```
pyplot (generic function with 1 method)
    - begin
        using Pkg
        Pkg.activate(mktempdir())
        Pkg.add("PyPlot")
        Pkg.add("PlutouI")
        Pkg.add("GraphPlot");
        Pkg.add("LightGraphs");
        Pkg.add("Colors")
        using PlutoUI
        using PyPlot
        using LinearAlgebra
        using SparseArrays
        using GraphPlot, LightGraphs,Colors
        function pyplot(f;width=3,height=3)
            clf()
            f()
        fig=gcf()
        fig.set_size_inches(width, height)
        fig
    end
end
```


Eigenvalue analysis for more general matrices

For 1D heat conduction we had a very special regular structure of the matrix which allowed exact eigenvalue calculations.

We need a generalization to varying coefficients, nonsymmetric problems, unstructured grids . . $\backslash \Rightarrow$ what can be done for general matrices ?

The Gershgorin Circle Theorem

Theorem (Varga, Th. 1.11) Let A be an $n \times n$ (real or complex) matrix. Let Λ_{i} be the sum of the absolute values of the i-th row's off-diagonal entries:

$$
\Lambda_{i}=\sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|a_{i j}\right|
$$

If λ is an eigenvalue of A, then there exists $r, 1 \leq r \leq n$ such that λ lies on the disk defined by the circle of radius Λ_{r} around $a_{r r}$:

$$
\left|\lambda-a_{r r}\right| \leq \Lambda_{r}
$$

Proof: Assume λ is an eigenvalue, $\vec{x}=\left(x_{1} \ldots x_{n}\right)$ is a corresponding eigenvector. Assume \vec{x} is normalized such that

$$
\max _{i=1 \ldots n}\left|x_{i}\right|=\left|x_{r}\right|=1
$$

From $A \vec{x}=\lambda \vec{x}$ it follows that

$$
\begin{aligned}
\lambda x_{i} & =\sum_{j=1 \ldots n} a_{i j} x_{j} \\
\left(\lambda-a_{i i}\right) x_{i} & =\sum_{\substack{j=1 \ldots . n \\
j \neq i}} a_{i j} x_{j} \\
\left|\lambda-a_{r r}\right| & =\left|\sum_{\substack{j=1 \ldots n \\
j \neq r}} a_{r j} x_{j}\right| \leq \sum_{\substack{j=1 \ldots . \ldots n \\
j \neq r}}\left|a_{r j}\right|\left|x_{j}\right| \leq \sum_{\substack{j=1 \ldots n \\
j \neq r}}\left|a_{r j}\right|=\Lambda_{r}
\end{aligned}
$$

Corollary Any eigenvalue $\lambda \in \sigma(A)$ lies in the union of the disks defined by the Gershgorin circles

$$
\lambda \in \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{C}:\left|\mu-a_{i i}\right| \leq \Lambda_{i}\right\}
$$

Corollary The Gershgorin circle theorem allows to estimate the spectral radius $\rho(A)$:

$$
\begin{gathered}
\rho(A) \leq \max _{i=1 \ldots n} \sum_{j=1}^{n}\left|a_{i j}\right|=\|A\|_{\infty} \\
\rho(A) \leq \max _{j=1 \ldots n} \sum_{i=1}^{n}\left|a_{i j}\right|=\|A\|_{1}
\end{gathered}
$$

Proof:

$$
\left|\mu-a_{i i}\right| \leq \Lambda_{i} \quad \Rightarrow \quad|\mu| \leq \Lambda_{i}+\left|a_{i i}\right|=\sum_{j=1}^{n}\left|a_{i j}\right|
$$

Furthermore, $\sigma(A)=\sigma\left(A^{T}\right)$.

