
26.11.2020 🎈 nb10-sparse-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=57b36d62-2fd6-11eb-2f24-7fabb9293932# 1/9

pyplot (generic function with 1 method)

Sparse matrices
In the previous lectures we found examples of matrices from partial di�ferential equations which have
only 3 of 5 nonzero diagonals. For 3D computations this would be 7 diagonals. One can make use of
this diagonal structure, e.g. when coding the progonka method.

Matrices from unstructured meshes for �nite element or �nite volume methods have a more irregular
pattern, but as a rule only a few entries per row compared to the number of unknowns. In this case
storing the diagonals becomes unfeasible.

De�nition: We call a matrix sparse if regardless of the number of unknowns , the number of non-
zero entries per row and per column remains limited by a constant

If we �nd a scheme which allows to store only the non-zero matrix entries, we would need not
more than storage locations instead of
The same would be true for the matrix-vector multiplication if we program it in such a way that
we use every nonzero element just once: matrix-vector multiplication would use instead
of operations

What is a good storage format for sparse matrices?
Is there a way to implement Gaussian elimination for general sparse matrices which allows for
linear system solution with operation ?
Is there a way to implement Gaussian elimination \emph{with pivoting} for general sparse
matrices which allows for linear system solution with operations?
Is there any algorithm for sparse linear system solution with operations?

Triplet storage format

Store all nonzero elements along with their row and column indices
One real, two integer arrays, length = nnz= number of nonzero elements

begin
 using Pkg;
 Pkg.activate(mktempdir())
 Pkg.add("PlutoUI")
 Pkg.add("PyPlot")
 Pkg.add("ExtendableSparse")
 Pkg.add("BenchmarkTools")

 using PlutoUI,PyPlot,BenchmarkTools
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

A function to handle sizing and return of a pyplot figure
function pyplot(f;width=3,height=3)
 clf()
 f()
 fig=gcf()
 fig.set_size_inches(width,height)
 fig
 end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

26.11.2020 🎈 nb10-sparse-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=57b36d62-2fd6-11eb-2f24-7fabb9293932# 2/9

(Y.Saad, Iterative Methods, p.92)

Also known as Coordinate (COO) format
This format o�ten is used as an intermediate format for matrix construction

Compressed Sparse Row (CSR) format
(aka Compressed Sparse Row (CSR) or IA-JA etc.)

�loat array AA , length nnz, containing all nonzero elements row by row
integer array JA , length nnz, containing the column indices of the elements of AA
integer array IA , length N+1, containing the start indizes of each row in the arrays IA and JA
and IA[N+1]=nnz+1

Used in many sparse matrix solver packages

Compressed Sparse Column (CSC) format
Uses similar principle but stores the matrix column-wise.
Used in Julia

Sparse matrices in Julia

Create sparse matrix from a full matrix

A 5×5 Array{Float64,2}:
 1.0 0.0 0.0 2.0 0.0
 3.0 4.0 0.0 5.0 0.0
 6.0 0.0 7.0 8.0 9.0
 0.0 0.0 10.0 11.0 0.0
 0.0 0.0 0.0 0.0 12.0

 =

using SparseArrays,LinearAlgebra⋅

A=Float64[1 0 0 2 0;
 3 4 0 5 0;
 6 0 7 8 9;
 0 0 10 11 0;

⋅
⋅
⋅
⋅

26.11.2020 🎈 nb10-sparse-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=57b36d62-2fd6-11eb-2f24-7fabb9293932# 3/9

As 5×5 SparseMatrixCSC{Float64,Int64} with 12 stored entries:
 [1, 1] = 1.0
 [2, 1] = 3.0
 [3, 1] = 6.0
 [2, 2] = 4.0
 [3, 3] = 7.0
 [4, 3] = 10.0
 [1, 4] = 2.0
 [2, 4] = 5.0
 [3, 4] = 8.0
 [4, 4] = 11.0
 [3, 5] = 9.0
 [5, 5] = 12.0

 =

Int64[1, 4, 5, 7, 11, 13]

Int64[1, 2, 3, 2, 3, 4, 1, 2, 3, 4, 3, 5]

Float64[1.0, 3.0, 6.0, 4.0, 7.0, 10.0, 2.0, 5.0, 8.0, 11.0, 9.0, 12.0]

Create a random sparse matrix

N 100 =

p 0.1 =

Random sparse matrix with probability p=0.1 that is nonzero:

A2 100×100 SparseMatrixCSC{Float64,Int64} with 1032 stored entries:
 [7 , 1] = 0.94222
 [11, 1] = 0.0328404
 [14, 1] = 0.288891
 [27, 1] = 0.777506
 [29, 1] = 0.499039
 [38, 1] = 0.493717
 ⋮
 [3 , 100] = 0.209442
 [7 , 100] = 0.52545
 [25, 100] = 0.570221
 [38, 100] = 0.360959
 [61, 100] = 0.174752
 [77, 100] = 0.862321
 [86, 100] = 0.562663

 =

 0 0 0 0 12]⋅

As=sparse(A)⋅

As.colptr⋅

As.rowval⋅

As.nzval⋅

pyplot(width=2,height=2) do
 spy(As,marker=".")
end

⋅
⋅
⋅

N=100⋅

p=0.1⋅

A2=sprand(N,N,p)⋅

26.11.2020 🎈 nb10-sparse-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=57b36d62-2fd6-11eb-2f24-7fabb9293932# 4/9

Create a sparse matrix from given data

There are several possibilities to create a sparse matrix for given data
As an example, we create a tridiagonal matrix.

