
11.11.2020 🎈 nb04-julia-types.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=fd9be16c-2461-11eb-2b26-4d2bc6808668# 1/5

Julia type system

Julia is a strongly typed language
Knowledge about the layout of a value in memory is encoded in its type
Prerequisite for performance
There are concrete types and abstract types
See the Julia WikiBook for more

Concrete types

Every value in Julia has a concrete type
Concrete types correspond to computer representations of objects
Inquire type info using typeof()

Built-in types

Default types are deduced from concrete representations

Int64

Float64

Complex{Float64}

Irrational{:π}

Bool

String

Array{Float16,1}

Array{Int64,2}

One can initialize a variable with an explicitely given �xed type. Currently this is possible only in
the body of functions and for return values, not in the global context. The content of a do block

using Pkg; Pkg.activate(mktempdir()); Pkg.add("PlutoUI"); using PlutoUI⋅

Pkg.add("AbstractTrees")⋅

using LinearAlgebra,InteractiveUtils⋅

import AbstractTrees⋅

typeof(10)⋅

typeof(10.0)⋅

typeof(3.0+3im)⋅

typeof(π)⋅

typeof(false)⋅

typeof("false")⋅

typeof(Float16[1,2,3])⋅

typeof(rand(Int,3,3))⋅

https://en.wikibooks.org/wiki/Introducing_Julia/Types

11.11.2020 🎈 nb04-julia-types.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=fd9be16c-2461-11eb-2b26-4d2bc6808668# 2/5

is implicitely used as a function.

(i, typeof(i)) = (10, Int8)
(x, typeof(x)) = (Float16(5.0), Float16)
(z, typeof(z)) = (15.0f0 + 3.0f0im, Complex{Float32})

Custom types

Structs allow to de�ne custom types

Color64(
r = 0.1
g = 0.2
b = 0.3

)

Types can be parametrized. This is similar to array types which are parametrized by their
element types

TColor{UInt8}(0x04, 0x19, 0xe9)

Functions, Methods and Multiple Dispatch

Functions can have di�ferent variants of their implementation depending on the types of
parameters passed to them
These variants are called methods
All methods of a function f can be listed calling methods(f)
The act of �guring out which method of a function to call depending on the type of parameters
is called multiple dispatch

"special case Int64, x=3"

"general case: Bool, x=false"

with_terminal() do
 i::Int8=10
 @show i,typeof(i)
 x::Float16=5.0
 @show x,typeof(x)
 z::Complex{Float32}=15+3im
 @show z,typeof(z)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

struct Color64
 r::Float64
 g::Float64
 b::Float64
end

⋅
⋅
⋅
⋅
⋅

Color64(0.1,0.2,0.3)⋅

struct TColor{T}
 r::T
 g::T
 b::T
end

⋅
⋅
⋅
⋅
⋅

TColor{UInt8}(4,25,233)⋅

test_dispatch(x)="general case: $(typeof(x)), x=$(x)";⋅

test_dispatch(x::AbstractFloat)="special case Float, $(typeof(x)), x=$(x)";⋅

test_dispatch(x::Int64)="special case Int64, x=$(x)";⋅

test_dispatch(3)⋅

11.11.2020 🎈 nb04-julia-types.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=fd9be16c-2461-11eb-2b26-4d2bc6808668# 3/5

"special case Float, Float64, x=3.0"

Here we de�ned a generic method which works for any variable passed. In the case of Int64 or
Float64 parameters, special cases are handeld by di�ferent methods of the same function. The

compiler decides which method to call. This approach allows to specialize implemtations dependent
on data types, e.g. in order to optimize perfomance.

The methods function can be used to �gure out which methods of a function exists.

3 methods for generic function test_dispatch:

test_dispatch(x::Int64) in Main.workspace52 at
/home/fuhrmann/Wias/teach/scicomp/scicomp/pluto/nb04-julia-types.jl#==#0cc7808a-0955-
11eb-0b4d-�f491af88cf5:1
test_dispatch(x::AbstractFloat) in Main.workspace68 at
/home/fuhrmann/Wias/teach/scicomp/scicomp/pluto/nb04-julia-types.jl#==#0468c2da-0955-
11eb-271b-5d84d5d8343d:1
test_dispatch(x) in Main.workspace48 at
/home/fuhrmann/Wias/teach/scicomp/scicomp/pluto/nb04-julia-types.jl#==#f5cc25e6-0954-
11eb-179b-edd�f99dd392:1

The function/method concept somehow corresponds to C++14 generic lambdas

auto myfunc=[](auto &y, auto &y)
{
 y=sin(x);
};

is equivalent to

function myfunc!(y,x)
 y=sin(x)
end

Many generic programming approaches possible in C++ also work in Julia,

If not speci�ed otherwise via parameter types, Julia functions are generic: "automatic auto"

