
Lecture 27 Slide 1

Scientific Computing WS 2019/2020

Lecture 27

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 26 Slide 2

Why parallelization ?

Clock rate of processors limited due to physical limits
⇒ parallelization: main road to increase the amount of data processed
Parallel systems nowadays ubiquitous: even laptops and smartphones
have multicore processors
Amount of accessible memory per processor is limited ⇒ systems
with large memory can be created based on parallel processors

Lecture 27 Slide 2

Lecture 26 Slide 3

TOP 500 2019 rank 1-9

- Based on linpack
benchmark:
solution of dense
linear system
- Typical desktop
computer: Rmax ≈
100 . . . 1000GFlop/s
[Source:www.top500.org]

Lecture 27 Slide 3

Lecture 26 Slide 4

Parallel paradigms

SIMD
Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

MIMD
Multiple Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

”classical” vector systems: Cray,
Convex . . .
Graphics processing units (GPU)

Shared memory systems
IBM Power, Intel Xeon, AMD
Opteron . . .
Smartphones . . .
Xeon Phi R.I.P.

Distributed memory systems
interconnected CPUs

Lecture 27 Slide 4

Lecture 26 Slide 5

MIMD Hardware: Distributed memory

[Source: computing.llnl.gov/tutorials]

Create large computer system by
connecting standard mainboards via
fast network
Memory scales with number of
CPUs interconneted
High latency for communication
Mostly programmed using MPI
(Message passing interface)
Explicit programming of
communications:
gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)

Lecture 27 Slide 5

Lecture 26 Slide 6

MIMD Hardware: Shared Memory
Symmetric Multiprocessing

(SMP)/Uniform memory access
(UMA)

[Source: computing.llnl.gov/tutorials]

Similar processors
Similar memory access times

Nonuniform Memory Access (NUMA)

[Source: computing.llnl.gov/tutorials]

Possibly varying memory access
latencies
Combination of SMP systems
ccNUMA: Cache coherent
NUMA

Shared memory: one (virtual) address space for all processors involved
Communication hidden behind memory access
Not easy to scale large numbers of CPUS
MPI works on these systems as well

Lecture 27 Slide 6

Lecture 26 Slide 7

Hybrid distributed/shared memory

Combination of shared and distributed memory approach
Top 500 computers

[Source: computing.llnl.gov/tutorials]

Shared memory nodes can be mixed CPU-GPU
Need to master three kinds of programming paradigms:

SIMD (GPU)
Shared memory
Distributed memory

Lecture 27 Slide 7

Lecture 26 Slide 8

“small” parallel system: this laptop

1 NUMANode (aka. CPU chip)
12 MB L3 cache
6 Cores

256KB L2 Cache
32KB L1 Cache
Hyperthreading → 2 logical cores (PU)

32GB RAM accessible via 3.9 GB/s DMA
channels (dma0, dma1)
Graphics card card0 (NVIDIA T1000) via
4GB/s connect
SSD nvme0n1 (1TB) via 3.9 GB/s connect
WIFI (wlp111s0), LAN (em1) . . .

Lecture 27 Slide 8

Lecture 26 Slide 9

“large” parallel system: WIAS compute server erhard-01
Machine (1008GB total)

NUMANode P#0 (252GB)

Package P#0

L3 (30MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#40

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#41

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#42

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#3

PU P#43

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#4

PU P#44

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#5

PU P#45

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#6

PU P#46

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#7

PU P#47

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#8

PU P#48

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#9

PU P#49

2 x { PCI 1077:2532 }

PCI 19a2:0710

eth0

PCI 19a2:0710

eth1

PCI 19a2:0710

eth2

PCI 19a2:0710

eth3

PCI 103c:323a

PCI 1002:515e

renderD128 card0

controlD64

NUMANode P#1 (252GB)