This appears to be very easy to use, so let us try:

```
gershgorin_circles (generic function with 1 method)
    function gershgorin_circles(A)
        t=0:0.01*\pi:2\pi
        # \alpha is the trasnparency value.
        circle(x,y,r;\alpha=0.3)=fill(x.+r.*cos.(t),y.+r.*sin.(t),alpha=\alpha)
        n=size(A,1)
        for i=1:n
            \Lambda=0
            for j=1:n
                if j!=i
                        \Lambda+=abs(A[i,j])
                end
            end
            circle(real(A[i,i]),imag(A[i,i]),\Lambda,\alpha=0.5/n)
        end
        \sigma=eigvals(Matrix(A))
        scatter(real(\sigma),imag(\sigma), sizes=10*ones(n),color=:red)
    end
```

$\mathrm{n} 1=5$
n1 $=5$
A1 $=5 \times 5$ Array\{Complex\{Float64\}, 2$\}$:
$0.178502+0.0192365 \mathrm{im} \quad 0.744411+0.093342 \mathrm{im} \quad . . \quad 0.392995+0.0961931 \mathrm{im}$
$0.285649+0.0786766 \mathrm{im} \quad 0.196577+0.0252502 \mathrm{im} \quad \begin{array}{ll}-. & 0.564553+0.0803397 \mathrm{im}\end{array}$
$\begin{array}{lll}0.169284+0.0438933 \mathrm{im} & 0.755742+0.0518099 \mathrm{im} & 0.55119+0.0852875 \mathrm{im}\end{array}$
$0.669057+0.0866883 \mathrm{im} \quad 0.867834+0.0229806 i \mathrm{~m} \quad 0.607358+0.0276727 \mathrm{im}$
$0.480013+0.0704921 \mathrm{im} \quad 0.581088+0.0177494 \mathrm{im} \quad 0.247122+0.0167818 \mathrm{im}$
$\mathrm{A} 1=\operatorname{rand}(\mathrm{n} 1, \mathrm{n} 1)+0.1 * \operatorname{rand}(\mathrm{n} 1, \mathrm{n} 1) * 1 \mathrm{im}$
Complex\{Float64\}[-0.518821-0.0347195im, -0.417636+0.115591im, -0.207874-0.151289im, 0.₹

```
    eigvals(A1)
```



```
pyplot(width=5, height=5) do
    gershgorin_circles(A1)
    xlabel("Re")
    ylabel("Im")
    PyPlot.grid(color=:gray)
end
```

So this is kind of cool! Let us try this out with our heat example and the Jacobi iteration matrix:
$B=I-D^{-1} A$
heatmatrix1d (generic function with 1 method)
function heatmatrix1d $(\mathbf{N} ; \boldsymbol{\alpha}=100)$
A=zeros(N,N)
$\mathrm{h}=1 /(\mathrm{N}-1)$
$A[1,1]=1 / h+\alpha$
for $i=2: N-1$
$A[i, i]=2 / h$
end
for $\mathrm{i}=1: \mathrm{N}-1$
$A[i, i+1]=-1 / h$
end
for $\mathrm{i}=2: \mathrm{N}$
$A[i, i-1]=-1 / h$
end
$A[N, N]=1 / h+\alpha$
A
end
jacobi_iteration_matrix (generic function with 1 method)

- jacobi_iteration_matrix (A)=I-inv(Diagonal(A))*A
$\mathrm{N}=10$
($\mathrm{N}=10$

A2 $=10 \times 10$ Tridiagonal\{Float64, Array\{Float 64,1$\}\}$:

A2=Tridiagonal(heatmatrix1d(N))

```
B2 = 10\times10 Tridiagonal{Float64,Array{Float64,1}}:
    0.0 0.0825688
    0.5 0.0
            0.5
        . . 
```


$\rho 2=0.9421026930965894$

- $\rho 2=$ maximum(abs. (eigvals(Matrix(B2))))

We have $b_{i i}=0, \Lambda_{i}= \begin{cases}\frac{1}{1+\alpha h}, & i=1, n \\ 1 & i=2 \ldots n-1\end{cases}$
We see two circles around 0 : one with radius 1 and one with radius $\frac{1}{1+\alpha h}$
\Rightarrow estimate $\left|\lambda_{i}\right| \leq 1$
We can also caculate the value from the estimate: Gershgorin circles of $B 2$ are centered in the origin, and the spectral radius estimate just consists in the maximum of the sum of the absolute values of the row entries.
$\rho 2$ _gershgorin $=1.0$

- $\rho 2$ _gershgorin=maximum([sum(abs.(B2[i,:])) for $i=1: \operatorname{size}(B 2,1)])$


```
pyplot(width=5, height=5) do
    gershgorin_circles(B2)
        xlabel("Re")
    ylabel("Im")
    PyPlot.grid(color=:gray)
end
```

So the estimate from the Gershgorin Circle theorem is very pessimistic... Can we improve this ?

