
5.11.2020 🎈 nb01-first-contact-pluto.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=4708543a-1ef8-11eb-314d-ef1f44ea3ec3# 1/3

Julia: First Contact - Basic Pluto

What is Pluto ?
Pluto is a browser based notebook interface for the Julia language. It allows to present Julia code and
computational results in a tightly linked fashion.

For those familiar with spreadsheets: Pluto is like Google Sheets or Excel but with Julia code in
its cells. Pluto cells are arranged in one broad column. Communication of data between cells
works via variables de�ned in the cells instead of cell references like A5 etc. With Excel and
other spreadsheets, Pluto shares the idea of reactivity: If a variable value is changed in the cell
where it is de�ned, the code in all dependent cells aka cells using this variable is executed.
For those familiar with Jupyter notebooks: Pluto is like Jupyter for Julia, but without the hidden
state created by the unlimited possibility to execute cells in arbitrary sequence. Instead, it
enhances the notebook concept by reactivity.

Pluto is implemented in a combination of Julia and javascript, and can be installed like any other Julia
package.

During this course, Pluto notebooks will be used to present numerical methods implemented in Julia.

Pluto resources:

Pluto repository at Github
How to Install Pluto (straight from the main author Fons van der Plas)
Sample notebooks are available via the index page a�ter starting Pluto.

Pluto structure
Pluto notebooks consist of a sequence of cells which contain valid Julia code. The result of execution of
the code in a cell is its return value which is displayed on top of the cell.

Text cells and cell visibility
Cells can consist of a string with text in Markdown format. This single text string is valid Julia code
and thus returned, formatted and shown as text.

Cells can be visible...

... or hidden, but their return value is visible nevertheless.Visibility can be toggled via the eye symbol
on the top le�t of the cell. We will use markdown cells for displaying text and explanatory information,
and keep them hidden.

LaTeX

Cells can contain math code: . Just surround it by $ symbols as in usual
texts or by double backtics: . The later method is safer as it does not collide with string
interpolation (explained below).

πξ ξ

πξ ξ

Code cells

md"""
Cells can be visible...
"""

⋅
⋅
⋅

md"""
LaTeX
Cells can contain \LaTeX math code: $\int_0^1 sin(π ξ) dξ$. Just surround
it by \$ symbols as in usual \LaTeX texts or by double backtics: ��\int_0^1 sin(π
ξ) dξ��.
The later method is safer as it does not collide with string interpolation (explained
below).
"""

⋅
⋅
⋅
⋅

⋅

⋅

https://github.com/fonsp/pluto.jl
https://www.youtube.com/watch?v=OOjKEgbt8AI
https://www.markdownguide.org/

5.11.2020 🎈 nb01-first-contact-pluto.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=4708543a-1ef8-11eb-314d-ef1f44ea3ec3# 2/3

Code cells are cells which just contain "normal" Julia code. Running the code in the cell is triggered by
the Shift-Enter keyboard combination or clicking on the triangle symbol on the right below the cell.

Variables and reactivity
We can de�ne a variable in a cell.The assignment has a return value like any other Julia statement
which is shown on top of the cell.

x 5 =

A variable de�ned in one cell can be used in another cell. Moreover, if the value is changed, the other
cell reacts and the code contained in that cell is executed with the new value of the variable. This
reactive behaviour typical for a spreadsheet.

6

One can return several results by stating them separated by , . The returned value then is a tuple.

(6, 7, 8)

Only one statement per cell
Each cell can contain only exactly one Julia statement. If multiple expressions are desired, they can
made into one by surrounding them by begin and end . The return value will be the return value of
the last expression in the statement.

-0.9997551733586199

An alternative way to have all statements on one line, separated by ; :

0.022126756261955736

However, in this situation the better structural decision would be to combine the statements into a
function de�ned in one cell and to call it in another cell.

0.022126756261955736

Interactivity
We can bind interactive HTML elements to variables:

v=50 (This uses string interpolation to print the value of v into the Markdown string)

x=5⋅

x+1⋅

x+1,x+2,x+3⋅

md"""
Display of the return value can be suppressed by ending the last statement with `;`
""";

⋅
⋅
⋅

begin
 z=x+v
 sin(z)
end

⋅
⋅
⋅
⋅

z1=x+v; cos(z1)⋅

function f(x,v)
 z=x+v
 cos(z)
end;

⋅
⋅
⋅
⋅

f(x,v)⋅

md"""v=$(v) (This uses _string interpolation_ to print the value of v into the
Markdown string)"""

⋅

5.11.2020 🎈 nb01-first-contact-pluto.jl ⚡ Pluto.jl ⚡

localhost:1234/edit?id=4708543a-1ef8-11eb-314d-ef1f44ea3ec3# 3/3

This example also shows that the dependency of one cell from another is de�ned via the involved
variables and not by the sequence in the notebook: the value v in the cells above is de�ned by the
slider.

In order to achieve this, Pluto makes extensive use of the possibility to inspect the variables de�ned in
a running Julia instance using Julia itself.

Deactivating code
We occasionally will use the possibility to deactivate cells before running their code. This can be useful
for preventing long runnig code to start immediately a�ter loading the notebook or for pedagogical
reasons.

The preferred pattern for this uses a checkbox bound to a logical variable.

Run next cell:

Accessing text output
Normally text output from statements in a cell is shown in the console window where Pluto was
started, and not in the notebook, as Pluto focuses on the presentation of the results. Sometimes it is
however desirable to inspect this output instead of the result returned. For this purpose, we use the
Julia package PlutoUI.jl which de�nes the function with_terminal :

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Live docs
The live docs pane in the lower right bottom allows to quickly obtain help information about
documented Julia functions etc.

if allow_run
 using LinearAlgebra
 a=rand(2000,2000)
 eigvals(inv(a))
end

⋅
⋅
⋅
⋅
⋅

begin
 import Pkg
 Pkg.activate(mktempdir())
 Pkg.add("PlutoUI")
end

⋅
⋅
⋅
⋅
⋅

using PlutoUI⋅

with_terminal() do
 for i=1:30
 println(i)
 end
end

⋅
⋅
⋅
⋅
⋅