Abstract types

Abstract types label concepts which work for a several concrete types without regard to their
memory layout etc.
All variables with concrete types corresponding to a given abstract type (should) share a
common interface
A common interface consists of a set of functions with methods working for all types exhibiting
this interface
The functionality of an abstract type is implicitely characterized by the methods working on it
This concept is close to "duck typing": use the "duck test" — "If it walks like a duck and it quacks
like a duck, then it must be a duck" — to determine if an object can be used for a particular
purpose
When trying to force a parmameter to have an abstract type,it

ends up with having a conrete type which is compatible with that abstract type

(i, typeof(i)) = (10, Int64)
(x, typeof(x)) = (5.0, Float64)
(z, typeof(z)) = (15 + 3im, Complex{Int64})

test_dispatch(false)⋅

test_dispatch(3.0)⋅

methods(test_dispatch)⋅

https://github.com/j-fu/scicomp/tree/e14cb9c614e332ed9279459d2690c23e5849a96e//pluto/nb04-julia-types.jl#==#0cc7808a-0955-11eb-0b4d-ff491af88cf5#L1
https://github.com/j-fu/scicomp/tree/e14cb9c614e332ed9279459d2690c23e5849a96e//pluto/nb04-julia-types.jl#==#0468c2da-0955-11eb-271b-5d84d5d8343d#L1
https://github.com/j-fu/scicomp/tree/e14cb9c614e332ed9279459d2690c23e5849a96e//pluto/nb04-julia-types.jl#==#f5cc25e6-0954-11eb-179b-eddff99dd392#L1
https://isocpp.org/wiki/faq/cpp14-language#generic-lambdas
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Duck_typing

11.11.2020 🎈 nb04-julia-types.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=fd9be16c-2461-11eb-2b26-4d2bc6808668# 4/5

The type tree

Types can have subtypes and a supertype
Concrete types are the leaves of the resulting type tree
Supertypes are necessarily abstract
There is only one supertype for every (abstract or concrete) type
Abstract types can have several subtypes

Any[BigFloat, Float16, Float32, Float64]

Concrete types have no subtypes

Type[]

Any

"Any" is the root of the type tree and has itself as supertype

Any

We can use the AbstractTrees package to walk the type tree. We just need to de�ne what it means
to have children for a type.

Number
├─ Complex
└─ Real
 ├─ AbstractFloat
 │ ├─ BigFloat
 │ ├─ Float16
 │ ├─ Float32
 │ └─ Float64
 ├─ AbstractIrrational
 │ └─ Irrational
 ├─ Integer
 │ ├─ Bool
 │ ├─ Signed
 │ │ ├─ BigInt
 │ │ ├─ Int128
 │ │ ├─ Int16
 │ │ ├─ Int32
 │ │ ├─ Int64
 │ │ └─ Int8
 │ └─ Unsigned
 │ ├─ UInt128
 │ ├─ UInt16
 │ ├─ UInt32
 │ ├─ UInt64
 │ └─ UInt8
 └─ Rational

There are operators for testing type relationships

true

with_terminal() do
 i::Integer=10
 @show i,typeof(i)
 x::Real=5.0
 @show x,typeof(x)
 z::Any=15+3im
 @show z,typeof(z)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

subtypes(AbstractFloat)⋅

subtypes(Float64)⋅

supertype(Number)⋅

supertype(Any)⋅

AbstractTrees.children(x::Type) = subtypes(x)⋅

AbstractTrees.Tree(Number)⋅

11.11.2020 🎈 nb04-julia-types.jl ⚡ Pluto.jl ⚡

localhost:1235/edit?id=fd9be16c-2461-11eb-2b26-4d2bc6808668# 5/5

false

false

true

Abstract types can be used for method dispatch as well

dispatch2 (generic function with 2 methods)

"Int64 <:Integer, x=13"

"Float64 <:AbstractFloat, x=13.0"

The power of multiple dispatch

Multiple dispatch is one of the de�ning features of Julia
Combined with the the hierarchical type system it allows for powerful generic program design
New datatypes (di�ferent kinds of numbers, di�ferently stored arrays/matrices) work with
existing code once they implement the same interface as existent ones.
In some respects C++ comes close to it, but for the price of more and less obvious code

 Float64<: Number⋅

 Float64<: Integer⋅

isa(3,Float64)⋅

isa(3.0,Float64)⋅

begin
 dispatch2(x::AbstractFloat)="$(typeof(x)) <:AbstractFloat, x=$(x)"
 dispatch2(x::Integer)="$(typeof(x)) <:Integer, x=$(x)"
end

⋅
⋅
⋅
⋅

dispatch2(13)⋅

dispatch2(13.0)⋅

