
12.11.2020 🎈 nb05-julia-jit.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=2a442a0e-2529-11eb-3946-7bdfff35ee2b# 1/8

Julia: just-in-time compilation and

Performance

The JIT

Just-in-time compilation is another feature setting Julia apart, as it was developed with this
possibility in mind.
Julia uses the tools from the The LLVM Compiler Infrastructure Project to organize on-the-�ly
compilation of Julia code to machine code
Tradeo�f: startup time for code execution in interactive situations
Multiple steps: Parse the code, analyze data types etc.
Intermediate results can be inspected using a number of macros (blue color in the diagram
below)

From Introduction to Writing High Performance Julia by D. Robinson

Let us see what is going on:

g (generic function with 1 method)

Call with integer parameter:

5

begin
 using Pkg;
 Pkg.activate(mktempdir());
 Pkg.add(["PlutoUI","BenchmarkTools"]);
 using PlutoUI, BenchmarkTools
end

⋅
⋅
⋅
⋅
⋅
⋅

g(x,y)=x+y⋅

g(2,3)⋅

https://llvm.org/
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxibG9uem9uaWNzfGd4OjMwZjI2YTYzNDNmY2UzMmE

12.11.2020 🎈 nb05-julia-jit.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=2a442a0e-2529-11eb-3946-7bdfff35ee2b# 2/8

Call with �loating point parameter:

5.0

The macro @code_lowered describes the abstract syntax tree behind the code

CodeInfo(
1 ─ %1 = x + y
└── return %1
)

CodeInfo(
1 ─ %1 = x + y
└── return %1
)

@code_warntype (with output to terminal) provides the result of type inference (detection ot
the parameter types and coorsponding choice of the translation strategy) according to the input:

Variables
 #self#::Core.Compiler.Const(Main.workspace242.g, false)
 x::Int64
 y::Int64

Body::Int64
1 ─ %1 = (x + y)::Int64
└── return %1

Variables
 #self#::Core.Compiler.Const(Main.workspace242.g, false)
 x::Float64
 y::Float64

Body::Float64
1 ─ %1 = (x + y)::Float64
└── return %1

@llvm_bytecode prints the LLVM intermediate byte code representation:

; @ /home/fuhrmann/Wias/teach/scicomp/scicomp/pluto/nb05-julia-jit.jl#==#ecb14696-01dc-11eb-2c
33-7f0c5f3ed551:1 within `g'
define i64 @julia_g_2204(i64, i64) {
top:
; ┌ @ int.jl:86 within `+'
 %2 = add i64 %1, %0
; └
 ret i64 %2
}

; @ /home/fuhrmann/Wias/teach/scicomp/scicomp/pluto/nb05-julia-jit.jl#==#ecb14696-01dc-11eb-2c
33-7f0c5f3ed551:1 within `g'
define double @julia_g_2206(double, double) {
top:
; ┌ @ float.jl:401 within `+'

g(2.0,3.0)⋅

@code_lowered g(2,3)⋅

@code_lowered g(2.0,3.0)⋅

with_terminal() do
 @code_warntype g(2,3)
end

⋅
⋅
⋅

with_terminal() do
 @code_warntype g(2.0,3.0)
end

⋅
⋅
⋅

with_terminal() do
 @code_llvm g(2,3)
end

⋅
⋅
⋅

12.11.2020 🎈 nb05-julia-jit.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=2a442a0e-2529-11eb-3946-7bdfff35ee2b# 3/8

 %2 = fadd double %0, %1
; └
 ret double %2
}

Finally, @code_native prints the assembler code generated, which is a close match to the
machine code sent to the CPU:

 .text
; ┌ @ nb05-julia-jit.jl#==#ecb14696-01dc-11eb-2c33-7f0c5f3ed551:1 within `g'
; │┌ @ int.jl:86 within `+'
 leaq (%rdi,%rsi), %rax
; │└
 retq
 nopw %cs:(%rax,%rax)
 nop
; └

 .text
; ┌ @ nb05-julia-jit.jl#==#ecb14696-01dc-11eb-2c33-7f0c5f3ed551:1 within `g'
; │┌ @ float.jl:401 within `+'
 vaddsd %xmm1, %xmm0, %xmm0
; │└
 retq
 nopw %cs:(%rax,%rax)
 nop
; └

We see that for the very same function, Julia creates di�ferent variants of executable code depending
on the data types of the parameters passed. In certain sense, this extends the multiple dispatch
paradigm to the lower level by automatically created methods.