Package P#1

L3 (30MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#10

PU P#50

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#11

PU P#51

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#12

PU P#52

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#13

PU P#53

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#14

PU P#54

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#15

PU P#55

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#16

PU P#56

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#17

PU P#57

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#18

PU P#58

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#19

PU P#59

NUMANode P#2 (252GB)

Package P#2

L3 (30MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#20

PU P#60

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#21

PU P#61

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#22

PU P#62

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#23

PU P#63

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#24

PU P#64

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#25

PU P#65

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#26

PU P#66

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#27

PU P#67

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#28

PU P#68

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#29

PU P#69

PCI 19a2:0710

eth4

PCI 19a2:0710

eth5

NUMANode P#3 (252GB)

Package P#3

L3 (30MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#30

PU P#70

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#31

PU P#71

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#32

PU P#72

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#33

PU P#73

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#34

PU P#74

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#35

PU P#75

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#36

PU P#76

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#37

PU P#77

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#38

PU P#78

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#39

PU P#79

Host: erhard-01

Indexes: physical

Date: Mo 03 Feb 2020 15:22:01 CET

4 NUMANodes
each node: 256 GB RAM, 30 MB L3 cache, 10 cores

each core: 256KB L2 Cache, 32KB L1 Cache, 2 logical cores (PU)

Network . . .

Lecture 27 Slide 9

Lecture 26 Slide 10

Parallel processes

Modern operating systems allow to run several programs at once
Each of these programs corresponds to a process
Processes can be launched from the command line and require large
bookeeping, each process has its own address space
On multicore systems, processes can run on different cores, and
ideally, they don’t interfere with each other
Data exchange between different processes needs an extra protocol for
inter-process communication

Lecture 27 Slide 10

Lecture 26 Slide 11

Threads vs processes

Threads are lightweight subprocesses within a process and share its
address space, they can run on a different core
Managing a thread requires significantly less bookeeping and
resources compared to a process
Parallel programming using threads aka. multithreading is easy, as
inter-thread communication can be realized via the common address
space
Multithreading is hard since threads share data structures that should
only be modified by one thread at a time

Lecture 27 Slide 11

Lecture 26 Slide 12

Thread based programming model

pthreads (POSIX threads): widely available on different operating
systems
Threads introduced into C++ standard with C++11
Cumbersome tuning + syncronization, but very flexible
Basic structure for higher level interfaces
Threads in Julia: ‘Threads.@spawn‘ (since Julia 1.3), marked as
experimental

... sequential code ...
function run_in_thread(params) // function to be run in separate thread

...
end
t=start_thread (run_in_thread, params) //
...
wait_and_fetch_result(t)
...

Lecture 27 Slide 12

Lecture 26 Slide 13

Fork-Join programming model
OpenMP for C++,C,Fortran
‘Threads.@threads‘ in Julia
Compiler directives (pragmas) describe parallel regions
Automatically mapped onto thread based model

... sequential code ... // joined code
#pragma omp parall for // ``fork'' -> parallel execution
{

... parallel code ...
}
(implicit barrier) // wait for tasks to finish
... sequential code ...

[Source: computing.llnl.gov/tutorials] Lecture 27 Slide 13

Lecture 26 Slide 14

Fork-join vs thread based

Usually, the fork-join model is implemented on top of the threading
model
OpenMP essentially performs automatic code transformation
Well adapted to numerical tasks with large loops
Easy to handle
Performance depends on compiler implementation, memory
bandwidth etc.