Matrices and Graphs

- Permutation matrices are matrices which have exactly one non-zero entry in each row and each column which has value 1 .
- There is a one-to-one correspondence permutations π of the the numbers $1 \ldots n$ and $n \times n$ permutation matrices $P=\left(p_{i j}\right)$ such that

$$
p_{i j}= \begin{cases}1, & \pi(i)=j \\ 0, & \text { else }\end{cases}
$$

- Permutation matrices are orthogonal, and we have $P^{-1}=P^{T}$
- $A \rightarrow P A$ permutes the rows of A
- $A \rightarrow A P^{T}$ permutes the columns of A

Define a directed graph from the nonzero entries of a matrix $A=\left(a_{i k}\right)$:

- Nodes: $\mathcal{N}=\left\{N_{i}\right\}_{i=1 \ldots n}$
- Directed edges: $\mathcal{E}=\left\{\overrightarrow{N_{k} N_{l}} \mid a_{k l} \neq 0\right\}$
- Matrix entries \equiv weights of directed edges
- 1:1 equivalence between matrices and weighted directed graphs

Create a bidirectional graph (digraph) from a matrix in Julia. Create edge labels from off-diagonal entries and node labels combined from diagonal entries and node indices.

```
create_graph (generic function with 1 method)
    function create_graph(matrix)
        @assert size(matrix,1)==size(matrix,2)
        n=size(matrix,1)
        g=LightGraphs.SimpleDiGraph(n)
        elabel=[]
        nlabel=Any[]
        for i in 1:n
            push!(nlabel,"""$(i) \n $(matrix[i,i])""")
            for j in 1:n
                if i!=j && matrix[i,j]>0
                    add_edge!(g,i,j)
                        push!(elabel,matrix[i,j])
                end
            end
        end
        g,nlabel,elabel
    end
```

rndmatrix (generic function with 1 method)
- \# sparse random matrix with entries with limited numbers decimal values
- rndmatrix $(n, p)=\operatorname{rand}(0: 0.01: 1, n, n) . * M a t r i x(\operatorname{sprand}(B o o l, n, n, p))$
A3 $=5 \times 5$ Array $\{$ Float 64,2$\}:$
$\begin{array}{lllll}0.0 & 0.0 & 0.77 & 0.0 & 0.0\end{array}$
$\begin{array}{lllll}0.0 & 0.0 & 0.0 & 0.0 & 0.0\end{array}$
$\begin{array}{lllll}0.84 & 0.9 & 0.0 & 0.33 & 0.0\end{array}$
$\begin{array}{lllll}0.0 & 0.0 & 0.0 & 0.0 & 0.32\end{array}$
$\begin{array}{lllll}0.0 & 0.41 & 0.0 & 0.38 & 0.0\end{array}$
- $\mathrm{A} 3=$ rndmatrix $(5,0.3)$
(\{5, 7\} directed simple Int64 graph, Any["1 \n 0.0", "2 \n 0.0", "3 \n 0.0", "4 \n 0.0
graph3, nlabel3, elabel3=create_graph(A3)

GraphPlot.gplot(graph3,
nodelabel=nlabel3,
edgelabel=elabel3,
nodefillc=RGB(1.0,0.6,0.5),

EDGELABELSIZE=6.0,
NODESIZE=0.1,
EDGELINEWIDTH=1
)

- Matrix graph of $A 3$ is strongly connected: false
- Matrix graph of $A 3$ is weakly connected: true

Definition A square matrix A is reducible if there exists a permutation matrix P such that
$P A P^{T}=\left(\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right)$
A is irreducible if it is not reducible.
Theorem (Varga, Th. 1.17): A is irreducible \Leftrightarrow the matrix graph is strongly connected, i.e. for each ordered pair $\left(N_{i}, N_{j}\right)$ there is a path consisting of directed edges, connecting them.

Equivalently, for each i, j there is a sequence of consecutive nonzero matrix entries $a_{i k_{1}}, a_{k_{1} k_{2}}, a_{k_{2} k_{3}} \ldots, a_{k_{r-1} k_{r}} a_{k_{r} j}$.

