
27.11.2020 🎈 nb11-plotting.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=0832e44e-3096-11eb-0761-63a59981b6e3# 1/7

Plotting & visualization
Human perception is much better adapted to visual representation than to numbers

Purposes of plotting:

Visualization of research results for publications & presentations
Debugging + developing algorithms
"In-situ visualization" of evolving computations
Investigation of data
1D, 2D, 3D, 4D data
Similar tasks in CAD, Gaming, Virtual Reality

Processing steps in visualization

High level tasks:
Representation of data using elementary primitives: points,lines, triangles
Very di�ferent depending on purpose

Low level tasks
Coordinate transformation from "world coordinates" of a particular model to screen coordinates
Transformation 3D 2D, visibility computation
Coloring, lighting, transparency
Rasterization: turn smooth data into pixels

So�ware implementation of low level tasks
So�tware: rendering libraries, e.g. Cairo, AGG
So�tware for vector based graphics formats, e.g. PDF, postscript, svg
Typically performed on CPU

Hardware for low level tasks
Low level tasks are characterized by huge number of very similar operations
Well adaped to parallelism "Single Instruction, Multiple Data" (SIMD)
Dedicated hardware: Graphics Processing Unit (GPU) can free CPU from these taks
Multiple parallel pipelines, fast memory for intermediate results

(wikimedia)

27.11.2020 🎈 nb11-plotting.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=0832e44e-3096-11eb-0761-63a59981b6e3# 2/7

GPU Programming
Typically, GPUs are processing units which are connected via bus interface to CPU
GPU Programming:

Prepare low level data for GPU
Send data to GPU
Process data in rendering pipeline(s)

Modern visualization programs have a CPU part and GPU parts a.k.a. shaders
Shaders allow to program details of data processing on GPU
Compiled on CPU, sent along with data to GPU

Modern libraries: Vulkan, modern OpenGL/WebGL, DirectX
Possibility to "mis-use" GPU for numerical computations

GPU Programming in the "old days"
"Fixed function pipeline" in OpenGL 1.1 �xed one particular set of shaders
Easy to program

 glClear()
 glBegin(GL_TRIANGLES)
 glVertex3d(1,2,3)
 glVertex3d(1,5,4)
 glVertex3d(3,9,15)
 glEnd()
 glSwapBuffers()

Not anymore: now everything works through shaders leading to highly complex programs

Library interfaces to GPU useful for Scienti�c
Visualization

vtk (backend of Paraview)
three.js (for WebGL in the browser)
Alternatively, work directly with OpenGL...
very few

Money seems to be in gaming, battle�eld rendering
Problem regadless of julia, python, C++,

Common approach:
Write data into "vtk" �les, use paraview for visualization.

Graphics in Julia
Plots.jl General purpose plotting package with di�ferent backends

GPU support via default gr backend (based on "old" OpenGL)
Plotly.jl Interface to javascript library plotly.js

plots in the browser or electron window
also as backend for Plots.jl
some WebGL functionality

Makie.jl
GPU based plotting using modern OpenGL
good plot performance, some precompilation time
essentially still under development

WGLMakie.jl maps Makie API to three.js, can be used from the browser
WriteVTK.jl vtk �le writer for �les to be used with paraview - so this is not a plotting library.
PyPlot.jl: Interface to python/matplotlib

realization via PyCall.jl

https://vtk.org/
https://paraview.org/
https://threejs.org/
https://github.com/JuliaPlots/Plots.jl
https://github.com/plotly/Plotly.jl
https://github.com/JuliaPlots/Makie.jl
https://github.com/JuliaPlots/Makie.jl
https://github.com/jipolanco/WriteVTK.jl
https://github.com/JuliaPy/PyPlot.jl
https://matplotlib.org/

27.11.2020 🎈 nb11-plotting.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=0832e44e-3096-11eb-0761-63a59981b6e3# 3/7

also as backend for Plots.jl

PyPlot
During this course we will use PyPlot, but feel free to try some of the other packages.

It has all the functionality we need (including plots on triangular meshes not available in
Plots.jl)
Python users instantly will recognize the interfaces
Knowledge obtained here can also be used in python
Low precompilation time (as opposed to e.g. Makie)

Drawback: Plotting performance - it does not use the GPU, large parts of the logic are in python

PyPlot resources:

Julia package
Julia examples
Matplotlib documentation

We can choose the way the plot is created: in the browser it can make sense to create it as a vector
graphic in svg format. The alternatice is png, a pixel based format.

true

How to create a plot ?

Instead of a begin/end block we used a let block. In a let block, all new variables are local and don't
interfer with other pluto cells.

This plot is not nice. It lacks:

orientation lines ("grid")
title
axis labels
label of the plot
size adjustment

PyPlot.svg(true)⋅

let
 X=collect(0:0.01:10)
 PyPlot.clf() # Clear the figure
 PyPlot.plot(X,sin.(exp.(X/3))) # call the plot function
 figure=PyPlot.gcf() # return figure to Pluto
end

⋅
⋅
⋅
⋅
⋅
⋅

https://github.com/JuliaPy/PyPlot.jl
https://gist.github.com/gizmaa/7214002
https://gist.github.com/gizmaa/7214002

27.11.2020 🎈 nb11-plotting.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=0832e44e-3096-11eb-0761-63a59981b6e3# 4/7

We can use math strings in plot labels here, we just need to escape the $ symbols with \ !

