
18.11.2020 🎈 nb06-float.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=fa07514a-29e2-11eb-0911-299e4747eb3e# 1/6

Number representation

Besides of the concrete names of Julia library functions everything in this chapter is valid for all
modern programming languagues and computer systems.

All data in computers are stored as sequences of bits. For concrete number types, the bitstring
function returns this information as a sequence of 0 and 1 . The sizeof function returns the number
of bytes in the binary representation.

Integer numbers

T_int Int16 =

i 1 =

2

"0000000000000001"

Positive integer numbers are represented by their representation in the binary system. For negative
numbers , the binary representation of their "two's complement" (where is the number
of available bits) is stored.

typemin and typemax return the smallest and largest numbers which can be represented in number
type.

(-32768, 32767, 32767)

Unless the possible range of the representation is exceeded, addition, multiplication
and subtraction of integers are exact. If it is exceeded, operation results wrap around into the opposite
sign region.

10

-32759

Floating point numbers

How does this work for �loating point numbers ?

begin
 using Pkg
 Pkg.activate(mktempdir())
 Pkg.add("PyPlot")
 Pkg.add("PlutoUI")
 using PlutoUI,PyPlot
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

T_int=Int16⋅

i=T_int(1)⋅

sizeof(i)⋅

bitstring(i)⋅

typemin(T_int),typemax(T_int),2^(8*sizeof(T_int)-1)-1⋅

3+7⋅

typemax(T_int)+T_int(10)⋅

18.11.2020 🎈 nb06-float.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=fa07514a-29e2-11eb-0911-299e4747eb3e# 2/6

0.30000000000000004

But this should be 0.3. What is happening ???

Real number representation

Let us think about representation real numbers. Usually we write them as decimal fractions and
cut the representation o�f if the number of digits is in�nite.
Any real number can be expressed via the representation formula:
with base , signi�cand (or mantissa) digits and exponent

The representation is in�nite for periodic decimal numbers and irrational numbers.

Scienti�c notation
The scienti�c notation of real numbers is derived from this representation in the case of . Let
e.g. = 6.022e23 . Then

This representation is not unique, e.g. = 0.6022e24 with

IEEE754 standard
This is the actual standard format for storing �loating point numbers. It was developed in the 1980ies.

, therefore
Truncation to �xed �nite size:

 : signi�cand (mantissa) length
Normalization: assume save one bit for the storage of the signi�cand. This requires a
normalization step a�ter operations which adjusts signi�cand and exponent of the result.

: exponent size. De�ne :
Extra bit for sign

 storage size:

Standardized for most modern languages
Hardware support usually for 64bit and 32bit

precision Julia C/C++ k t bits
quadruple n/a long double 16 113 128
double Float64 double 11 53 64
single Float32 float 8 24 32
half Float16 n/a 5 11 16

See also the Julia Documentation on �loating point numbers, 0.30000000000000004.com,
wikipedia and the links therein.

The storage sequence is: Sign bit, exponent, mantissa.

Storage layout for a normalized Float32 number ():

bit 1: sign,
bit : exponent bits

the value is stored no need for sign bit in exponent
bit : mantissa bits

 not stored "hidden bit"

0.1+0.2⋅

https://docs.julialang.org/en/v1/manual/integers-and-floating-point-numbers/#Floating-Point-Numbers-1
https://0.30000000000000004.com/
https://en.wikipedia.org/wiki/IEEE_754

18.11.2020 🎈 nb06-float.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=fa07514a-29e2-11eb-0911-299e4747eb3e# 3/6

Julia allows to obtain the signifcand and the exponent of a �loating point number

x0 2.0 =

(1.0, 1)

We can calculate the length of the exponent from the maximum representable �loating point
number by taking the base-2 logarithm of its exponent:

The size of the signi�cand is calculated from the overall size of the representation minus the
size of the exponent and the size of the sign bit + 1 for the "hidden bit".

This allows to de�ne a more readable variant of the bitstring repredentatio for �loats.