Performance measurment

Julia provides a number of macros to support performance testing.
Performance measurement of the �rst invocation of a function includes the compilation step. If
in doubt, measure timing twice.
Pluto has the nice feature to indicate the execution time used below the lower right corner of a
cell. There seems to be also some overhead hidden in the pluto cell handling which is however
not measured.

@elapsed : wall clock time used returned as a number.

f (generic function with 1 method)

0.004961619

with_terminal() do
 @code_llvm g(2.0,3.0)
end

⋅
⋅
⋅

with_terminal() do
 @code_native g(2,3)
end

⋅
⋅
⋅

with_terminal() do
 @code_native g(2.0,3.0)
end

⋅
⋅
⋅

using LinearAlgebra⋅

f(n1,n2)= mapreduce(x->norm(x,2),+,[rand(n1) for i=1:n2])⋅

@elapsed f(1000,1000)⋅

12.11.2020 🎈 nb05-julia-jit.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=2a442a0e-2529-11eb-3946-7bdfff35ee2b# 4/8

@allocated : sum of memory allocated (including temporary) during the excution of the code.
For storing intermediate and �nal calculation results, computer languages request memory
from the operating system. This process is called allocation. Allocations as a rule are linked with
lots of bookkeeping, so they can slow down code.

8136128

@time : @elapsed and @allocated together, with output to the terminal. Be careful to time at
least twice in order to take into account compilation time. In addition, the number of allocations
is printed along with time spent for garbage collection. Garbage collection is the process of
returning unused (temporary) memory to the system.

 0.004944 seconds (2.00 k allocations: 15.518 MiB)

@benchmark from BenchmarkTools.jl creates a statistic over multiple samples in order to give
a more reliable estimate.

BenchmarkTools.Trial:
 memory estimate: 7.76 MiB
 allocs estimate: 1001

 minimum time: 1.434 ms (0.00% GC)
 median time: 1.564 ms (0.00% GC)
 mean time: 1.922 ms (11.80% GC)
 maximum time: 4.469 ms (35.51% GC)

 samples: 2601
 evals/sample: 1

Some performance gotchas

In order to write e��cient Julia code, a number recommendations should be followed.

Gotcha #1: global variables

myvec

Float64[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1

 =

0.006184016

0.115712977

@allocated f(1000,1000)⋅

with_terminal() do
 @time f(1000,2000)
end

⋅
⋅
⋅

@benchmark f(1000,1000)⋅

myvec=ones(Float64,1_000_000)⋅

function mysum(v)
 x=0.0
 for i=1:length(v)
 x=x+v[i]
 end
 return x
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅

@elapsed mysum(myvec)⋅

@elapsed begin
 x=0.0
 for i=1:length(myvec)
 global x
 x=x+myvec[i]
 end

⋅
⋅
⋅
⋅
⋅
⋅

12.11.2020 🎈 nb05-julia-jit.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=2a442a0e-2529-11eb-3946-7bdfff35ee2b# 5/8

Observation: both the begin/end block and the function do the same operation and calculate
the same value. However the function is faster.
The code within the begin/end clause works in the global context, whereas in myfunc , it works in
the scope of a function. Julia is unable to dispatch on variable types in the global scope as they
can change their type anytime. In the global context it has to put all variables into "boxes"
tagged with type information allowing to dispatch on their type at runtime (this is by the way
the default mode of Python). In functions, it has a chance to generate speci�c code for known
types.
This situation als occurs in the REPL.

Conclusion: Avoid Julia Gotcha #1 by wrapping time critical code into functions and avoiding
the use of global variables.
In fact it is anyway good coding style to separate out pieces of code into functions

Gotcha #2: type instabilities

f1 (generic function with 1 method)

f2 (generic function with 1 method)

BenchmarkTools.Trial:
 memory estimate: 0 bytes
 allocs estimate: 0

 minimum time: 5.260 ns (0.00% GC)
 median time: 5.291 ns (0.00% GC)
 mean time: 5.439 ns (0.00% GC)
 maximum time: 32.940 ns (0.00% GC)

 samples: 10000
 evals/sample: 1000

BenchmarkTools.Trial:
 memory estimate: 0 bytes
 allocs estimate: 0

 minimum time: 1.209 ns (0.00% GC)
 median time: 1.215 ns (0.00% GC)
 mean time: 1.253 ns (0.00% GC)
 maximum time: 28.701 ns (0.00% GC)

 samples: 10000
 evals/sample: 1000

Observation: function f2 is faster than f1 for the same operations.