The Taussky theorem

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the eigenvalue λ is a boundary point of the union of all the disks

$$
\lambda \in \partial \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{C}:\left|\mu-a_{i i}\right| \leq \Lambda_{i}\right\}
$$

Then, all n Gershgorin circles pass through λ, i.e. for $i=1 \ldots n$,

$$
\left|\lambda-a_{i i}\right|=\Lambda_{i}
$$

Proof Assume λ is eigenvalue, \vec{x} a corresponding eigenvector, normalized such that $\max _{i=1 \ldots n}\left|x_{i}\right|=\left|x_{r}\right|=1$. From $A \vec{x}=\lambda \vec{x}$ it follows that

$$
\begin{align*}
\left(\lambda-a_{r r}\right) x_{r} & =\sum_{\substack{j=1 \ldots n \\
j \neq r}} a_{r j} x_{j} \\
\left|\lambda-a_{r r}\right| & \leq \sum_{\substack{j=1 \ldots n \\
j \neq r}}\left|a_{r j}\right| \cdot\left|x_{j}\right| \\
& \leq \sum_{\substack{j=1 \ldots n \\
j \neq r}}\left|a_{r j}\right|=\Lambda_{r} \tag{*}
\end{align*}
$$

λ is boundary point $\Rightarrow\left|\lambda-a_{r r}\right|=\sum_{\substack{j=1 \ldots n \\ j \neq r}}\left|a_{r j}\right| \cdot\left|x_{j}\right|=\Lambda_{r}$
\Rightarrow For all $p \neq r$ with $a_{r p} \neq 0,\left|x_{p}\right|=1$.
Due to irreducibility there is at least one p with $a_{r p} \neq 0$. For this $p,\left|x_{p}\right|=1$ and equation (*) is valid (with p in place of r) $\Rightarrow\left|\lambda-a_{p p}\right|=\Lambda_{p}$

Due to irreducibility, this is true for all $p=1 \ldots n$.
Apply this to the Jacobi iteration matrix for the heat conduction problem: We know that $\left|\lambda_{i}\right| \leq 1$, and we can see that the matrix graph is strongly connected.

Assume $\left|\lambda_{i}\right|=1$. Then λ_{i} lies on the boundary of the union of the Gershgorin circles. But then it must lie on the boundary of both circles with radius $\frac{1}{1+\alpha h}$ and 1 around o .

Contradiction! $\Rightarrow\left|\lambda_{i}\right|<1, \rho(B)<1$!
$\alpha=1$

```
    - \alpha=1
N4 = 5
    N4=5
A4 = 5\times5 Tridiagonal{Float64,Array{Float64,1}}:
    5.0 -4.0
    -4.0
        -4.0 8.0 -4.0 .
        . . -4.0
    - A4=Tridiagonal(heatmatrix1d(N4, \alpha=\alpha))
B4 = 5\times5 Tridiagonal{Float64,Array{Float64,1}}:
        0.0
        . 0.5 0.0 0.5 .
        . . 0.5 0.0 0.5
        B4=jacobi_iteration_matrix(A4)
\rho4 = 0.9486832980505135
    - \rho4=maximum(abs.(eigvals(Matrix(B4))))
\rho4_gershgorin = 1.0
    - p4_gershgorin=maximum([sum( abs.(B4[i,:])) for i=1:size(B4,1)])
    ({5, 8} directed simple Int64 graph, Any["1 \n 0.0", "2 \n 0.0", "3 \n 0.0", "4 \n 0.0
    graph4,nlabel4,elabel4=create_graph(B4)
```


GraphPlot.gplot(graph4, \# rand (n), rand(n),
nodelabel=nlabel4,
edgelabel=elabel4,
nodefillc=RGB(1.0,0.6,0.5),
EDGELABELSIZE=6.0,
NODESIZE=0.1,
EDGELINEWIDTH=1
.)

- Matrix graph is strongly connected: true
- Matrix graph is weakly connected: true

pyplot(width=5, height=5) do gershgorin_circles(B4) xlabel("Re")
ylabel("Im")
PyPlot.grid(color=:gray)
end
- Unfortunately, we don't get a quantitative estimate here.
- Advantage: we don't need to assume symmetry of A or spectral equivalence estimates