Lecture 27 Slide 14

Lecture 26 Slide 15

OpenMP s = u · v : primitive implementation

double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
s+=u[i]*v[i];

Code can be parallelized by introducing compiler directives
Compiler directives are ignored if not in parallel mode
Compiler directives are not part of the languge
Write conflict with s+ =: several threads may access the same
variable

Lecture 27 Slide 15

Lecture 26 Slide 16

Preventing conflicts in OpenMP

Atomic updates are performed only by one thread at a time

double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
{

#pragma omp atomic update
s+=u[i]*v[i];

}

Expensive, parallel program flow is interrupted
Similar to Julia atomic variables

Lecture 27 Slide 16

Lecture 26 Slide 17

Do it yourself reduction
Remedy: accumulate partial results per thread, combine them after
main loop
“Reduction”

#include <omp.h>
int maxthreads=omp_get_max_threads();
double s0[maxthreads];
double u[n],v[n];
for (int ithread=0;ithread<maxthreads; ithread++)

s0[ithread]=0.0;

#pragma omp parallel for
for(int i=0; i<n ; i++)
{

int ithread=omp_get_thread_num();
s0[ithread]+=u[i]*v[i];

}

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)

s+=s0[ithread];

Lecture 27 Slide 17

Lecture 26 Slide 18

OpenMP Reduction Variables

double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

In standard situations, reduction variables can be used to avoid write
conflicts, no need to organize this by programmer

Lecture 27 Slide 18

Lecture 27 Slide 19

Parallelization of vector operations

For iterative methods it is important to parallelize vecotor operations:
Scalar product

Basic operationx

‘axpy‘ x = ax + y

Sparse matrix × vector

Few operations per memory access, relatively fine grained parallelism
→ benchmark this

STREAM benchmark

“Schönauer vector triad”: d = a + b ∗ c
4 vectors, 2 Flops per index.

Lecture 27 Slide 20

Memory performance: vector triad I
This laptop (gcc) WIAS compute server (gcc)

103 104 105 106 107 108

Array length N

0

5

10

15

20

25

GF
lo

ps
/s

Intel Core i7-9850H 2.60GHz 6 Cores
RAM: 32GiB L1: 6x32KB, L2: 6x256KB, L3: 12MB

1 thread
2 threads
4 threads
6 threads

103 104 105 106 107 108

Array length N

0

5

10

15

20

25

GF
lo

ps
/s

Intel Xeon E5-2698 2.30GHz 2x32 Cores
RAM: 512GiB L1: 64x42KB, L2: 64x256KB, L3: 2x40MB

1 thread
2 threads
4 threads
8 threads
16 threads
32 threads
64 threads

Small problems: scalar is fastest due to scheduling overhead
Medium problems: parallel is fast
Large problems: no big difference due to memory bandwidth: all
laptop cores access the memory through the same bottleneck
“sweet spot” for parallel between 104 and 5 · 105 . . . 5 · 106

Lecture 27 Slide 21

Memory performance: vector triad II

Benchmarking site of G. Hager
https://blogs.fau.de/hager/archives/tag/benchmarking lstopo for this laptop

Performance drops are correlated with cache sizes
Most important: large L3 cache

Lecture 27 Slide 22

Memory performance: vector triad III

gcc vs. icc (2013)
https://blogs.fau.de/hager/archives/tag/benchmarking this laptop (4 threads)

103 104 105 106 107 108

Array length N

0

5

10

15

20

25

GF
lo

ps
/s

vtriad-omp-vs-spawn-vs-threads
julia-threads
julia-spawn
gcc-omp
julia-scalar
gcc-scalar

Picture similar to early times of gnu compiler vs Intel
Julia barrier implementation seems to need improvement
“hand crafted” threading works better

Lecture 27 Slide 23

Memory performance: vector triad: update

Julia vs gcc on Server Julia vs gcc on Laptop

pic/vtriad-omp-vs-spawn-vs-threads-erhard20.pdf

103 104 105 106 107 108

Array length N

0

5

10

15

20

25

GF
lo

ps
/s

vtriad-omp-vs-spawn-vs-threads
julia-threads
julia-spawn
gcc-omp
julia-scalar
gcc-scalar

Picture similar to early times of gnu compiler vs Intel
Julia barrier implementation seems to need improvement
“hand crafted” threading works better

