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0.1 Mesh generation
• Regard boundary value problems for PDEs in a finite domain Ω ⊂ Rd

• Solution spaces for PDEs are infinite dimensional ⇒ develop finite dimensional approxima-
tions

• One way of defining such approximations is based on the subdivision of Ω into a finite number
of elementary closed subsets T1 . . . TM , called mesh or grid

• During this course:
– Assume the domain is polygonal, its boundary ∂Ω is the union of a finite number of

subsets of hyperplanes in Rn (line segments for d = 2, planar polygons for d = 3)
– Elementary shapes are triangles or quadrilaterals (d = 2) or tetrahedra or cuboids (d = 3)
– Focus on simplexes (triangles, tetrahedra)

∗ Geometrically most flexible
∗ Starting point for more general methods

– Focus on d = 2,
– Further reading: see J.Shewchuk

0.2 Admissible grids
Definiton: A grid {T1 . . . TM} of Ω is admissible if - Ω is the union of the elementary cells:
Ω̄ = ∪M

m=1Tm - If Tm ∩ Tn consists of exactly one point, then this point is a common vertex of Tm

and Tn. - If for m ̸= n, Tm ∩ Tn consists of more than one point, then Tm ∩ Tn is a common edge
(or a common facet for d = 3) of Tm and Tn.

Image (Source: Braess): Left - admissible mesh, right - mesh with “hanging” nodes

0.3 Acute and weakly acute triangulations
Definition: A triangulation {T1 . . . TM} of a domain Ω is - acute, if all interior angles of all triangles
are less than π

2 , - weakly acute, if all interior angles of all triangles are less than or equal to π
2 .

0.4 Voronoi diagram
After G. F. Voronoi, 1868-1908

Definition: Let p,q ∈ Rd. The set of points Hpq =
{

x ∈ Rd : ||x − p|| ≤ ||x − q||
}

is the half
space of points x closer to p than to q.
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Definition: Given a finite set of points S ⊂ Rd, the Voronoi region (Voronoi cell) of a point p ∈ S
is the set of points x closer to p than to any other point q ∈ S:

Vp =
{

x ∈ Rd : ||x − p|| ≤ ||x − q|| ∀q ∈ S
}

The Voronoi diagram of S is the collection of the Voronoi regions of the points of S.

0.5 Voronoi diagram II
• The Voronoi diagram subdivides the whole space into “nearest neigbor’ ’ regions
• Being intersections of half planes, the Voronoi regions are convex sets

Voronoi diagram of 8 points in the plane (H. Si) \end{minipage}

0.6 Delaunay triangulation
After B.N. Delaunay (Delone), 1890-1980

• Given a finite set of points S ⊂ Rd

• Assume that the points of S are in general position, i.e. no d+2 points of S are on one sphere
(in 2D: no 4 points on one circle)

– Connect each pair of points whose Voronoi regions share a common edge with a line
– ⇒ Delaunay triangulation of the convex hull of S

Delaunay triangulation of the convex hull of 8 points in the plane (H.Si)

Interactive example via GEOGRAM

0.7 Delaunay triangulation II
• The circumsphere (circumcircle in 2D) of a d-dimensional simplex is the unique sphere con-

taining all vertices of the simplex
• The circumball (circumdisc in 2D) of a simplex is the unique (open) ball which has the

circumsphere of the simplex as boundary

Definition: A triangulation of the convex hull of a point set S has the Delaunay property if each
simplex (triangle) of the triangulation is Delaunay, i.e. its circumsphere (circumcircle) is empty
wrt. S, i.e. it does not contain any points of S.

• The Delaunay triangulation of a point set S, where all points are in general position is unique
• Otherwise there is an ambiguity - if e.g. 4 points are one circle, there are two ways to connect

them resulting in Delaunay triangles

0.8 Edge flips and locally Delaunay edges (2D only)
• For any two triangles abc and adb sharing a common edge ab, there is the edge flip operation

which reconnects the points in such a way that two new triangles emerge: adc and cdb.
• An edge of a triangulation is locally Delaunay if it either belongs to exactly one triangle,

or if it belongs to two triangles, and their respective circumdisks do not contain the points
opposite wrt. the edge

• If an edge is locally Delaunay and belongs to two triangles, the sum of the angles opposite to
this edge is less or equal to π.

