" �lag In this case, Triangle outputs
information about the Voronoi diagram of the point set which is a structure dual to the Delaunay
triangulation.

The Voronoi cell around a point a point set is de�ned as the set of points such that
 for all such that .

The Voronoi cells of boundary points of the convex hull are of in�nite size. The corners of the Voronoi
cells are the circumcenters of the triangles. They can be far outside of the triangulated domain.

example_convex_hull_voronoi (generic function with 1 method)

 triout, vorout=triangulate("cQ", triin)
 triin,triout
end

⋅
⋅
⋅

example_convex_hull_with_boundary(n=5)⋅

plot_in_out(PyPlot,example_convex_hull_with_boundary(n=20)...);gcf()⋅

function
example_convex_hull_voronoi(;points=rand(Cdouble,2,10),show_tria=true,circumcircles=f
alse)
 triin=Triangulate.TriangulateIO()
 triin.pointlist=points
 (triout, vorout)=triangulate("vQ", triin)
 if !show_tria
 triout.trianglelist=zeros(Cint,2,0)
 end
 plot_in_out(PyPlot,triin,triout,voronoi=vorout,circumcircles=circumcircles)
 gcf().set_size_inches(8,4)
 gcf()
end

⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 7/10

Boundary conforming Delaunay triangulation of point
set
Specify "c" �lag for convex hull segments, "v" �lag for Voronoi and "D" �lag for creating a boundary
conforming Delaunay triangulation of the point set. In this case additional points are created which
split the boundary segments and ensure that all triangle circumcenters lie within the convex hull. Due
to random input, there may be situations where Triangle fails with this task, so we check for the
corresponding exception.

example_convex_hull_voronoi_delaunay (generic function with 1 method)

Constrained Delaunay triangulation (CDT) of a
domain given by a segment list specifying its
boundary.
Constrained Delaunay triangulation (CDT) of a point set with additional constraints given a priori. This
is obtained when specifying the "p" �lag and an additional list of segments each described by two
points which should become edges of the triangulation. Note that the resulting triangulation is not
Delaunay in the sense given above.

example_domain_cdt (generic function with 1 method)

example_convex_hull_voronoi(points=rand(Cdouble,2,10),circumcircles=true)⋅

function example_convex_hull_voronoi_delaunay(;n=10,circumcircles=false)
 triin=Triangulate.TriangulateIO()
 triin.pointlist=rand(Cdouble,2,n)
 (triout, vorout)=triangulate("vcDQ", triin)
 plot_in_out(PyPlot,triin,triout,voronoi=vorout,circumcircles=circumcircles)
end

⋅
⋅
⋅
⋅
⋅
⋅

example_convex_hull_voronoi_delaunay(;n=5,circumcircles=true);gcf()⋅

function example_domain_cdt(;Plotter=nothing)⋅

17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 8/10

Constrained Delaunay triangulation (CDT) of a domain given
by a segment list specifying its boundary together with a
maximum area constraint.
This constraint is spec�ed as a �loating point number given a�ter the -a �lag. Be careful to not give it in
the exponential format as Triangle would be unable to analyse it. Therefore it is dangerous to give a
number in the string interpolation and it is better to convert it to a string before using @sprintf .
Specifying only the maximum area constraint does not prevent very thin triangles from occuring at
the boundary.

example_domain_cdt_area (generic function with 1 method)

 triin=Triangulate.TriangulateIO()
 triin.pointlist=Cdouble[0.0 0.0 ; 1.0 0.0 ; 1.0 1.0 ; 0.8 0.6; 0.0 1.0]'
 triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 1]'
 triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5]
 (triout, vorout)=triangulate("pQ", triin)
 plot_in_out(PyPlot,triin,triout;voronoi=vorout)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

example_domain_cdt();gcf()⋅

function example_domain_cdt_area(;maxarea=0.05,circumcircles=false)
 triin=Triangulate.TriangulateIO()
 triin.pointlist=Cdouble[0.0 0.0 ; 1.0 0.0 ; 1.0 1.0 ; 0.8 0.6; 0.0 1.0]'
 triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 1]'
 triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5]
 area=@sprintf("%.15f",maxarea) # Don't use exponential format!
 (triout, vorout)=triangulate("pa$(area)Q", triin)
 plot_in_out(PyPlot,triin,triout,voronoi=vorout,circumcircles=circumcircles)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

example_domain_cdt_area(maxarea=0.05,circumcircles=false);gcf()⋅

17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 9/10

Boundary conforming Delaunay triangulation (BCDT) of a
domain given by a segment list specifying its boundary
In addition to the area constraint specify the -D �lag in order to keep the triangle circumcenters within
the domain.