Lecture 27 Slide 24

OpenMP: further aspects

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)
u[i]+=a*u[i];

[Quelle: computing.llnl.gov/tutorials]

Distribution of indices with thread is implicit and can be influenced by
scheduling directives
Number of threads can be set via OMP_NUM_THREADS environment
variable or call to omp_set_num_threads()

First Touch Principle: first thread which “touches” data triggers the
allocation of memory with the NUMA node where the thread is
running on

Lecture 27 Slide 25

Parallelization of PDE solution with multithreading

∆u = f inΩ, u|∂Ω = 0

⇒ u =
∫

Ω
f (y)G(x , y)dy .

Solution in x ∈ Ω is influenced by values of f in all points in Ω
⇒ global coupling: any solution algorithm needs global
communication

Lecture 27 Slide 26

Structured and unstructured grids

Structured grid

Easy next neighbor access via
index calculation
Efficient implementation on
SIMD/GPU
Strong limitations on geometry

Unstructured grid

[Quelle: tetgen.org]

General geometries
Irregular, index vector based
access to next neighbors
Hardly feasible fo SIMD/GPU

Lecture 27 Slide 27

Stiffness matrix assembly for Laplace operator for P1 FEM

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx

=
∫

Ω

∑
K∈Th

∇φi |K∇φj |K dx

Assembly loop:
Set aij = 0.
For each K ∈ Th:
For each m, n = 0 . . . d :

smn =
∫

K
∇λm∇λn dx

ajdof (K ,m),jdof (K ,n) = ajdof (K ,m),jdof (K ,n) + smn

Lecture 27 Slide 28

Mesh partitioning

Partition set of elements K in Th, and color the neighborhood graph
of the partitions
Result:

C: set of colors

Pc : set of partitions of given color

Then: Th =
⋃

c∈C
⋃

p∈Pc
{K}K∈p

Sample algorithm:
Subdivision of grid cells into equally sized
subsets by METIS (Karypis/Kumar) →
Partitions of color 1
Create separators along boundaries →
Partitions of color 2
“triple points” → Partitions of color 3

Lecture 27 Slide 29

Parallel stiffness matrix assembly for P1 FEM

No interference between assembly loops for partitions of the same
color
Immediate parallelization without critical regions

Set aij = 0.
For each color c ∈ C
#pragma omp parallel for

For each p ∈ Pc :
For each K ∈ p:
For each m, n = 0 . . . d :

smn =
∫

K ∇λm∇λn dx
ajdof (K ,m),jdof (K ,n)+ = smn

Prevent write conflicts by loop organization
No need for critical sections
Similar structure for Voronoi finite volumes, nonlinear operator
evaluation, Jacobi matrix assembly

Lecture 27 Slide 30

Linear system solution

Sparse matrices
Direct solvers are hard to parallelize though many efforts are
undertaken, e.g. Pardiso
Iterative methods easier to parallelize

partitioning of vectors + coloring inherited from cell partitioning
keep loop structure (first touch principle)
parallelize

vector algebra
scalar products
matrix vector products
preconditioners

But: barrier overhead, memory access bandwidth are essential for
efficiency

Lecture 27 Slide 31

Distributed memory computing

Based on different processes (instead of threads) running on one or
multiple hosts
Generally: Communication via network
Communication via POSIX shared memory if running on the same
host
Communications need to be programmed explicitely.
Paradigms:

Master - Worker

Single program - multiple data (SPMD)

Lecture 27 Slide 32

MPI - Message passing interface

library, can be used from C,C++, Fortran, python
de facto standard for programming on distributed memory systems
(since ≈ 1995)
highly portable
MPI.jl julia package
support by hardware vendors: optimized communication speed
based on sending/receiving messages over network
SPMD paradigm
need to hand-craft communications