 .text
; ┌ @ nb05-julia-jit.jl#==#fb6974d6-01e3-11eb-258b-9db21b4c39dd:1 within `f1'
 pushq %rax
; │ @ nb05-julia-jit.jl#==#fb6974d6-01e3-11eb-258b-9db21b4c39dd:3 within `f1'
; │┌ @ range.jl:5 within `Colon'
; ││┌ @ range.jl:280 within `UnitRange'
; │││┌ @ range.jl:285 within `unitrange_last'
; ││││┌ @ operators.jl:350 within `>='
; │││││┌ @ int.jl:441 within `<='
 testq %rdi, %rdi
; │└└└└└

end⋅

function f1(n)
 x=1
 for i = 1:n
 x = x/2
 end
end

⋅
⋅
⋅
⋅
⋅
⋅

function f2(n)
 x=1.0
 for i = 1:n
 x = x/2
 end
end

⋅
⋅
⋅
⋅
⋅
⋅

@benchmark f1(10)⋅

@benchmark f2(10)⋅

http://www.stochasticlifestyle.com/7-julia-gotchas-handle/

12.11.2020 🎈 nb05-julia-jit.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=2a442a0e-2529-11eb-3946-7bdfff35ee2b# 6/8

 jle L51
 movq %rdi, %rax
 sarq $63, %rax
 andnq %rdi, %rax, %rax
; │ @ nb05-julia-jit.jl#==#fb6974d6-01e3-11eb-258b-9db21b4c39dd:4 within `f1'
 decq %rax
 movb $2, %cl
 nopw (%rax,%rax)
L32:

d b % l

 .text
; ┌ @ nb05-julia-jit.jl#==#36244b3c-01e4-11eb-3828-2fa69b8b0835:4 within `f2'
 retq
 nopw %cs:(%rax,%rax)
 nopl (%rax,%rax)
; └

Variables
 #self#::Core.Compiler.Const(Main.workspace237.f1, false)
 n::Int64
 x::UNION{FLOAT64, INT64}
 @_4::UNION{NOTHING, TUPLE{INT64,INT64}}
 i::Int64

Body::Nothing
1 ─ (x = 1)
│ %2 = (1:n)::Core.Compiler.PartialStruct(UnitRange{Int64}, Any[Core.Compiler.Const(1, f
alse), Int64])
│ (@_4 = Base.iterate(%2))
│ %4 = (@_4 === nothing)::Bool
│ %5 = Base.not_int(%4)::Bool
└── goto #4 if not %5
2 ┄ %7 = @_4::Tuple{Int64,Int64}::Tuple{Int64,Int64}
│ (i = Core.getfield(%7, 1))
│ %9 = Core.getfield(%7, 2)::Int64
│ (x = x / 2)
│ (@_4 = Base.iterate(%2, %9))
│ %12 (@ 4 nothing)::Bool

Variables
 #self#::Core.Compiler.Const(Main.workspace237.f2, false)
 n::Int64
 x::Float64
 @_4::UNION{NOTHING, TUPLE{INT64,INT64}}
 i::Int64

Body::Nothing
1 ─ (x = 1.0)
│ %2 = (1:n)::Core.Compiler.PartialStruct(UnitRange{Int64}, Any[Core.Compiler.Const(1, f
alse), Int64])
│ (@_4 = Base.iterate(%2))
│ %4 = (@_4 === nothing)::Bool
│ %5 = Base.not_int(%4)::Bool
└── goto #4 if not %5
2 ┄ %7 = @_4::Tuple{Int64,Int64}::Tuple{Int64,Int64}
│ (i = Core.getfield(%7, 1))
│ %9 = Core.getfield(%7, 2)::Int64
│ (x = x / 2)
│ (@_4 = Base.iterate(%2, %9))
│ %12 (@ 4 nothing)::Bool

Once again, "boxing" occurs to handle x: in g() it changes its type from Int64 to Float64. We see
this with the union type for x in @code_warntype

Conclusion: Avoid Julia Gotcha #2 by ensuring variables keep their type also in functions.

