
20.11.2020 🎈 nb08-pde-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=dba74c2c-2b28-11eb-3540-ffdf0b17258b# 1/7

Matrices from partial di�erential
equations
As we focus in this course on partial di�ferential equations, we need discuss matrices which evolve
from the discretization of PDEs.

Are there any structural or numerical patterns in these matrices we can take advantage of with
regard to memory and time complexity when solving linear systems ?

In this lecture we introduce a relatively simple "drosophila" problem which we will use do discuss
these issues.

For the start we use simple structured disceretization grids and a �nite di�ference approach to the
discretization. Later, this will be generalized to more general grids and to �nite element and �nite
volume discretization methods.

Heat conduction in a one-dimensional rod
Heat source

: ambient temperatures
: boundary heat transfer coe��cient

Second order boundary value problem in :

The solution describes the equilibrium temperature distribution. Behind the second derivative
is Fouriers law and the continuity equation
In math, the boundary conditions are called "Robin" or "third kind". They describe a heat
in/out�lux proportional to the di�ference between rod end temperature and ambient
temperature
Fix a number of discretization points N
Let
Let be discretization points

N 11 =

plotgrid (generic function with 1 method)

begin
 using Pkg
 Pkg.activate(mktempdir())
 Pkg.add("PyPlot")
 Pkg.add("PlutoUI")
 Pkg.add("DataFrames")
 using PlutoUI
 using PyPlot
 using DataFrames
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

N=11⋅

plotgrid(N)⋅

20.11.2020 🎈 nb08-pde-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=dba74c2c-2b28-11eb-3540-ffdf0b17258b# 2/7

Finite di�erence approximation
We can approximate continuous functions by piecewise linear functions de�ned by the values

. Using more points yields a better approximation:

Let approximations for and
We can use a �nite di�ference approximation to approximate

Same approach for second derivative:
Finite di�ference approximation of the PDE:

Here, we introduced "mirror values" and in order to approximate the boundary
conditions accurately, such that the �nite di�ference formulas used to approximate or

 are centered around these values.
A�ter rearranging, these values can be expressed via the boundary conditions:

Finally, they can be replaced in

Then, the system a�ter multiplying by is reduced to:

α

The resulting discretization matrix is

plotgrid(N,func=x->0.5*sin(8*x)^2)⋅

plotgrid(N,mirror=true)⋅

20.11.2020 🎈 nb08-pde-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=dba74c2c-2b28-11eb-3540-ffdf0b17258b# 3/7

Outside of the three diagonals, the entries are zero.

The right hand side is:

Let us de�ne functions assembling these:

heatmatrix1d (generic function with 1 method)

heatrhs1d (generic function with 1 method)

α 100 =

N1 10000 =

A 10000×10000 Array{Float64,2}:
 10099.0 -9999.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0
 -9999.0 19998.0 -9999.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 -9999.0 19998.0 -9999.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 -9999.0 19998.0 -9999.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 -9999.0 19998.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 -9999.0 … 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 ⋮ ⋱
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 … -9999.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 19998.0 -9999.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 -9999.0 19998.0 -9999.0 0.0

 =

function heatmatrix1d(N;α=1)
 A=zeros(N,N)
 h=1/(N-1)
 A[1,1]=1/h+α
 for i=2:N-1
 A[i,i]=2/h
 end
 for i=1:N-1
 A[i,i+1]=-1/h
 end
 for i=2:N
 A[i,i-1]=-1/h
 end
 A[N,N]=1/h+α
 A
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function heatrhs1d(N;vl=0,vr=0,func=x->0,α=1)
 h=1/(N-1)
 F=zeros(N)
 F[1]=h/2*func(0)+α*vl
 for i=2:N-1
 F[i]=h*func((i-1)*h)
 end
 F[N]=h/2*func(1)+α*vr
 F
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

α=100⋅

N1=10000⋅

20.11.2020 🎈 nb08-pde-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=dba74c2c-2b28-11eb-3540-ffdf0b17258b# 4/7

 0.0 0.0 0.0 0.0 0.0 0.0 -9999.0 19998.0 -9999.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -9999.0 10099.0

b

Float64[5.0005e-5, 0.00010001, 0.00010001, 0.00010001, 0.00010001, 0.00010001, 0.0001

 =

u

Float64[0.005, 0.00505, 0.00509999, 0.00514997, 0.00519994, 0.0052499, 0.00529985, 0

 =

For this example, we created an matrix where all entries outside of the main diagonal and the
two adjacent ones are zero:

Fraction of nonzero entries: 0.00029998
Ratio of nonzero entries to number of unknowns: 2.9998
In fact, this matrix has nonzero entries.

�D heat conduction

Just pose the heat problem in a 2D domain :

We use 2D regular discretization grid with grid points . The �nite
di�ference approximation yields:

This just comes from summing up the 1D �nite di�ference formula for the and directions.

A=heatmatrix1d(N1,α=α)⋅

b=heatrhs1d(N1,func=x->1,α=α)⋅

u=A\b⋅

begin
 clf()
 plot(collect(0:1/(N1-1):1),u)
 grid()
 gcf()
end

⋅
⋅
⋅
⋅
⋅
⋅

20.11.2020 🎈 nb08-pde-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=dba74c2c-2b28-11eb-3540-ffdf0b17258b# 5/7

We do not discuss the boundary conditions here.

