Scientific Computing WS 2019/2020

Lecture 24

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

• Assume nonlinear dependency of some coefficients of the equation on the solution. E.g. nonlinear diffusion problem

$$-\nabla \cdot (D(u)\vec{\nabla}u) = f \quad \text{in } \Omega$$
$$u = g \text{on} \partial \Omega$$

 FE+FV discretization methods lead to large nonlinear systems of equations This is a significantly more complex world:

- Possibly multiple solution branches
- Weak formulations in L^p spaces
- No direct solution methods
- Narrow domains of definition (e.g. only for positive solutions)

• Find $u_h \in V_h$ such that for all $w_h \in V_h$:

$$\int_{\Omega} D(u_h) \vec{\nabla} u_h \cdot \vec{\nabla} w_h \ dx = \int_{\Omega} f w_h \ dx$$

- Use appropriate quadrature rules for the nonlinear integrals
- Discrete system

$$A(u_h)=F(u_h)$$

Finite volume discretization for nonlinear diffusion

$$0 = \int_{\omega_{k}} \left(-\nabla \cdot D(u) \vec{\nabla} u - f \right) d\omega$$

= $-\int_{\partial \omega_{k}} D(u) \vec{\nabla} u \cdot \mathbf{n}_{k} d\gamma - \int_{\omega_{k}} f d\omega$ (Gauss)
= $-\sum_{L \in \mathcal{N}_{k}} \int_{\sigma_{kl}} D(u) \vec{\nabla} u \cdot \mathbf{n}_{kl} d\gamma - \int_{\gamma_{k}} D(u) \vec{\nabla} u \cdot \mathbf{n} d\gamma - \int_{\omega_{k}} f d\omega$
 $\approx \sum_{L \in \mathcal{N}_{k}} \frac{\sigma_{kl}}{h_{kl}} g_{kl}(u_{k}, u_{l}) + |\gamma_{k}| \alpha(u_{k} - w_{k}) - |\omega_{k}| f_{k}$

with

$$g_{kl}(u_k, u_l) = \begin{cases} D(\frac{1}{2}(u_k + u_l))(u_k - u_l) \\ \text{or} \quad \mathcal{D}(u_k) - \mathcal{D}(u_l) \end{cases}$$

where $\mathcal{D}(u) = \int_0^u D(\xi) \ d\xi$ (exact solution ansatz at discretization edge)

Discrete system

$$A(u_h) = F(u_h)$$
 Lecture 24 Slide

Iterative solution methods: fixed point iteration

- Let $u \in \mathbb{R}^n$.
- Problem: A(u) = f:
- Assume A(u) = M(u)u, where for each $u, M(u) : \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator.
- Iteration scheme:

```
Choose u_0, i \leftarrow 0;

while not converged do

Solve M(u_i)u_{i+1} = f;

i \leftarrow i + 1;
```

end

- Convergence criteria:
 - residual based: $||A(u) f|| < \varepsilon$
 - update based $||u_{i+1} u_i|| < \varepsilon$
- Large domain of convergence
- Convergence may be slow
- Smooth coefficients not necessary

Iterative solution methods: Newton method

Solve

$$A(u) = \begin{pmatrix} A_1(u_1 \dots u_n) \\ A_2(u_1 \dots u_n) \\ \vdots \\ A_n(u_1 \dots u_n) \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} = f$$

• Jacobi matrix (Frechet derivative) for given u: $A'(u) = (a_{kl})$ with

$$a_{kl}=\frac{\partial}{\partial u_l}A_k(u_1\ldots u_n)$$

• Iteration scheme: Choose u_0 , $i \leftarrow 0$; while not converged do Calculate residual $r_i = A(u_i) - f$; Calculate Jacobi matrix $A'(u_i)$; Solve update problem $A'(u_i)h_i = r_i$; Update solution: $u_{i+1} = u_i - h_i$; $i \leftarrow i + 1$;

end

- Convergence criteria:
 - residual based: $||r_i|| < \varepsilon$
 - update based $||h_i|| < \varepsilon$
- Limited domain of convergence
- Slow initial convergence
- Fast (quadratic) convergence close to solution

Linear and quadratic convergence

• Let
$$e_i = u_i - \hat{u}$$
.