2

http://homepages.loria.fr/BLevy/GEOGRAM/geogram_demo_Delaunay2d.html


• If all edges of a triangulation of the convex hull of S are locally Delaunay, then the triangu-
lation is the Delaunay triangulation

• If an edge is not locally Delaunay and belongs to two triangles, the edge emerging from the
corresponding edge flip will be locally Delaunay

0.9 Lawson’s Edge flip algorithm for constructing a Delaunay triangulation
• Input: A stack L of edges of a given triangulation of a set S of n points
• While L ̸= ∅

– pop an edge ab from L
– If ab is not locally Delaunay

∗ Flip ab to cd
∗ Push edges ac, cb,db,da onto L

This algorithm is known to terminate after O(n2) operations. After termination, all edges will be
locally Delaunay, so the output is the Delaunay triangulation of S.

• Among all triangulations of a finite point set S, the Delaunay triangulation maximises the
minimum angle of all triangles2

• The set of all possible triangulations of S is connected via the flip graph. Each edge of this
graph corresponds to one particular flip operation

0.10 Randomized incremental flip algorithm (2D only)
• Create Delaunay triangulation of point set S by inserting points one after another, and

creating the Delaunay triangulation of the emerging subset of S using the flip algorithm
• Estimated complexity: O(n logn)
• In 3D, there is no simple flip algorithm, generalizations are active research subject

0.11 Open source codes implementing mesh generation
• CGAL: The Computational Geometry Algorithms Library
• ND: qhull mostly for pointsets
• 2D: Triangle by J.R.Shewchuk (UC Berkeley)
• 3D: TetGen by H. Si (WIAS Berlin)
• 3D: NetGen by J. Schöberl and coworkers

0.12 Triangle
During this course, we will focus on Triangle. It can be compiled to a standalone executable reading
and writing files or to a library which can be called from applications.

Currently in Julia it is accessible as submodule of the package VoronoiFVM.jl. It is planned to
become a standalone package, consolidating the use of several Julia packages which already use
Triangle.

[1]: using Triangulate
using PyPlot

� Info: Recompiling stale cache file
/home/fuhrmann/.julia/compiled/v1.2/Triangulate/7LdbD.ji for Triangulate
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[f7e6ffb2-c36d-4f8f-a77e-16e897189344]
� @ Base loading.jl:1240

Plot a pair of input and output triangulateio structs

[2]: function plotpair(Plotter::Module, triin, triout;voronoi=nothing)
if Triangulate.ispyplot(Plotter)

PyPlot=Plotter
PyPlot.clf()
PyPlot.subplot(121)
PyPlot.title("In")
Triangulate.plot(PyPlot,triin)
PyPlot.subplot(122)
PyPlot.title("Out")
Triangulate.plot(PyPlot,triout,voronoi=voronoi)

end
end

[2]: plotpair (generic function with 1 method)

0.13 Delaunay triangulation of the convex hull of a pointset
• Triangle communicates via a data structure triangulateio which contains possible input

and output information
• It processes an input structure and returns on output the triangulation, and possibly, the

Voronoi diagram.
• It is controlled via a string containing switches.
• The switch ‘-Q’ makes Triangle quiet

[3]: triin=Triangulate.TriangulateIO()
triin.pointlist=[ 0.0 0; 1 0; 0 1]'
(triout, vorout)=triangulate("", triin)
plotpair(PyPlot,triin,triout)
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Constructing Delaunay triangulation by divide-and-conquer method.

Writing vertices.
Writing triangles.

Statistics:

Input vertices: 3

Mesh vertices: 3
Mesh triangles: 1
Mesh edges: 3
Mesh exterior boundary edges: 3

0.13.1 Additional creation of the convex hull

• The switch ‘-c’ leads to the additional creation of the information about the edges at the
convex hull

[4]: triin=Triangulate.TriangulateIO()
triin.pointlist=rand(Cdouble,2,7)
(triout, vorout)=triangulate("Qc", triin)
plotpair(PyPlot,triin,triout)
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0.13.2 Additional creation of the Voronoi diagram

• The switch ‘-v’ leads to the additional creation of the Voronoi diagram

[5]: triin=Triangulate.TriangulateIO()
triin.pointlist=rand(Cdouble,2,7)
(triout, vorout)=triangulate("Qcv", triin)
plotpair(PyPlot,triin,triout,voronoi=vorout)
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0.14 Conforming Delaunay triangulations
Definition: An admissible triangulation of a polygonal Domain Ω ⊂ Rd has the boundary con-
forming Delaunay property if - All simplices are Delaunay - All boundary simplices (edges in 2D,
facets in 3d) have the Gabriel property, i.e. their minimal circumdisks are empty

Equivalent definition in 2D: - Sum of angles opposite to interior edges ≤ π, - angle opposite to
boundary edge ≤ π

2

Corollary: - All triangle circumcenters are in the interior of the domain - Weakly acute triangula-
tions are boundary conforming Delaunay, but not vice versa!