example_domain_bcdt_area (generic function with 1 method)

Triangulation of a domain with re�nement callback
A maximum area constraint is speci�ed in the unsuitable callback which is activated via the "u" �lag
if it has been passed before calling triangulate. In addition, the "q" �lag allows to specify a minimum
angle constraint preventing skinny triangles.

example_domain_localref (generic function with 1 method)

function example_domain_bcdt_area(;maxarea=0.05,circumcircles=false)
 triin=Triangulate.TriangulateIO()
 triin.pointlist=Cdouble[0.0 0.0 ; 1.0 0.0 ; 1.0 1.0 ; 0.8 0.6; 0.0 1.0]'
 triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 1]'
 triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5]
 area=@sprintf("%.15f",maxarea)
 (triout, vorout)=triangulate("pa$(area)DQ", triin)
 plot_in_out(PyPlot,triin,triout,voronoi=vorout,circumcircles=circumcircles)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

example_domain_bcdt_area(maxarea=0.01,circumcircles=true);gcf()⋅

function example_domain_localref(;minangle=20)
 center_x=0.8
 center_y=0.6
 localdist=0.1
 function unsuitable(x1,y1,x2,y2,x3,y3,area)
 bary_x=(x1+x2+x3)/3.0
 bary_y=(y1+y2+y3)/3.0
 dx=bary_x-center_x
 dy=bary_y-center_y
 qdist=dx^2+dy^2
 qdist>1.0e-5 && area>0.1*qdist
 end

 triin=Triangulate.TriangulateIO()
 triin.pointlist=Cdouble[0.0 0.0 ; 1.0 0.0 ; 1.0 1.0 ;center_x center_y; 0.0
1.0]'
 triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 1]'
 triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5]

 triunsuitable(unsuitable)
 angle=@sprintf("%.15f",minangle)
 (triout, vorout)=triangulate("pauq$(angle)Q", triin)
 plot_in_out(PyPlot,triin,triout,voronoi=vorout)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

17.12.2020 🎈 nb14-tri.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=97b5e32e-4055-11eb-3276-799e24100866# 10/10

Triangulation of a heterogeneous domain
The segment list speci�es its boundary and the inner boundary between subdomains. An additional
region list is speci�ed which provides "region points" in regionlist[1,:] and regionlist[2,:] .
These kind of mark the subdomains. regionlist[3,:] contains an attribute which labels the
subdomains. regionlist[4,:] contains a maximum area value. size(regionlist,2) is the number
of regions.

With the "A" �lag, the subdomain labels are spread to all triangles in the corresponding subdomains,
becoming available in triangleattributelist[1,:] . With the "a" �lag, the area constraints are
applied in the corresponding subdomains.

example_domain_regions (generic function with 1 method)

example_domain_localref();gcf()⋅

function example_domain_regions(;minangle=20)
 triin=Triangulate.TriangulateIO()
 triin.pointlist=Cdouble[0.0 0.0 ;0.5 0.0; 1.0 0.0 ; 1.0 1.0 ; 0.8 0.6; 0.0 1.0]'
 triin.segmentlist=Cint[1 2 ; 2 3 ; 3 4 ; 4 5 ; 5 6 ; 6 1 ; 2 5]'
 triin.segmentmarkerlist=Cint[1, 2, 3, 4, 5, 6, 7]
 angle=@sprintf("%.15f",minangle)
 triin.regionlist=Cdouble[0.2 0.2 1 0.05;
 0.8 0.2 2 0.001]'
 (triout, vorout)=triangulate("paAq$(angle)Q", triin)
 plot_in_out(PyPlot,triin,triout,voronoi=vorout)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

example_domain_regions();gcf()⋅