• Linear convergence: observed for e.g. linear systems: Asymptically constant error contraction rate

$$\frac{||\boldsymbol{e}_{i+1}||}{||\boldsymbol{e}_i||} \sim \rho < 1$$

• Quadratic convergence: $\exists i_0 > 0$ such that $\forall i > i_0$,

$$\frac{||e_{i+1}||}{||e_i||^2} \le M < 1.$$

$$\frac{\frac{||e_{i+1}||}{||e_i||}}{\frac{||e_i||}{||e_{i-1}||}} = \frac{||e_{i+1}||}{\frac{||e_i||^2}{||e_{i-1}||}} \le ||e_{i-1}||M$$

As $||e_i||$ decreases, the contraction rate decreases

• In practice, we can watch $||r_i||$ or $||h_i||$

• Remedy for small domain of convergence: damping

```
Choose u_0, i \leftarrow 0, damping parameter d < 1;

while not converged do

Calculate residual r_i = A(u_i) - f;

Calculate Jacobi matrix A'(u_i);

Solve update problem A'(u_i)h_i = r_i;

Update solution: u_{i+1} = u_i - dh_i;

i \leftarrow i + 1;

end
```

• Damping slows convergence down from quadratic to linear

Damped Newton method II

• Better way: increase damping parameter during iteration:

```
Choose u_0, i \leftarrow 0, damping d_0 < 1, growth factor \delta > 1;

while not converged do

Calculate residual r_i = A(u_i) - f;

Calculate Jacobi matrix A'(u_i);

Solve update problem A'(u_i)h_i = r_i;

Update solution: u_{i+1} = u_i - d_ih_i;

Update damping parameter: d_{i+1} = \min(1, \delta d_i);

i \leftarrow i + 1;
```

end

 Increase damping until it becomes 1 and quadratic convergence is achieved

Newton method: further issues

- In each iteration step we have to solve linear system of equations
 - Can be done iteratively, e.g. with the LU factorization of the Jacobi matrix from first solution step as a preconditioner
 - Linear iterative solution accuracy my be relaxed, but this may diminuish quadratic convergence
- Quadratic convergence yields very accurate solution with no large additional effort: once we are in the quadratic convergence region, convergence is very fast
- Monotonicity test: check if residual grows, this is often an sign that the iteration will diverge anyway.

Newton method: embedding

- Embedding method for parameter dependent problems.
- Solve $A(u_{\lambda}, \lambda) = f$ for $\lambda = 1$.
- Assume $A(u_0, 0)$ can be easily solved.
- Parameter embedding method:

```
Solve A(u_0, 0) = f;

Choose initial step size \delta;

Set \lambda = 0;

while \lambda < 1 do

Solve A(u_{\lambda+\delta}, \lambda + \delta) = 0 with initial value1 u_{\lambda};

\lambda \leftarrow \min(\lambda + \delta);

end
```

- Possibly decrease stepsize if Newton's method does not converge, increase it later
- Parameter embedding + damping + update based convergence control go a long way to solve even strongly nonlinear problems!

Ring of dual numbers \mathbb{D} :

• Let
$$\varepsilon^2 = 0$$
.
 $\mathbb{D} = \{ a + b\varepsilon \mid a, b \in \mathbb{R} \} = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{R} \right\} \subset \mathbb{R}^{2 \times 2}$

• Let $p(x) = \sum_{i=0}^{n} p_i x^i$. Then

$$p(a + b\varepsilon) = \sum_{i=0}^{n} p_i a^i + \sum_{i=1}^{n} i p_i a^{i-1} b\varepsilon$$
$$= p(a) + bp'(a)\varepsilon$$

- Generalization to any analytical function
- \Rightarrow automatic evaluation of function and derivative at once \equiv forward mode automatic differentiation
- Multivariate dual numbers: generalization for partial derivatives

- Julia: DualNumbers.jl as part of ForwardDiff.jl
- Write function once, evaluate for real or dual nubers \Rightarrow get the evaluation of the derivative "for free"
- ullet \Rightarrow easy handling of complicated nonlinearities