Scientific Computing WS 2019/2020

Lecture 24

Jiirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Nonlinear problems: motivation

@ Assume nonlinear dependency of some coefficients of the equation on
the solution. E.g. nonlinear diffusion problem

—V - (D(u)Vu)=f inQ
u = gondf2

e FE+FV discretization methods lead to large nonlinear systems of
equations

Nonlinear problems: caution!

This is a significantly more complex world:
@ Possibly multiple solution branches
@ Weak formulations in LP spaces
@ No direct solution methods

e Narrow domains of definition (e.g. only for positive solutions)

Finite element discretization for nonlinear diffusion

e Find u, € V}, such that for all wy, € V:

/D(uh)ﬁuhﬁw,, dx = / fwp dx
Q Q

@ Use appropriate quadrature rules for the nonlinear integrals

@ Discrete system
A(u/-,) = F(uh)

Finite volume discretization for nonlinear diffusion

- [(-v-0)Fu-r) s

= —/ D(u)ﬁu “ngdy — fdw (Gauss)
Owy o
=— Z / Vu nydy — / D(u)ﬁu - nd~ 7/ o
LEN. Yk Wi
N Z Tgkl(uk’ ur) + |yla(ux — wie) — fwil fi
LEN, ki
with
D(% B
gk, ur) = (3 (uk + up))(uk — w)
or D(ux) —D(u)
where D(u fo &) d¢ (exact solution ansatz at discretization edge)

@ Discrete system
A(Uh) = F(Uh)

lterative solution methods: fixed point iteration

Let v € R".
Problem: A(u) = f:
Assume A(u) =
operator.
Iteration scheme:
Choose ug, i < 0;
while not converged do

Solve M(U;)U;+1 = f;

i< i+1;
end
Convergence criteria:

o residual based: ||[A(u) — f]| <e

e update based ||uit1 — uil| < &
Large domain of convergence
Convergence may be slow
Smooth coefficients not necessary

[terative solution methods: Newton method

@ Solve
Al(ul...u,,) ﬁ
A2(U1...Un) f2
An(uy ... up) f,

@ Jacobi matrix (Frechet derivative) for given u: A’(u) = (ak) with

agl = %Ak(ul . U,,)
@ lteration scheme:
Choose ug, i < 0;
while not converged do
Calculate residual r; = A(y;) — f;
Calculate Jacobi matrix A’(u;);
Solve update problem A’(u;)h; = r;;
Update solution: ujy1 = u; — hj;
i+ i+1;
end

Newton method I

Convergence criteria:
o residual based: ||ri|| < e

o update based ||hi|| < ¢

Limited domain of convergence

@ Slow initial convergence

Fast (quadratic) convergence close to solution

Linear and quadratic convergence

o Let ¢ = u; — 0.

@ Linear convergence: observed for e.g. linear systems:
Asymptically constant error contraction rate

|l€is1]]
~Y

|leil|

p<l

@ Quadratic convergence: Jip > 0 such that Vi > iy,

lessall gy -y
e

el llersal]
=h i+1
p— < H
lleil] ez = llei—1llM
[lei—1]] [lei—1]]

As ||ej|| decreases, the contraction rate decreases

@ In practice, we can watch ||r|| or |||

Damped Newton method

@ Remedy for small domain of convergence: damping

Choose ug, i < 0, damping parameter d < 1;
while not converged do
Calculate residual r; = A(y;) — f;
Calculate Jacobi matrix A’(u;);
Solve update problem A’(u;)h; = r;;
Update solution: wj+1 = u; — dh;;
i—i+1;
end

@ Damping slows convergence down from quadratic to linear

Damped Newton method Il

@ Better way: increase damping parameter during iteration:

Choose ug, i + 0,damping dy < 1, growth factor 6 > 1;
while not converged do

Calculate residual r; = A(y;) — f;

Calculate Jacobi matrix A’(u;);

Solve update problem A'(u;)h; = r;;

Update solution: wj41 = u; — d;h;;

Update damping parameter: d;;1 = min(1,4d;) ;
i+ i+1;

end

@ Increase damping until it becomes 1 and quadratic convergence is
achieved

Newton method: further issues

@ In each iteration step we have to solve linear system of equations

o Can be done iteratively, e.g. with the LU factorization of the Jacobi
matrix from first solution step as a preconditioner

o Linear iterative solution accuracy my be relaxed, but this may
diminuish quadratic convergence

@ Quadratic convergence yields very accurate solution with no large
additional effort: once we are in the quadratic convergence region,
convergence is very fast

@ Monotonicity test: check if residual grows, this is often an sign that
the iteration will diverge anyway.

Newton method: embedding

@ Embedding method for parameter dependent problems.
@ Solve A(ux,A\) =f for A=1.
@ Assume A(ug,0) can be easily solved.

@ Parameter embedding method:

Solve A(up,0) = f;

Choose initial step size §;

Set A =0;

while A <1 do
Solve A(uxts, A+ 6) = 0 with initial valuel uy;
A < min(A +9);

end

@ Possibly decrease stepsize if Newton's method does not converge,
increase it later

@ Parameter embedding + damping + update based convergence
control go a long way to solve even strongly nonlinear problems!

Dual numbers

Ring of dual numbers D:

o Let 2 =0.
D:{a+b5|a,beR}:{(g b) | a, beR}cRM
o Let p(x) =>_"_,pix'. Then

p(a+ be) = Zp,a +le,’ The

= p(a) + bp' (3)5

Generalization to any analytical function

@ = automatic evaluation of function and derivative at once
= forward mode automatic differentiation

@ Multivariate dual numbers: generalization for partial derivatives

Automatic differentiation in Julia

o Julia: DualNumbers.jl as part of ForwardDiff jl

o Write function once, evaluate for real or dual nubers = get the
evaluation of the derivative “for free”

@ = easy handling of complicated nonlinearities