The sign bit is the �rst bit in the representation:

Next comes the exponent:

exponent_bits (generic function with 1 method)

And �nally, the signi�cand:

Put them together:

Julia �oating point types

T Float16 =

Type Float16:

size of exponent: 5
size of signi�cand: 11

x Float16(0.1) =

x0=2.0⋅

significand(x0),exponent(x0)⋅

exponent_length(T::Type{<:AbstractFloat})=Int(log2(exponent(floatmax(T))+1)+1);⋅

significand_length(T::Type{<:AbstractFloat})=8*sizeof(T)-exponent_length(T)-1+1;⋅

signbit(x::AbstractFloat)=bitstring(x)[1:1];⋅

exponent_bits(x::AbstractFloat)=bitstring(x)[2:exponent_length(typeof(x))+1]⋅

significand_bits(x::AbstractFloat)=bitstring(x)
[exponent_length(typeof(x))+2:8*sizeof(x)];

⋅

floatbits(x::AbstractFloat)=signbit(x)*"_"*exponent_bits(x)*"_"*significand_bits(x);⋅

T=Float16⋅

x=T(0.1)⋅

18.11.2020 🎈 nb06-float.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=fa07514a-29e2-11eb-0911-299e4747eb3e# 4/6

Binary representation: 0_01011_1001100110
Exponent e=-4
Stored: e+15= 11

 assumed implicitely.

Numbers which are exactly represented in decimal system may not be exactly represented in
binary system!
Such numbers are always rounded to a �nite approximate

x_per Float16(0.2998) =

"0_01101_0011001100"

Floating point limits

Finite size of representation there are minimal and maximal possible numbers which can be
represented
symmetry wrt. 0 because of sign bit
smallest positive denormalized number:

(6.0e-8, "0_00000_0000000001")

smallest positive normalized number:

(6.104e-5, "0_00001_0000000000")

largest positive normalized number:

(6.55e4, "0_11110_1111111111")

Largest representable number:

(Inf, "0_11111_0000000000", 6.55e4, "0_11110_1111111111")

Machine precision

There cannot be more than �loating point numbers almost all real numbers have to be
approximated
Let be an exact value and be its approximation. Then is the best accuracy
estimate we can get, where

 (truncation)
 (rounding)

Also: is the smallest representable number such that .
Relative errors show up in particular when

subtracting two close numbers
adding smaller numbers to larger ones

x_per=T(0.1)+T(0.2)⋅

floatbits(x_per)⋅

 nextfloat(zero(T)), floatbits(nextfloat(zero(T)))⋅

floatmin(T),floatbits(floatmin(T))⋅

floatmax(T), floatbits(floatmax(T))⋅

typemax(T),floatbits(typemax(T)),prevfloat(typemax(T)),
floatbits(prevfloat(typemax(T)))

⋅

18.11.2020 🎈 nb06-float.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=fa07514a-29e2-11eb-0911-299e4747eb3e# 5/6

How do operations work?

E.g. Addition

Adjust exponent of number to be added:
Until both exponents are equal, add 1 to exponent, shi�t mantissa to right bit by bit

Add both numbers
Normalize result

The smallest number one can add to 1 can have at most bit shi�ts of normalized mantissa until
mantissa becomes 0, so its value must be .

Machine epsilon

Smallest �loating point number such that in �loating point arithmetic
In exact math it is true that from it follows that and vice versa. In �loating
point computations this is not true

ϵ Float16(0.000977) =

"0_00101_0000000000"

(1.0, "0_01111_0000000000", "0_01111_0000000000")

(1.001, "0_01111_0000000001")

(0.000977, "0_00101_0000000000")

Density of �oating point numbers
How dense are �loating point numbers on the real axis?

X

Float16[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0

 =

ϵ=eps(T)⋅

floatbits(ϵ)⋅

one(T)+ϵ/2,floatbits(one(T)+ϵ/2), floatbits(one(T))⋅

 one(T)+ϵ,floatbits(one(T)+ϵ)⋅

nextfloat(one(T))-one(T),floatbits(nextfloat(one(T))-one(T))⋅

function fpdens(x::AbstractFloat;sample_size=1000)
 xleft=x
 xright=x
 for i=1:sample_size
 xleft=prevfloat(xleft)
 xright=nextfloat(xright)
 end
 return prevfloat(2.0*sample_size/(xright-xleft))
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

X=T(10.0) .^collect(-10:T(0.1):10)⋅

18.11.2020 🎈 nb06-float.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=fa07514a-29e2-11eb-0911-299e4747eb3e# 6/6

begin
 fig=PyPlot.figure()
 PyPlot.loglog(X,fpdens.(X))
 PyPlot.title("$(eltype(X)) numbers per unit interval")
 PyPlot.grid()
 PyPlot.xlabel("x")
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