N1 10000 =

a

Float64[0.178295, 0.737103, 0.370098, 0.837115, 0.313983, 0.349467, 0.546892, 0.7249

 =

b

Float64[0.333554, 0.378649, 0.622097, 0.0677654, 0.230456, 0.348583, 0.495553, 0.746

 =

c

Float64[0.604986, 0.210584, 0.889549, 0.725572, 0.147618, 0.784768, 0.793034, 0.2630

 =

Special case: use the Julia tridiagonal matrix constructor

sptri_special (generic function with 1 method)

Create an empty Julia sparse matrix and �ll it incrementally

B 10×10 SparseMatrixCSC{Float64,Int64} with 0 stored entries =

3

10×10 SparseMatrixCSC{Float64,Int64} with 1 stored entry:
 [1, 2] = 3.0

sptri_incremental (generic function with 1 method)

pyplot(width=3,height=3) do
 spy(A2,marker=".",markersize=0.5)
end

⋅
⋅
⋅

N1=10000⋅

a=rand(N1-1)⋅

b=rand(N1)⋅

c=rand(N1-1)⋅

sptri_special(a,b,c)=sparse(Tridiagonal(a,b,c))⋅

B=spzeros(10,10)⋅

B[1,2]=3⋅

B⋅

26.11.2020 🎈 nb10-sparse-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=57b36d62-2fd6-11eb-2f24-7fabb9293932# 5/9

Use the coordinate format as intermediate storage, and construct sparse matrix from there. This
is the recommended way.

sptri_coo (generic function with 1 method)

Use the ExtendableSparse.jl package which implicitely uses the so-called linked list format for
intermediate storage of new entries. Note the �lush!() method which needs to be called in order
to transfer them to the Julia sparse matrix structure.

sptri_ext (generic function with 1 method)

BenchmarkTools.Trial:
 memory estimate: 547.27 KiB
 allocs estimate: 8

 minimum time: 38.350 μs (0.00% GC)
 median time: 42.076 μs (0.00% GC)
 mean time: 58.949 μs (19.93% GC)
 maximum time: 1.513 ms (94.22% GC)

function sptri_incremental(a,b,c)
 N=length(b)
 A=spzeros(N,N)
 A[1,1]=b[1]
 A[1,2]=c[1]
 for i=2:N-1
 A[i,i-1]=a[i-1]
 A[i,i]=b[i]
 A[i,i+1]=c[i]
 end
 A[N,N-1]=a[N-1]
 A[N,N]=b[N]
 A
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function sptri_coo(a,b,c)
 N=length(b)
 II=[1,1]
 JJ=[1,2]
 AA=[b[1],c[1]]
 for i=2:N-1
 push!(II,i)
 push!(JJ,i-1)
 push!(AA,a[i-1])

 push!(II,i)
 push!(JJ,i)
 push!(AA,b[i])

 push!(II,i)
 push!(JJ,i+1)
 push!(AA,c[i])

 end
 push!(II,N)
 push!(JJ,N-1)
 push!(AA,a[N-1])

 push!(II,N)
 push!(JJ,N)
 push!(AA,b[N])

 sparse(II,JJ,AA)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

using ExtendableSparse⋅

function sptri_ext(a,b,c)
 N=length(b)
 A=ExtendableSparseMatrix(N,N)
 A[1,1]=b[1]
 A[1,2]=c[1]
 for i=2:N-1
 A[i,i-1]=a[i-1]
 A[i,i]=b[i]
 A[i,i+1]=c[i]
 end
 A[N,N-1]=a[N-1]
 A[N,N]=b[N]
 flush!(A)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://github.com/j-fu/ExtendableSparse.jl

26.11.2020 🎈 nb10-sparse-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=57b36d62-2fd6-11eb-2f24-7fabb9293932# 6/9

 samples: 10000
 evals/sample: 1

BenchmarkTools.Trial:
 memory estimate: 1.08 MiB
 allocs estimate: 33

 minimum time: 18.266 ms (0.00% GC)
 median time: 18.774 ms (0.00% GC)
 mean time: 18.830 ms (0.11% GC)
 maximum time: 20.520 ms (0.00% GC)

 samples: 266
 evals/sample: 1

BenchmarkTools.Trial:
 memory estimate: 2.65 MiB
 allocs estimate: 66

 minimum time: 621.986 μs (0.00% GC)
 median time: 647.085 μs (0.00% GC)
 mean time: 727.777 μs (7.74% GC)
 maximum time: 2.324 ms (60.01% GC)

 samples: 6861
 evals/sample: 1

BenchmarkTools.Trial:
 memory estimate: 1.53 MiB
 allocs estimate: 25

 minimum time: 681.731 μs (0.00% GC)
 median time: 740.557 μs (0.00% GC)
 mean time: 784.821 μs (4.09% GC)
 maximum time: 2.394 ms (63.66% GC)

 samples: 6368
 evals/sample: 1

Benchmark summary:

The incremental creation of a SparseMartrixCSC from an initial state with non nonzero entries is
slow because of the data shi�ts and reallocations necessary during the construction
The COO intermediate format is su��ciently fast, but inconvenient
The ExtendableSparse package provides has similar peformance and is easy to use.

