Scientific Computing WS 2019/2020

Lecture 26

Jiirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Why parallelization ?

42 Years of Microprocessor Trend Data

T T 7y

107 « Transi
W ransistors
5| LWl | (thousands)
10 &
FY
10° Y :ﬁ‘: Single-Thread
s’ o 2085 *° | Performance s
o s TL L | (SpecINT x 10%)
as gata L Frequency (MHz
. 2 ¥ f | e v
Ll
L 3 o] 3,00 Typical Power
102 | A v,vv;;v;;w,w"v“’f 35 o (Watts)
1 : - RS M M »::o'i Number of
10 LA [v AV B4 Logical Cores
v

MASEE A4

$4 <
*
+

€SI NS ¢ o -

L
.
1007;: T
1
9

1970

80 1990 2000 2010 2020

Year
Original data up to the year 2010 callected and plotted by M. Horowiz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Clock rate of processors limited due to physical limits

= parallelization: main road to increase the amount of data processed
Parallel systems nowadays ubiquitous: even laptops and smartphones
have multicore processors

Amount of accessible memory per processor is limited = systems
with large memory can be created based on parallel processors

TOP 500 2019 rank 1-9

Rank System

1

Summit m A A NVIDIA

United States

Sierra P tem A 1BM POWERY 22C 3.1GHz, NVIDIA

United States

Sunway TaihuLight - St APP, Sunway SV 1.456H
Sunway , NRCPC

ational S
China

Tianhe-2A - TH-|

stional S mputer Center in Guangz

China

Frontera), o1 tint "
3 Dell EMC

exas Ad Computir Un !

United States

Piz Daint 3y XC5(
JIA 2100, Cray/HPE

nal

Switzerland

Trinity
4GHz, Ari

DOE/NNSA/LANL/SNL

United States

 Cray/HPE

Al Bridging Cloud Infrastru
Gold 6 4GHz, NVIDIA 1 v . Fujitsu
i] A Jstrial | y
Japan
SuperMUC-NG ! 650
) . Lenovo

Germany

Cores

2,414,592

1,572,480

10,649,600

4,981,760

448,448

387,872

979,072

391,680

305,856

Rmax
(TFlop/s)

148,600.0

94,640.0

93,014.6

81,4445

23,516.4

21,230.0

20,158.7

19.880.0

19.476.6

Rpeak
(TFlop/s)

200,794.9

125,712.0

125,435.9

100,678.7

38,745.9

27,1543

41,4612

32,576.6

26,873.9

Power
(kw)

10,096

7,438

15,371

18,482

2,384

7,578

1,649

- Based on linpack
benchmark:
solution of dense
linear system

- Typical desktop
computer: Rpax =
100...1000GFlop/s

[Source:www.top500.0rg]

Parallel paradigms

Single Instruction Multiple Data Multiple Instruction Multiple Data
prev instruct prev instruct prev instruct prev instruct prev instruct prev instruct
foed A load A(2) load A(n) load A(1) call funcD do 10i=1,N
load B(1) load B(2) load B(n) - load B(1) x=y'z alpha=w*'3 -
3 3
ciArBU)| |c@=-A@rB@) Cn)=A(nyBMm)| | C(1)=A(1y*B(1) sum=x*2 zeta=C(j) ®
store C(1) store C(2) store C(n) store C(1) call sub(ij) 10 continue
next instruct next instruct next instruct next instruct next instruct next instruct
P1 P2 Pn P1 P2 Pn
[Source: computing.linl.gov/tutorials] [Source: computing.linl.gov/tutorials]

@ Shared memory systems
o IBM Power, Intel Xeon, AMD

@ "classical” vector systems: Cray, Opteron ...
Convex ... o Smartphones ...
@ Graphics processing units (GPU) o Xeon Phi R.I.P.

@ Distributed memory systems
e interconnected CPUs

MIMD Hardware: Distributed memory

o Create large computer system by
connecting standard mainboards via
fast network

@ Memory scales with number of
CPUs interconneted

¢ I network I - e High latency for communication

@ Mostly programmed using MPI
(Message passing interface)
[Source: computinglnl.gov/tutorials] @ Explicit programming of
communications:
gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)

MIMD Hardware: Shared Memory

Symmetric Multiprocessing .
(SMP)/Uniform memory access Nonuniform Memory Access (NUMA)

(UMA) *_
=

[Source: computing.linl.gov/tutorials]

- @ Possibly varying memory access
latencies
) [-Source: computing.llnl.gov/tutorials] ° Combination Of SMP systems
° S!m!lar processors) @ ccNUMA: Cache coherent
@ Similar memory access times NUMA

@ Shared memory: one (virtual) address space for all processors involved
@ Communication hidden behind memory access
@ Not easy to scale large numbers of CPUS

