
26.11.2020 🎈 nb09-tridiag.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=8cde899e-2ff0-11eb-03fe-7f9ae497a8c5# 1/3

Tridiagonal systems
In the previous lecture (nb08) we introudced the discretization matrix for the 1D heat conduction
problem. In general form it can be written as a tridiagonal matrix

and stored in three arrays , , .

Gaussian elimination using arrays as matrix storage ?

From what we have seen, this question arises in a quite natural way, and historically, the answer
has been given several times and named di�ferently
TDMA (tridiagonal matrix algorithm)
"Thomas algorithm" (Llewellyn H. Thomas, 1949 (?))
"Progonka method" (from Russian "прогонка": "run through"; Gelfand, Lokutsievski, 1952,
published 1960)

Прогонка: derivation
Write solution of as

where we de�ne , .

For , assume there are coe��cients such that

.

Re-arranging, we can express and via :

This is true for arbitrary if

Re-arranging gives for :

Прогонка: realization

Initialization of forward sweep:

begin
 using Pkg
 Pkg.activate(mktempdir())
 Pkg.add("PyPlot")
 Pkg.add("PlutoUI")
 using PlutoUI
 using PyPlot
 using LinearAlgebra
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

26.11.2020 🎈 nb09-tridiag.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=8cde899e-2ff0-11eb-03fe-7f9ae497a8c5# 2/3

Forward sweep: for :

Initialization of backward sweep:
Backward sweep: for :

Прогонка: properties

 unknowns, one forward sweep, one backward sweep operations vs. for
algorithm using full matrix
No pivoting stability issues
Stability for diagonally dominant matrices where
Stability for symmetric positive de�nite matrices
In fact, this is a realization of Gaussian elimination on a particular data structure.

Tridiagonal matrices in Julia
In Julia, solution of a tridiagonal system is based on the LU factorization in the LAPACK routine dgtsv
which also does pivoting.

N 5 =

LU Factorization in the case of a tridiagonal matrix with random diagonal entries

A 5×5 Tridiagonal{Float64,Array{Float64,1}}:
 0.186793 0.985412 ⋅ ⋅ ⋅
 0.201945 0.336733 0.671338 ⋅ ⋅
 ⋅ 0.518801 0.191529 0.416203 ⋅
 ⋅ ⋅ 0.889957 0.147218 0.769763
 ⋅ ⋅ ⋅ 0.726546 0.470719

 =

LU{Float64,Tridiagonal{Float64,Array{Float64,1}}}
L factor:
5×5 Array{Float64,2}:
1.0 0.0 0.0 0.0 0.0
0.924968 1.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0
0.0 0.769797 0.752337 0.420408 1.0
U factor:
5×5 Array{Float64,2}:
0.201945 0.336733 0.671338 0.0 0.0
0.0 0.673945 -0.620967 0.0 0.0
0.0 0.0 0.889957 0.147218 0.769763
0.0 0.0 0.0 0.726546 0.470719
0.0 0.0 0.0 0.0 -0.777014

Int64[2, 1, 4, 5, 3]

Float64[1.5038, 0.729746, 0.671173, 1.18418, 0.296653]

Solving this system with a positive right hand side can yield negative solution components.

We see that the in order to maintain stability, pivoting is performed: the LU factorization is performed
as where is a permutation matrix. The underlying permutation can be obtained as
lu(A).p)

N=5⋅

A=Tridiagonal(rand(N-1),rand(N),rand(N-1))⋅

lu(A)⋅

lu(A).p⋅

A\ones(N)⋅

26.11.2020 🎈 nb09-tridiag.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=8cde899e-2ff0-11eb-03fe-7f9ae497a8c5# 3/3

De�ne a diagonally dominant matrix with random entries with positive main diagonal and
nonpositive o�f-diagonal elements:

A1 5×5 Tridiagonal{Float64,Array{Float64,1}}:
 2.04343 -0.907038 ⋅ ⋅ ⋅
-0.265936 2.25515 -0.597263 ⋅ ⋅
 ⋅ -0.739934 2.24558 -0.790491 ⋅
 ⋅ ⋅ -0.701657 2.47384 -0.233202
 ⋅ ⋅ ⋅ -0.662966 2.22106

 =

LU{Float64,Tridiagonal{Float64,Array{Float64,1}}}
L factor:
5×5 Array{Float64,2}:
 1.0 0.0 0.0 0.0 0.0
-0.130142 1.0 0.0 0.0 0.0
 0.0 -0.346232 1.0 0.0 0.0
 0.0 0.0 -0.344154 1.0 0.0
 0.0 0.0 0.0 -0.301103 1.0
U factor:
5×5 Array{Float64,2}:
2.04343 -0.907038 0.0 0.0 0.0
0.0 2.1371 -0.597263 0.0 0.0
0.0 0.0 2.03879 -0.790491 0.0
0.0 0.0 0.0 2.20179 -0.233202
0.0 0.0 0.0 0.0 2.15084

Int64[1, 2, 3, 4, 5]

Here we see, that no permutation is needed to maintain stability, con�rming the statement made. In
this case, the underlying algorithm is equivalent to Progonka, and the resulting LU factorization can
be stored in three diagonals.

Float64[0.844489, 0.800026, 0.97042, 0.742815, 0.671959]

Here we get only nonnegative solution values, though the matrix o�f-diagonal elements are
nonpositive. Later we will see that this is a theorem for this type of matrices.

5×5 Array{Float64,2}:
0.519495 0.231457 0.0686099 0.0225583 0.00236853
0.0678612 0.52144 0.154568 0.0508208 0.00533598
0.024921 0.191491 0.55307 0.181845 0.019093
0.00727301 0.0558852 0.16141 0.469004 0.0492435
0.00217093 0.0166812 0.0481793 0.139993 0.464934

The inverse is a nonnegative full matrix! This is a theorem as well.

A1=Tridiagonal(-rand(N-1),rand(N).+2,-rand(N-1))⋅

lu(A1)⋅

lu(A1).p⋅

A1\ones(N)⋅

inv(A1)⋅