Sparse direct solvers
Sparse direct solvers implement LU factorization with di�ferent pivoting strategies. Some
examples:

UMFPACK: e.g. used in Julia
Pardiso (omp + MPI parallel)
SuperLU (omp parallel)
MUMPS (MPI parallel)
Pastix

Quite e��cient for 1D/2D problems - we will discuss this more deeply
Essentially they implement the LU factorization algorithm
They su�fer from �ll-in, especially for 3D problems:

Let be an LU-Factorization. Then, as a rule, .

increased memory usage to store L,U
high operation count

@benchmark sptri_special(a,b,c)⋅

@benchmark sptri_incremental(a,b,c)⋅

@benchmark sptri_coo(a,b,c)⋅

@benchmark sptri_ext(a,b,c)⋅

26.11.2020 🎈 nb10-sparse-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=57b36d62-2fd6-11eb-2f24-7fabb9293932# 7/9

(1032, 3783)

Solution steps with sparse direct solvers

1. Pre-ordering

Decrease amount of non-zero elements generated by �ll-in by re-ordering of the matrix
Several, graph theory based heuristic algorithms exist

2. Symbolic factorization

If pivoting is ignored, the indices of the non-zero elements are calculated and stored
Most expensive step wrt. computation time

pyplot(width=3,height=3) do
 spy(A2,marker=".",markersize=0.5)
end

⋅
⋅
⋅

pyplot(width=3,height=3) do
 spy(lu(A2).L,marker=".",markersize=0.5)
end

⋅
⋅
⋅

pyplot(width=3,height=3) do
 spy(lu(A2).U,marker=".",markersize=0.5)
end

⋅
⋅
⋅

nnz(A2), nnz(lu(A2))⋅

26.11.2020 🎈 nb10-sparse-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=57b36d62-2fd6-11eb-2f24-7fabb9293932# 8/9

3. Numerical factorization

Calculation of the numerical values of the nonzero entries
Moderately expensive, once the symbolic factors are available

4. Upper/lower triangular system solution

Fairly quick in comparison to the other steps

Separation of steps 2 and 3 allows to save computational costs for problems where the sparsity
structure remains unchanged, e.g. time dependent problems on �xed computational grids
With pivoting, steps 2 and 3 have to be performed together, and pivoting can increase �ll-in
Instead of pivoting, iterative re�nement may be used in order to maintain accuracy of the solution

In�luence of reordering

Sparsity patterns for original matrix with three di�ferent orderings of unknowns
number of nonzero elements (of course) independent of ordering:

(mathworks.com)
Sparsity patterns for corresponding LU factorizations

number of nonzero elements depend original ordering!

(mathworks.com)

Sparse direct solvers: Complexity estimate
Complexity estimates depend on storage scheme, reordering etc.
Sparse matrix - vector multiplication has complexity
Some estimates can be given from graph theory for discretizations of heat equation with

 unknowns on close to cubic grids in space dimension
sparse LU factorization:

triangular solve: work dominated by storage complexity

26.11.2020 🎈 nb10-sparse-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=57b36d62-2fd6-11eb-2f24-7fabb9293932# 9/9

(Source: J. Poulson, PhD thesis)

Practical use

\ operator

Float64[7.3839, -2.41811, 2.84497, 1.13828, -0.17924, 0.599098, 1.07987, 0.322186, 0

Asparse_ext
10000×10000 ExtendableSparseMatrix{Float64,Int64}:
0.333554 0.604986 0.0 0.0 … 0.0 0.0 0.0 0.0
0.178295 0.378649 0.210584 0.0 0.0 0.0 0.0 0.0
0.0 0.737103 0.622097 0.889549 0.0 0.0 0.0 0.0
0.0 0.0 0.370098 0.0677654 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.837115 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
⋮ ⋱
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 … 0.450361 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.815526 0.663642 0.0 0.0
0.0 0.0 0.0 0.0 0.909567 0.65137 0.944804 0.0
0.0 0.0 0.0 0.0 0.0 0.901804 0.894436 0.0753511
0.0 0.0 0.0 0.0 0.0 0.0 0.267438 0.647475

 =

Float64[7.3839, -2.41811, 2.84497, 1.13828, -0.17924, 0.599098, 1.07987, 0.322186, 0

Asparse_incr=sptri_incremental(a,b,c);⋅

Asparse_incr\ones(N1)⋅

Asparse_ext=sptri_ext(a,b,c)⋅

Asparse_ext\ones(N1)⋅

http://hdl.handle.net/2152/ETD-UT-2012-12-6622