@ MPI works on these systems as well

Hybrid distributed /shared memory

Combination of shared and distributed memory approach
Top 500 computers

¢ I network I > ¢ I network | o
[Source: computing.linl.gov/tutorials]
Shared memory nodes can be mixed CPU-GPU
Need to master three kinds of programming paradigms:
e SIMD (GPU)

o Shared memory
o Distributed memory

“small” parallel system: this laptop

Machine (3168 total)

Package L#0
NUMANode L#0 P#0 (31G8)

13 (12M8)

12 (256K8)

114 (32K8)

L1 (32K8)

CoreL#0
PULIO
Ps0
PULH
Pi6
12 (256K8)

CoreL#1

1 NUMANode (aka. CPU chip)
o 12 MB L3 cache
o 6 Cores
e 256KB L2 Cache
e 32KB L1 Cache
o Hyperthreading — 2 logical cores (PU)

@ 32GB RAM accessible via 3.9 GB/s DMA
channels (dma0, dmal)

Graphics card card0 (NVIDIA T1000) via
4GB/s connect

SSD nvmeOnl (1TB) via 3.9 GB/s connect
WIFI (wlp111s0), LAN (eml) ...

“large” parallel system: WIAS compute server erhard-01

Lo]
o] e] Lo] o] e [] e] Lo | e] o |
IIIIII%IIHII

@ 4 NUMANodes
e each node: 256 GB RAM, 30 MB L3 cache, 10 cores

o each core: 256KB L2 Cache, 32KB L1 Cache, 2 logical cores (PU)

o Network ...

Parallel processes

@ Modern operating systems allow to run several programs at once
@ Each of these programs corresponds to a process

@ Processes can be launched from the command line and require large
bookeeping, each process has its own address space

@ On multicore systems, processes can run on different cores, and
ideally, they don't interfere with each other

@ Data exchange between different processes needs an extra protocol for
inter-process communication

Threads vs processes

@ Threads are lightweight subprocesses within a process and share its
address space, they can run on a different core

@ Managing a thread requires significantly less bookeeping and
resources compared to a process

o Parallel programming using threads aka. multithreading is easy, as
inter-thread communication can be realized via the common address
space

@ Multithreading is hard since threads share data structures that should
only be modified by one thread at a time

Thread based programming model

@ pthreads (POSIX threads): widely available on different operating
systems

Threads introduced into C4++ standard with C++11
Cumbersome tuning + syncronization, but very flexible

Basic structure for higher level interfaces

Threads in Julia: ‘“Threads.@spawn' (since Julia 1.3), marked as
experimental

. sequential code ...
function run_in_thread(params) // function to be run in separate thread

end
t=start_thread (run_in_thread, params) //

wait_and_fetch_result(t)

Fork-Join programming model

@ OpenMP for C++4,C,Fortran

@ 'Threads.@threads' in Julia

e Compiler directives (pragmas) describe parallel regions
@ Automatically mapped onto thread based model

. sequential code ... // joined code
#pragma omp parall for // ~“fork'' -> parallel execution

. parallel code ...
}
(implicit barrier) // wait for tasks to finish
. sequential code ...

master thread - r L
e memmo - Ceeal teads
threads | Lo K
. K . threads

parallel region parallel region parallel region

Fork-join vs thread based

Usually, the fork-join model is implemented on top of the threading
model

OpenMP essentially performs automatic code transformation

Well adapted to numerical tasks with large loops

Easy to handle

Performance depends on compiler implementation, memory
bandwidth etc.

OpenMP s = u - v: primitive implementation

double s=0.0;

#pragma omp parallel for
for(int i=0; i<n ; i++)
s+=ul[il*v[i];

@ Code can be parallelized by introducing compiler directives
o Compiler directives are ignored if not in parallel mode
e Compiler directives are not part of the languge

@ Write conflict with s+ =: several threads may access the same
variable

Preventing conflicts in OpenMP

@ Atomic updates are performed only by one thread at a time

double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
{
#pragma omp atomic update
s+=uli]*v[i];

}

o Expensive, parallel program flow is interrupted

@ Similar to Julia atomic variables

Do it yourself reduction

@ Remedy: accumulate partial results per thread, combine them after
main loop

@ “Reduction”

#include <omp.h>

int maxthreads=omp_get_max_threads();

double sO[maxthreads];

double uln],vin];

for (int ithread=0;ithread<maxthreads; ithread++)
sO[ithread]=0.0;

#pragma omp parallel for
for(int i=0; i<mn ; i++)

{
int ithread=omp_get_thread_num();
sO[ithread]+=uli]l*v[i];

¥

double s=0.0;

for (int ithread=0;ithread<maxthreads; ithread++)
s+=s0[ithread] ;

OpenMP Reduction Variables

double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<n ; i++)

st=ul[il*v[i];

@ In standard situations, reduction variables can be used to avoid write
conflicts, no need to organize this by programmer