Remarks: - Working with weakly acute triangulations for general polygonal domains is unrealistic,
especially in 3D - For boundary conforming Delaunay triangulations of polygonal domains there
are algoritms with mathematical termination proofs valid in many relevant cases (J. Shewchuk, H.
Si)

[6]: triin=Triangulate.TriangulateIO()
triin.pointlist=rand(Cdouble,2,7)
(triout, vorout)=triangulate("cv", triin)
plotpair(PyPlot,triin,triout,voronoi=vorout)

Constructing Delaunay triangulation by divide-and-conquer method.

Writing vertices.
Writing triangles.
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Writing segments.
Writing Voronoi vertices.
Writing Voronoi edges.

Statistics:

Input vertices: 7

Mesh vertices: 7
Mesh triangles: 7
Mesh edges: 13
Mesh exterior boundary edges: 5

0.14.1 Boundary conforming Delaunay triangulation of convex hull

• The switch ‘-D’ leads to the creation of a boundary conforming Delaunay triangulation.
• In this case, “Steiner points” need to be added to the initial point set

[7]: triin=Triangulate.TriangulateIO()
triin.pointlist=rand(Cdouble,2,7)
(triout, vorout)=triangulate("Dcv", triin)
plotpair(PyPlot,triin,triout,voronoi=vorout)

Constructing Delaunay triangulation by divide-and-conquer method.
Adding Steiner points to enforce quality.

Writing vertices.
Writing triangles.
Writing segments.
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Writing Voronoi vertices.
Writing Voronoi edges.

Statistics:

Input vertices: 7

Mesh vertices: 8
Mesh triangles: 7
Mesh edges: 14
Mesh exterior boundary edges: 7

0.15 Triangulations of finite polygonal domains
• So far, we discussed triangulations of point sets which at best can describe convex domains
• Create Delaunay triangulation of point set, “add” segments of a Piecewise Linear Straight

Line Graph (PLSG) describing the boudary of the domain. This results in a “constrained
Delaunay triangulation” which may not have the Delaunay property with respect to the
bundary vertices.

• Domain is specfied as a piecewise linear straight line graph
• In addition to the point list, we give a list of segments, and use “-p” instead of “-c”
• An additional segement marker list can be specified

[8]: triin=Triangulate.TriangulateIO()
triin.pointlist=Matrix{Cdouble}([0.0 0.0 ; 1.0 0.0 ; 0.4 0.4 ; 0.0 1.0; 0.2 0.
↪→3]')

triin.segmentlist=Matrix{Cint}([1 2 ; 2 3 ; 3 4 ; 4 1 ]')
triin.segmentmarkerlist=Vector{Int32}([1, 2, 3, 4])
(triout, vorout)=triangulate("pv", triin)
plotpair(PyPlot,triin,triout,voronoi=vorout)
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Constructing Delaunay triangulation by divide-and-conquer method.
Recovering segments in Delaunay triangulation.
Removing unwanted triangles.

Writing vertices.
Writing triangles.
Writing segments.
Writing Voronoi vertices.
Writing Voronoi edges.

Statistics:

Input vertices: 5
Input segments: 4
Input holes: 0

Mesh vertices: 5
Mesh triangles: 4
Mesh edges: 8
Mesh exterior boundary edges: 4
Mesh interior boundary edges: 0
Mesh subsegments (constrained edges): 4

0.15.1 Boundary conforming Delaunay triangulation

• Once again, ‘-D’ adds the boundary conforming Delaunay property

[9]: triin=Triangulate.TriangulateIO()
triin.pointlist=Matrix{Cdouble}([0.0 0.0 ; 1.0 0.0 ; 0.4 0.4 ; 0.0 1.0; 0.2 0.
↪→3]')

triin.segmentlist=Matrix{Cint}([1 2 ; 2 3 ; 3 4 ; 4 1 ]')
triin.segmentmarkerlist=Vector{Int32}([1, 2, 3, 4])
(triout, vorout)=triangulate("pvD", triin)
plotpair(PyPlot,triin,triout,voronoi=vorout)
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Constructing Delaunay triangulation by divide-and-conquer method.
Recovering segments in Delaunay triangulation.
Removing unwanted triangles.
Adding Steiner points to enforce quality.

Writing vertices.
Writing triangles.
Writing segments.
Writing Voronoi vertices.
Writing Voronoi edges.

