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Tridiagonal systems
In the previous lecture (nb08) we introudced the discretization matrix for the 1D heat conduction
problem. In general form it can be written as a tridiagonal matrix 

and stored in three arrays , , .

Gaussian elimination using arrays  as matrix storage ?

From what we have seen, this question arises in a quite natural way, and historically, the answer
has been given several times and named di�ferently
TDMA (tridiagonal matrix algorithm)
"Thomas algorithm" (Llewellyn H. Thomas, 1949 (?))
"Progonka method" (from Russian "прогонка": "run through"; Gelfand, Lokutsievski, 1952,
published 1960)

Прогонка: derivation
Write solution of  as

where we de�ne , .

For , assume there are coe��cients  such that

.

Re-arranging, we can express  and  via :

This is true for arbitrary  if 

Re-arranging gives for :

Прогонка: realization

Initialization of forward sweep:

begin 
    using Pkg
    Pkg.activate(mktempdir())
    Pkg.add("PyPlot")
    Pkg.add("PlutoUI")
    using PlutoUI
    using PyPlot
    using LinearAlgebra
end

⋅
⋅
⋅
⋅
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⋅
⋅
⋅
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Forward sweep: for :

Initialization of backward sweep: 
Backward sweep: for :

Прогонка: properties

 unknowns, one forward sweep, one backward sweep   operations vs.  for
algorithm using full matrix
No pivoting  stability issues
Stability for diagonally dominant matrices where 
Stability for symmetric positive de�nite matrices
In fact, this is a realization of Gaussian elimination on a particular data structure.

Tridiagonal matrices in Julia
In Julia, solution of a tridiagonal system is based on the LU factorization in the LAPACK routine dgtsv
which also does pivoting.

N 5 = 

LU Factorization in the case of a tridiagonal matrix with random diagonal entries

A 5×5 Tridiagonal{Float64,Array{Float64,1}}: 
 0.186793  0.985412   ⋅         ⋅         ⋅  
 0.201945  0.336733  0.671338   ⋅         ⋅  
  ⋅        0.518801  0.191529  0.416203   ⋅  
  ⋅         ⋅        0.889957  0.147218  0.769763 
  ⋅         ⋅         ⋅        0.726546  0.470719

 = 

LU{Float64,Tridiagonal{Float64,Array{Float64,1}}} 
L factor: 
5×5 Array{Float64,2}: 
1.0       0.0       0.0       0.0       0.0 
0.924968  1.0       0.0       0.0       0.0 
0.0       0.0       1.0       0.0       0.0 
0.0       0.0       0.0       1.0       0.0 
0.0       0.769797  0.752337  0.420408  1.0 
U factor: 
5×5 Array{Float64,2}: 
0.201945  0.336733   0.671338  0.0        0.0 
0.0       0.673945  -0.620967  0.0        0.0 
0.0       0.0        0.889957  0.147218   0.769763 
0.0       0.0        0.0       0.726546   0.470719 
0.0       0.0        0.0       0.0       -0.777014

Int64[2, 1, 4, 5, 3]

Float64[1.5038, 0.729746, 0.671173, 1.18418, 0.296653]

Solving this system with a positive right hand side can yield negative solution components.

We see that the in order to maintain stability, pivoting is performed: the LU factorization is performed
as  where  is a permutation matrix. The underlying permutation can be obtained as
lu(A).p)

N=5⋅

A=Tridiagonal(rand(N-1),rand(N),rand(N-1))⋅

lu(A)⋅

lu(A).p⋅

A\ones(N)⋅
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De�ne a diagonally dominant matrix with random entries with positive main diagonal and
nonpositive o�f-diagonal elements:

A1 5×5 Tridiagonal{Float64,Array{Float64,1}}: 
 2.04343   -0.907038    ⋅          ⋅          ⋅  
-0.265936   2.25515   -0.597263    ⋅          ⋅  
  ⋅        -0.739934   2.24558   -0.790491    ⋅  
  ⋅          ⋅        -0.701657   2.47384   -0.233202 
  ⋅          ⋅          ⋅        -0.662966   2.22106

 = 

LU{Float64,Tridiagonal{Float64,Array{Float64,1}}} 
L factor: 
5×5 Array{Float64,2}: 
 1.0        0.0        0.0        0.0       0.0 
-0.130142   1.0        0.0        0.0       0.0 
 0.0       -0.346232   1.0        0.0       0.0 
 0.0        0.0       -0.344154   1.0       0.0 
 0.0        0.0        0.0       -0.301103  1.0 
U factor: 
5×5 Array{Float64,2}: 
2.04343  -0.907038   0.0        0.0        0.0 
0.0       2.1371    -0.597263   0.0        0.0 
0.0       0.0        2.03879   -0.790491   0.0 
0.0       0.0        0.0        2.20179   -0.233202
0.0       0.0        0.0        0.0        2.15084

Int64[1, 2, 3, 4, 5]

Here we see, that no permutation is needed to maintain stability, con�rming the statement made. In
this case, the underlying algorithm is equivalent to Progonka, and the resulting LU factorization can
be stored in three diagonals.

Float64[0.844489, 0.800026, 0.97042, 0.742815, 0.671959]

Here we get only nonnegative solution values, though the matrix o�f-diagonal elements are
nonpositive. Later we will see that this is a theorem for this type of matrices.

5×5 Array{Float64,2}: 
0.519495    0.231457   0.0686099  0.0225583  0.00236853 
0.0678612   0.52144    0.154568   0.0508208  0.00533598 
0.024921    0.191491   0.55307    0.181845   0.019093 
0.00727301  0.0558852  0.16141    0.469004   0.0492435 
0.00217093  0.0166812  0.0481793  0.139993   0.464934

The inverse is a nonnegative full matrix! This is a theorem as well.

A1=Tridiagonal(-rand(N-1),rand(N).+2,-rand(N-1))⋅

lu(A1)⋅

lu(A1).p⋅

A1\ones(N)⋅

inv(A1)⋅