Lecture 27 Slide 33

How to install

OpenMP/C++11 threads come along with compiler
MPI needs to be installed in addition
Can run on multiple systems
openmpi available for Linux/Mac (homebrew)/ Windows (cygwin)

https://www.open-mpi.org/faq/?category=mpi-apps
Compiler wrapper mpic++

wrapper around (configurable) system compiler
proper flags + libraries to be linked

Process launcher mpirun
launcher starts a number of processes which execute statements
independently, ocassionally waiting for each other

Lecture 27 Slide 34

Threads vs processes

MPI is based on processes, C++11 threads and OpenMP are based
on threads.
Processes are essentially like commands launched from the command
line and require large bookeeping, each process has its own address
space
Threads are created within a process and share its address space,
require significantly less bookeeping and resources
Multithreading requires careful programming since threads share data
structures that should only be modified by one thread at a time.
Unlike threads, with processes there can be no write conflicts
When working with multiple processes, one becomes responsible for
inter-process communication

Lecture 27 Slide 35

MPI Programming Style

Generally, MPI allows to work with completely different programs
Typically, one writes one program which is started in multiple
incarnations on different hosts in a network or as different processes
on one host
MPI library calls are used to determine the identiy of a running
program and the region of the data to work on
Communication + barriers have to be programmed explicitely.

Lecture 27 Slide 36

MPI Hello world
// Initialize MPI.
MPI_Init (&argc, &argv);

// Get the number of processes.
MPI_Comm_size (MPI_COMM_WORLD, &nproc);

// Determine the rank (number, identity) of this process.
MPI_Comm_rank (MPI_COMM_WORLD, &iproc);

if (iproc == 0)
{

cout << "Number of available processes: " << nproc << "\n";
}
cout << "Hello from proc " << iproc << endl;
MPI_Finalize ();

Compile with mpic++ mpi-hello.cpp -o mpi-hello
All MPI programs begin with MPI_Init() and end with
MPI_Finalize()
the communicator MPI_COMM_WORLD designates all processes in the
current process group, there may be other process groups etc.
The whole program is started N times as system process, not as
thread: mpirun -np N mpi-hello

Lecture 27 Slide 37

MPI hostfile

host1 slots=n1
host2 slots=n2

...

Distribute code execution over several hosts
MPI gets informed how many independent processes can be run on
which node and distributes the required processes accordingly
MPI would run more processes than slots available. Avoid this
situation !
Need ssh public key access and common file system access for proper
execution
Telling mpi to use host file:
mpirun --hostfile hostfile -np N mpi-hello

Lecture 27 Slide 38

MPI Send

MPI_Send (start, count, datatype, dest, tag, comm)

Send data to other process(es)
The message buffer is described by (start, count, datatype):

start: Start address
count: number of items
datatype: data type of one item

The target process is specified by dest, which is the rank of the target
process in the communicator specified by comm
When this function returns, the data has been delivered to the system
and the buffer can be reused. The message may not have been
received by the target process.
The tag codes some type of message

Lecture 27 Slide 39

MPI Receive

MPI_Recv(start, count, datatype, source, tag, comm, status)

Waits until a matching (on source and tag) message is received from
the system, and the buffer can be used.
source is rank in communicator specified by comm, or
MPI_ANY_SOURCE
status contains further information
Receiving fewer than count occurrences of datatype is OK, but
receiving more is an error.

Lecture 27 Slide 40

MPI Broadcast

MPI_Bcast(start, count, datatype, root, comm)

Broadcasts a message from the process with rank “root” to all other
processes of the communicator
Root sends, all others receive.

Lecture 27 Slide 41

Differences with OpenMP

Programmer has to care about all aspects of communication and data
distribution, even in simple situations
In simple situations (regularly structured data) OpenMP provides
reasonable defaults. For MPI these are not available
For PDE solvers (FEM/FVM assembly) on unstructured meshes, in
both cases we have to care about data distribution
We need explicit handling of data at interfaces with MPI, while with
OpenMP, possible communication is hidden behind the common
address space