Statistics:

Input vertices: 5
Input segments: 4
Input holes: 0

Mesh vertices: 12
Mesh triangles: 11
Mesh edges: 22
Mesh exterior boundary edges: 11
Mesh interior boundary edges: 0
Mesh subsegments (constrained edges): 11

0.15.2 Domain triangulation with area constraint

• ‘-a’ allows to specify a maximum area constraint.
• ‘-q’ allows to specify minumum angle
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[10]: triin=Triangulate.TriangulateIO()
triin.pointlist=Matrix{Cdouble}([0.0 0.0 ; 1.0 0.0 ; 0.4 0.4 ; 0.0 1.0; 0.2 0.
↪→3]')

triin.segmentlist=Matrix{Cint}([1 2 ; 2 3 ; 3 4 ; 4 1 ]')
triin.segmentmarkerlist=Vector{Int32}([1, 2, 3, 4])
(triout, vorout)=triangulate("pa0.1", triin)
plotpair(PyPlot,triin,triout,voronoi=vorout)

Constructing Delaunay triangulation by divide-and-conquer method.
Recovering segments in Delaunay triangulation.
Removing unwanted triangles.
Adding Steiner points to enforce quality.

Writing vertices.
Writing triangles.
Writing segments.

Statistics:

Input vertices: 5
Input segments: 4
Input holes: 0

Mesh vertices: 6
Mesh triangles: 5
Mesh edges: 10
Mesh exterior boundary edges: 5
Mesh interior boundary edges: 0
Mesh subsegments (constrained edges): 5
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0.15.3 Domain triangulation with area constraint from user function

• ‘-u’ allows to specify a user defined refinement criterion
• Julia constructs a c-callable function which is called by Triangle

[11]: function unsuitable(x1,y1,x2,y2,x3,y3,area)
bary_x=(x1+x2+x3)/3.0
bary_y=(y1+y2+y3)/3.0
dx=bary_x-0.1
dy=bary_y-0.1
area>0.001*exp(50.0*(dx^2+dy^2))

end

[11]: unsuitable (generic function with 1 method)

[12]: triin=Triangulate.TriangulateIO()
triin.pointlist=Matrix{Cdouble}([0.0 0.0 ; 1.0 0.0 ; 0.4 0.4 ; 0.0 1.0; 0.2 0.
↪→3]')

triin.segmentlist=Matrix{Cint}([1 2 ; 2 3 ; 3 4 ; 4 1 ]')
triin.segmentmarkerlist=Vector{Int32}([1, 2, 3, 4])
triunsuitable(unsuitable)
(triout, vorout)=triangulate("pa0.1u", triin)
plotpair(PyPlot,triin,triout,voronoi=vorout)

Constructing Delaunay triangulation by divide-and-conquer method.
Recovering segments in Delaunay triangulation.
Removing unwanted triangles.
Adding Steiner points to enforce quality.
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Writing vertices.
Writing triangles.
Writing segments.

Statistics:

Input vertices: 5
Input segments: 4
Input holes: 0

Mesh vertices: 46
Mesh triangles: 78
Mesh edges: 123
Mesh exterior boundary edges: 12
Mesh interior boundary edges: 0
Mesh subsegments (constrained edges): 12

0.16 Relevant output for numerical simulation (depends on method, implemen-
tation . . .):

• List of points
• List of triangles which for each triangle describes indices of points belonging to triangle
• List of (boundary) segments which for each segment describes indices of points belonging to

segment
• Possibly: list of segment markers (which can be used to distiguish boundary conditions)
• Possibly: list of triangle attributes (which describe subdomain information)

[13]: triin=Triangulate.TriangulateIO()
triin.pointlist=Matrix{Cdouble}([0.0 0.0 ; 1.0 0.0 ; 0.4 0.4 ; 0.0 1.0; 0.2 0.
↪→3]')

triin.segmentlist=Matrix{Cint}([1 2 ; 2 3 ; 3 4 ; 4 1 ]')
triin.segmentmarkerlist=Vector{Int32}([1, 2, 3, 4])
(triout, vorout)=triangulate("pa0.1Q", triin)
plotpair(PyPlot,triin,triout,voronoi=vorout)

@show triout.pointlist
@show triout.trianglelist
@show triout.segmentlist
@show triout.segmentmarkerlist
@show triout.triangleattributelist

triout.pointlist = [0.0 1.0 0.4 0.0 0.2 0.5; 0.0 0.0 0.4 1.0 0.3 0.0]
triout.trianglelist = Int32[4 6 3 5 5; 1 3 6 1 3; 5 5 2 6 4]
triout.segmentlist = Int32[2 2 4 1 6; 6 3 3 4 1]
triout.segmentmarkerlist = Int32[1, 2, 3, 4, 1]
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triout.triangleattributelist = Array{Float64}(undef,0,0)

[13]: 0×0 Array{Float64,2}

This notebook was generated using Literate.jl.
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