Plotting �D data

let
 X=collect(0:0.01:10)
 PyPlot.clf()
 PyPlot.plot(X,sin.(exp.(X/3)),
 label="\$\\sin(e^{x/3})\$", color=:red) # Plot with label
 PyPlot.plot(X,exp.(sin.(X/3)),
 label="\$e^{\\sin x/3}\$",color=(0.2,0.2,0.7)) # Plot with label
 PyPlot.legend(loc="lower left") # legend placement
 PyPlot.title("A better plot") # The plot title
 PyPlot.grid() # add grid lines to the plot
 PyPlot.xlabel("x") # x axis label
 PyPlot.ylabel("y") # y axis label
 figure=PyPlot.gcf()
 figure.set_size_inches(8,3) # adjust size
 PyPlot.savefig("myplot.png") # save figure to disk
 figure # return figure
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

let
 X=collect(0:0.01:10)
 PyPlot.clf()
 PyPlot.suptitle("Two plots in one") # Title of compound plot

 PyPlot.subplot(211) # Subplot: 2 rows, 1 column, 1st plot
 PyPlot.plot(X,sin.(exp.(X/3)),
 label="\$\\sin(e^x)\$", color=:red)
 PyPlot.grid()
 PyPlot.xlabel("x")
 PyPlot.ylabel("y")
 PyPlot.legend(loc="lower left")

 PyPlot.subplot(212) # Subplot: 2 rows, 1 column, 2nd plot
 PyPlot.plot(X,exp.(sin.(X/3)),
 label="\$e^{\\sin x}\$",color=(0.2,0.2,0.7))
 PyPlot.legend(loc="lower center")
 PyPlot.grid()
 PyPlot.xlabel("x")
 PyPlot.ylabel("y")

 figure=PyPlot.gcf()
 figure.set_size_inches(8,3)
 figure
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

27.11.2020 🎈 nb11-plotting.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=0832e44e-3096-11eb-0761-63a59981b6e3# 5/7

k: l:

let
 clf()
 X=collect(0:0.05:10)
 Y=X
 suptitle("Filled contours aka heatmap: k=$(k) l=$(l)")
 F=[sin(k*π*X[i])*sin(l*π*Y[j]) for i=1:length(X), j=1:length(Y)]
 contourf(X,Y,F) # plot filled contours
 xlabel("x")
 ylabel("y")
 figure=gcf()
 figure.set_size_inches(5,5)
 figure
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

let
 clf()
 X=collect(0:0.05:10)
 Y=X
 suptitle("Contour plot: k=$(k) l=$(l)")
 F=[sin(k*π*X[i])*sin(l*π*Y[j]) for i=1:length(X), j=1:length(Y)]
 contour(X,Y,F,colors=:black)
 xlabel("x")
 ylabel("y")
 gcf()
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

27.11.2020 🎈 nb11-plotting.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=0832e44e-3096-11eb-0761-63a59981b6e3# 6/7

Remove the moire in the plot:

This occurs in contourf when we use many colors to make a smooth impression.

α: β:

let
 clf()
 X=collect(0:0.05:10)
 Y=X
 suptitle("Contour + filled contours: k=$(k) l=$(l)")
 F=[sin(k*π*X[i])*sin(l*π*Y[j]) for i=1:length(X), j=1:length(Y)]
 fmin=minimum(F)
 fmax=maximum(F)
 number_of_isolines=10
 isolines=collect(fmin:(fmax-fmin)/number_of_isolines:fmax)
 cnt=contourf(X,Y,F,cmap="hot",levels=100)
 if fix_moire
 for c in cnt.collections
 c.set_edgecolor("face")
 end
 end
 axes=gca()
 axes.set_aspect(1)
 colorbar(ticks=isolines)
 contour(X,Y,F,colors=:black,linewidths=0.75,levels=isolines)
 xlabel("x")
 ylabel("y")
 gcf()
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

27.11.2020 🎈 nb11-plotting.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=0832e44e-3096-11eb-0761-63a59981b6e3# 7/7

... all movements could be much faster if we would use the GPU...

There are analogues for contour contourf and surf on triangular meshes which will be discussed
once we get there in the course.

Feel free watch my vizcon2 talk about using vtk from Julia - just to show what could be possible.
Unfortunately, these things currently work only on Linux...

let
 clf()
 X=collect(0:0.05:10)
 Y=X
 suptitle("Surface plot: k=$(k) l=$(l)")
 F=[sin(k*π*X[i])*sin(l*π*Y[j]) for i=1:length(X), j=1:length(Y)]

 surf(X,Y,F,cmap=:summer) # 3D surface plot
 ax=gca(projection="3d") # Obtain 3D plot axes
 ax.view_init(α,β) # Adjust viewing angles

 xlabel("x")
 ylabel("y")
 gcf()
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://www.youtube.com/watch?v=DmueA_Lvigs