The grid leads to an matrix!

plotgrid2d (generic function with 1 method)

Matrix and right hand side assembly inspired by the �nite volume method which will be covered later
in the course. The result is the same as for the �nite di�ference method with the mirror trick for the
boundary condition.

heatmatrix2d (generic function with 1 method)

function plotgrid2d(N;text=true, func=nothing)
 clf()
 ax=PyPlot.axes(aspect=1)
 x=[(i-1)/(N-1) for i=1:N]
 y=[(i-1)/(N-1) for i=1:N]

 for i=1:N
 plot([x[i],x[i]],[0,1],linewidth=1,color="k")
 plot([0,1],[y[i],y[i]],linewidth=1,color="k")
 end
 if func!=nothing
 f=[func(x[i],y[j]) for i=1:N, j=1:N]
 contourf(x,y,f,cmap="hot")
 end
 if text
 ij=1
 for j=1:N
 for i=1:N
 ax.text(x[i],y[j]-0.035,"\$x_{$(ij)}\$",fontsize=10,color=:blue)
 ij=ij+1
 end
 end
 end
 fig=PyPlot.gcf()
 fig.set_size_inches(5,5)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

plotgrid2d(5)⋅

function heatmatrix2d(n;α=1)
 function update_pair(A,v,i,j)
 A[i,j]+=-v
 A[j,i]+=-v
 A[i,i]+=v
 A[j,j]+=v
 end
 N=n^2
 h=1.0/(n-1)
 A=zeros(N,N)
 l=1
 for j=1:n
 for i=1:n
 if i<n
 update_pair(A,1.0,l,l+1)
 end
 if i==1|| i==n
 A[l,l]+=α

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

20.11.2020 🎈 nb08-pde-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=dba74c2c-2b28-11eb-3540-ffdf0b17258b# 6/7

heatrhs2d (generic function with 1 method)

n 5 =

b2
Float64[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03125, -0.0441942, 0.03125, 8.11834e-18, 0
 =

A2
25×25 Array{Float64,2}:
202.0 -1.0 0.0 0.0 0.0 -1.0 0.0 … 0.0 0.0 0.0 0.0 0.0
 -1.0 103.0 -1.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0
 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 -1.0 202.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 -1.0 0.0 0.0 0.0 0.0 103.0 -1.0 … 0.0 0.0 0.0 0.0 0.0
 0.0 -1.0 0.0 0.0 0.0 -1.0 4.0 0.0 0.0 0.0 0.0 0.0
 ⋮ ⋮ ⋱ ⋮
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 202.0 -1.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 202.0

 =

In order to inspect the matrix, we can turn it into a DataFrame, which can be browsed.

 end
 if j<n
 update_pair(A,1,l,l+n)
 end
 if j==1|| j==n
 A[l,l]+=α
 end
 l=l+1
 end
 end
 A
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function heatrhs2d(n; rhs=(x,y)->0,bc=(x,y)->0,α=1.0)
 h=1.0/(n-1)
 x=collect(0:h:1)
 y=collect(0:h:1)
 N=n^2
 f=zeros(N)
 for i=1:n-1
 for j=1:n-1
 ij=(j-1)*n+i
 f[ij]+=h^2/4*rhs(x[i],y[j])
 f[ij+1]+=h^2/4*rhs(x[i+1],y[j])
 f[ij+n]+=h^2/4*rhs(x[i],y[j+1])
 f[ij+n+1]+=h^2/4*rhs(x[i+1],y[j+1])
 end
 end

 for i=1:n
 ij=i
 fac=h
 if i==1 || i==n
 fac=h/2
 end
 f[ij]+=fac*α*bc(x[i],0)
 ij=i+(n-1)*n
 f[ij]+=fac*α*bc(x[i],1)
 end
 for j=1:n
 fac=h
 if j==1 || j==n
 fac=h/2
 end
 ij=1+(j-1)*n
 f[ij]+=fac*α*bc(0,y[j])
 ij=n+(j-1)*n
 f[ij]+=fac*α*bc(1,y[j])
 end
 f
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

n=5⋅

b2=heatrhs2d(n,rhs=(x,y)->sin(3*π*x)*sin(3*π*y),α=α)⋅

A2=heatmatrix2d(n,α=α)⋅

20.11.2020 🎈 nb08-pde-matrices.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=dba74c2c-2b28-11eb-3540-ffdf0b17258b# 7/7

202.0 -1.0 0.0 0.0 0.0 -1.0 0.0 0.0

-1.0 103.0 -1.0 0.0 0.0 0.0 -1.0 0.0

0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 -1.0

0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0

0.0 0.0 0.0 -1.0 202.0 0.0 0.0 0.0

-1.0 0.0 0.0 0.0 0.0 103.0 -1.0 0.0

0.0 -1.0 0.0 0.0 0.0 -1.0 4.0 -1.0

0.0 0.0 -1.0 0.0 0.0 0.0 -1.0 4.0

0.0 0.0 0.0 -1.0 0.0 0.0 0.0 -1.0

0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0

x1x1 x2x2 x3x3 x4x4 x5x5 x6x6 x7x7 x8x8 moremore

1
2
3
4
5
6
7
8
9

10

u2
Float64[4.35673e-7, 4.4003e-5, -6.20691e-5, 4.4003e-5, 4.35673e-7, 4.4003e-5, 0.00459
 =

In order to achieve this, we stored a matrix which has only �ve nonzero diagonals as a full
matrix, where :

Fraction of nonzero entries: 0.168
Ratio of nonzero entries to number of unknowns: 4.2
In fact, this matrix has nonzero entries.

... there must be a better way!

DataFrame(A2)⋅

u2=A2\b2⋅

begin
 clf()
 h=1.0/(n-1)
 x=collect(0:h:1)
 y=collect(0:h:1)

 contourf(x,y,reshape(u2,n,n),cmap="hot")
 fig=gcf()
 fig.set_size_inches(5,5)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

