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Nonlinear problems: motivation

Assume nonlinear dependency of some coefficients of the equation on
the solution. E.g. nonlinear diffusion problem

−∇ · (D(u)~∇u) = f in Ω
u = gon∂Ω

FE+FV discretization methods lead to large nonlinear systems of
equations
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Nonlinear problems: caution!

This is a significantly more complex world:

Possibly multiple solution branches

Weak formulations in Lp spaces

No direct solution methods

Narrow domains of definition (e.g. only for positive solutions)
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Finite element discretization for nonlinear diffusion

Find uh ∈ Vh such that for all wh ∈ Vh:∫
Ω

D(uh)~∇uh · ~∇wh dx =
∫

Ω
fwh dx

Use appropriate quadrature rules for the nonlinear integrals

Discrete system
A(uh) = F (uh)
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Finite volume discretization for nonlinear diffusion

0 =
∫
ωk

(
−∇ · D(u)~∇u − f

)
dω

= −
∫
∂ωk

D(u)~∇u · nkdγ −
∫
ωk

fdω (Gauss)

= −
∑

L∈Nk

∫
σkl

D(u)~∇u · nkldγ −
∫
γk

D(u)~∇u · ndγ −
∫
ωk

fdω

≈
∑

L∈Nk

σkl
hkl

gkl (uk , ul ) + |γk |α(uk − wk)− |ωk |fk

with

gkl (uk , ul ) =
{

D( 1
2 (uk + ul ))(uk − ul )

or D(uk)−D(ul )

where D(u) =
∫ u

0 D(ξ) dξ (exact solution ansatz at discretization edge)

Discrete system
A(uh) = F (uh)
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Iterative solution methods: fixed point iteration

Let u ∈ Rn.
Problem: A(u) = f :
Assume A(u) = M(u)u, where for each u, M(u) : Rn → Rn is a linear
operator.
Iteration scheme:
Choose u0, i ← 0;
while not converged do

Solve M(ui )ui+1 = f ;
i ← i + 1;

end
Convergence criteria:

residual based: ||A(u)− f || < ε
update based ||ui+1 − ui || < ε

Large domain of convergence
Convergence may be slow
Smooth coefficients not necessary
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Iterative solution methods: Newton method
Solve

A(u) =


A1(u1 . . . un)
A2(u1 . . . un)

...
An(u1 . . . un)

 =


f1
f2
...
fn

 = f

Jacobi matrix (Frechet derivative) for given u: A′(u) = (akl ) with

akl = ∂

∂ul
Ak(u1 . . . un)

Iteration scheme:
Choose u0, i ← 0;
while not converged do

Calculate residual ri = A(ui )− f ;
Calculate Jacobi matrix A′(ui );
Solve update problem A′(ui )hi = ri ;
Update solution: ui+1 = ui − hi ;
i ← i + 1;

end
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Newton method II

Convergence criteria:
residual based: ||ri || < ε

update based ||hi || < ε

Limited domain of convergence

Slow initial convergence

Fast (quadratic) convergence close to solution
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Linear and quadratic convergence
Let ei = ui − û.

Linear convergence: observed for e.g. linear systems:
Asymptically constant error contraction rate

||ei+1||
||ei ||

∼ ρ < 1

Quadratic convergence: ∃i0 > 0 such that ∀i > i0,

||ei+1||
||ei ||2

≤ M < 1.

||ei+1||
||ei ||
||ei ||
||ei−1||

= ||ei+1||
||ei ||2
||ei−1||

≤ ||ei−1||M

As ||ei || decreases, the contraction rate decreases

In practice, we can watch ||ri || or ||hi ||
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Damped Newton method

Remedy for small domain of convergence: damping

Choose u0, i ← 0, damping parameter d < 1;
while not converged do

Calculate residual ri = A(ui )− f ;
Calculate Jacobi matrix A′(ui );
Solve update problem A′(ui )hi = ri ;
Update solution: ui+1 = ui − dhi ;
i ← i + 1;

end

Damping slows convergence down from quadratic to linear
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Damped Newton method II

Better way: increase damping parameter during iteration:

Choose u0, i ← 0,damping d0 < 1, growth factor δ > 1;
while not converged do

Calculate residual ri = A(ui )− f ;
Calculate Jacobi matrix A′(ui );
Solve update problem A′(ui )hi = ri ;
Update solution: ui+1 = ui − dihi ;
Update damping parameter: di+1 = min(1, δdi ) ;
i ← i + 1;

end

Increase damping until it becomes 1 and quadratic convergence is
achieved
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Newton method: further issues

In each iteration step we have to solve linear system of equations
Can be done iteratively, e.g. with the LU factorization of the Jacobi
matrix from first solution step as a preconditioner

Linear iterative solution accuracy my be relaxed, but this may
diminuish quadratic convergence

Quadratic convergence yields very accurate solution with no large
additional effort: once we are in the quadratic convergence region,
convergence is very fast

Monotonicity test: check if residual grows, this is often an sign that
the iteration will diverge anyway.
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Newton method: embedding
Embedding method for parameter dependent problems.

Solve A(uλ, λ) = f for λ = 1.

Assume A(u0, 0) can be easily solved.

Parameter embedding method:

Solve A(u0, 0) = f ;
Choose initial step size δ;
Set λ = 0;
while λ < 1 do

Solve A(uλ+δ, λ+ δ) = 0 with initial value1 uλ;
λ← min(λ+ δ);

end

Possibly decrease stepsize if Newton’s method does not converge,
increase it later

Parameter embedding + damping + update based convergence
control go a long way to solve even strongly nonlinear problems!
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Dual numbers

Ring of dual numbers D:

Let ε2 = 0.
D = {a + bε | a, b ∈ R} =

{(
a b
0 a

)
| a, b ∈ R

}
⊂ R2×2

Let p(x) =
∑n

i=0 pix i . Then

p(a + bε) =
n∑

i=0
piai +

n∑
i=1

ipiai−1bε

= p(a) + bp′(a)ε

Generalization to any analytical function

⇒ automatic evaluation of function and derivative at once
≡ forward mode automatic differentiation

Multivariate dual numbers: generalization for partial derivatives
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Automatic differentiation in Julia

Julia: DualNumbers.jl as part of ForwardDiff.jl

Write function once, evaluate for real or dual nubers ⇒ get the
evaluation of the derivative “for free”

⇒ easy handling of complicated nonlinearities


