
11.11.2020 🎈 nb03-julia-structure-interop.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=378a8382-246d-11eb-3283-b5d678658c39# 1/4

Code structuring and interaction with

other languages

Julia work�ows
When working with Julia, we can choose between a number of work�lows.

Pluto notebook

This ist what you see in action here. A�ter calling pluto, you can start with an empty notebook and add
cells.

Jupyter notebook

With the help of the package IJulia.jl it is possible to work with Jupyter notebooks in the browser.
The Jupyter system is very complex and Pluto hopefully will be able to replace it.

Classical work�ow

Use a classical code editor (emacs, vi or whatever you prefer) in a separate window and edit �les,
when saved to disk run code in a console window. With Julia, this work�low has the disadvantage that
everytime Julia is started, the JIT needs to recompile the packages involved. So the idea is to not leave
Julia, but to start a permanent Julia session, and include the code a�ter each change.

The Revise.jl package allows to keep track of changed �les used in a Julia session if they have been
included via includet (t for "tracked"). In orde to make this work, one should add

if isinteractive()
 try
 @eval using Revise
 Revise.async_steal_repl_backend()
 catch err
 @warn "Could not load Revise."
 end
end

to the startup �le ~/.julia/config/startup.jl and to run Julia via julia -i .

Revise.jl also keeps track of packages loaded. It also can be used with Pluto.

Modern work�ow

Use an IDE (integrated development environment). Currently the best one for Julia is Visual Studio
Code with corresponding extensions.

Structuring code: modules, �les and

packages

Complex code is split up into several �les which can be included
Need to avoid name clashes for code from di�ferent places

Modules
Modules allow to encapsulate implementation into di�ferent namespaces

Main.workspace3.TestModule

using Pkg; Pkg.activate(mktempdir()); Pkg.add("PlutoUI"); using PlutoUI⋅

11.11.2020 🎈 nb03-julia-structure-interop.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=378a8382-246d-11eb-3283-b5d678658c39# 2/4

"mtest: x=2"

Packages

Packages are modules searched for in a number of standard places
Each package is a directory named Package with a subdirectory src
The �le Package/src/Package.jl de�nes a module named Package
More structures in a package:

Documentation resources
Test code
Metadada: Dependency description, UUID (Universal unique identi�er)...

Default packages (e.g. the package manager Pkg) are always found in the .julia subdirectory
of your home directory
The package manager allows to add packages by �nding them via the registry and downloading
them.

String["AbstractTrees", "Adapt", "ArgCheck", "ArgParse", "ArnoldiMethod", "ArrayInterf

String[".github", ".gitignore", ".travis.yml", "LICENSE.md", "NEWS.md", "Project.toml"

A�ter importing a package via the import statement, all functions from a package are available
via their name pre�xed with the name of the package.
The using statement makes these names available without pre�x.

Calling code from other languages

C

C language code has a well de�ned binary interface
int Int32
float Float32
double Float64

C arrays as pointers

Create a C source �le:

cadd_source "double cadd(double x, double y) \n{ \n return x+y; \n}\n" =

module TestModule
 function mtest(x)
 return "mtest: x=$(x)"
 end
 export mtest
end

⋅
⋅
⋅
⋅
⋅
⋅

TestModule.mtest(2)⋅

readdir("/home/fuhrmann/.julia/packages/")⋅

readdir("/home/fuhrmann/.julia/packages/AbstractTrees/vOsoQ/")⋅

cadd_source="""
double cadd(double x, double y)
{
 return x+y;
}
"""

⋅
⋅
⋅
⋅
⋅
⋅

open("cadd.c", "w") do io
 write(io,cadd_source)
end;

⋅
⋅
⋅

11.11.2020 🎈 nb03-julia-structure-interop.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=378a8382-246d-11eb-3283-b5d678658c39# 3/4

Compile to a shared object (aka "dll" on windows) using the gcc compiler:

Process(`gcc --shared cadd.c -o libcadd.so`, ProcessExited(0))

De�ne wrapper function cadd using the Julia ccall method
(:cadd, "libcadd") : call cadd from libcadd.so

First Float64 : return type
Tuple (Float64,Float64,) : parameter types
x,y : actual data passed

At its �rst call it will load libcadd.so into Julia
Direct call of compiled C function cadd() , no intermediate wrapper code

cadd (generic function with 1 method)

4.0

Julia and many of its packages use this method to access a number of highly optimized linear
algebra and other libraries

Python

Both Julia and Python are homoiconic language, featuring re�lection
They can parse the elements of their own data structures possibility to automatically build
proxies for python objects in Julia

The PyCall package provides the corresponding interface:

Create a python source �le:

pyadd_source "def add(x,y):\n return x+y\n" =

pyadd
PyObject <module 'pyadd' from '/home/fuhrmann/Wias/teach/scicomp/scicomp/pluto/pyadd.py'>

 =

9.7

Julia allows to call almost any python package
E.g. matplotlib graphics - this is the python package behind PyPlot (there are more graphics
options in Julia)
There is also a pyjulia package allowing to call Julia from python

Other languages

run(`gcc --shared cadd.c -o libcadd.so`)⋅

cadd(x,y)=ccall((:cadd, "libcadd"), Float64, (Float64,Float64,),x,y)⋅

cadd(1.5,2.5)⋅

Pkg.add("PyCall"); using PyCall⋅

pyadd_source="""
def add(x,y):
 return x+y
"""

⋅
⋅
⋅
⋅

open("pyadd.py", "w") do io
 write(io,pyadd_source)
end;

⋅
⋅
⋅

pyadd=pyimport("pyadd")⋅

pyadd.add(3.5,6.2)⋅

https://github.com/JuliaPy/pyjulia

11.11.2020 🎈 nb03-julia-structure-interop.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=378a8382-246d-11eb-3283-b5d678658c39# 4/4

There are ways to interact with C++, R and other langugas
Interaction with Fortran via ccall