Gotcha #6: allocations

mymat 10×100000 Array{Float64,2}:
0.0789994 0.855449 0.564277 0.853326 … 0.524021 0.557067 0.0792928
0.543264 0.616861 0.21341 0.61336 0.105882 0.980176 0.422125
0.741373 0.878709 0.78528 0.838547 0.819484 0.859998 0.55475

 =

with_terminal() do
 @code_native f1(10)
end

⋅
⋅
⋅

with_terminal() do
 @code_native f2(10)
end

⋅
⋅
⋅

with_terminal() do
 @code_warntype f1(10)
end

⋅
⋅
⋅

with_terminal() do
 @code_warntype f2(10)
end

⋅
⋅
⋅

http://www.stochasticlifestyle.com/7-julia-gotchas-handle/

12.11.2020 🎈 nb05-julia-jit.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=2a442a0e-2529-11eb-3946-7bdfff35ee2b# 7/8

0.68516 0.0604356 0.348658 0.776724 0.387086 0.370163 0.12667
0.970368 0.745995 0.72687 0.906995 0.0665305 0.0681725 0.546152
0.684037 0.450483 0.870659 0.79275 … 0.986119 0.206697 0.857506
0.544756 0.754953 0.591328 0.312024 0.785961 0.269252 0.709248
0.783502 0.83581 0.720681 0.960472 0.138532 0.00412415 0.547862
0.169042 0.177096 0.203141 0.619686 0.0963809 0.575215 0.0926853
0.817974 0.691319 0.402212 0.242962 0.774398 0.471102 0.700982

De�ne three di�ferent ways of summing of squares of matrix rows:

g1 (generic function with 1 method)

g2 (generic function with 1 method)

g3 (generic function with 1 method)

true

BenchmarkTools.Trial:
 memory estimate: 16 bytes
 allocs estimate: 1

 minimum time: 908.531 μs (0.00% GC)
 median time: 987.354 μs (0.00% GC)
 mean time: 1.006 ms (0.00% GC)
 maximum time: 1.785 ms (0.00% GC)

 samples: 4967
 evals/sample: 1

BenchmarkTools.Trial:
 memory estimate: 15.26 MiB
 allocs estimate: 100001

 minimum time: 3.385 ms (0.00% GC)
 median time: 3.610 ms (0.00% GC)
 mean time: 3.851 ms (6.36% GC)
 maximum time: 6.989 ms (12.93% GC)

 samples: 1298
 evals/sample: 1

BenchmarkTools.Trial:
 memory estimate: 16 bytes
 allocs estimate: 1

 minimum time: 793.426 μs (0.00% GC)
 median time: 876.234 μs (0.00% GC)
 mean time: 891.997 μs (0.00% GC)
 maximum time: 1.859 ms (0.00% GC)

mymat=rand(10,100000)⋅

function g1(a)
 y=0.0
 for j=1:size(a,2)
 for i=1:size(a,1)
 y=y+a[i,j]^2
 end
 end
 y
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function g2(a)
 y=0.0
 for j=1:size(a,2)
 y=y+mapreduce(z->z^2,+,a[:,j])
 end
 y
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

function g3(a)
 y=0.0
 for j=1:size(a,2)
 @views y=y+mapreduce(z->z^2,+,a[:,j])
 end
 y
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

g1(mymat)≈ g2(mymat) && g2(mymat)≈ g3(mymat)⋅

@benchmark g1(mymat)⋅

@benchmark g2(mymat)⋅

12.11.2020 🎈 nb05-julia-jit.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=2a442a0e-2529-11eb-3946-7bdfff35ee2b# 8/8

 samples: 5600
 evals/sample: 1

Observation: g3 is the fastest implemetation, then comes g1 and then g2.
The di�ference between g2 and g1 is that each time we use a matrix slice a[:,i] , memory is
allocated and data copied. Only then the mapreduce is employed, and the intermediate
memory is garbage collected.
The di�ference between g2 and g1 lies in the use of the @views macro which allows to avoid the
creation of intermediae memory for matrix rows.
Conclusion: avoid Gotcha #6 by carefully checking your code for allocations and avoiding the
use of temporary memory.

@benchmark g3(mymat)⋅

http://www.stochasticlifestyle.com/7-julia-gotchas-handle/

