
Lecture 22 Slide 1

Scientific Computing WS 2019/2020

Lecture 22+23

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 7 Slide 22

Elements of iterative methods (Saad Ch.4)

Let V = Rn be equipped with the inner product (·, ·). Let A be an n × n
nonsingular matrix.

Solve Au = b iteratively. For this purpose, two components are needed:
I Preconditioner: a matrix M ≈ A “approximating” the matrix A but with

the property that the system Mv = f is easy to solve
I Iteration scheme: algorithmic sequence using M and A which updates the

solution step by step

Lecture 22 Slide 2

Lecture 7 Slide 23

Simple iteration with preconditioning

Idea: Aû = b ⇒

û = û − M−1(Aû − b)

⇒ iterative scheme

uk+1 = uk − M−1(Auk − b) (k = 0, 1 . . .)

1. Choose initial value u0, tolerance ε, set k = 0

2. Calculate residuum rk = Auk − b

3. Test convergence: if ||rk || < ε set u = uk , finish

4. Calculate update: solve Mvk = rk

5. Update solution: uk+1 = uk − vk , set k = k + 1, repeat with step 2.

Lecture 22 Slide 3

Lecture 7 Slide 24

The Jacobi method

I Let A = D − E − F , where D: main diagonal, E : negative lower triangular
part F : negative upper triangular part

I Preconditioner: M = D, where D is the main diagonal of A ⇒

uk+1,i = uk,i − 1
aii

(∑

j=1...n

aijuk,j − bi

)
(i = 1 . . . n)

I Equivalent to the succesive (row by row) solution of

aiiuk+1,i +
∑

j=1...n,j 6=i

aijuk,j = bi (i = 1 . . . n)

I Already calculated results not taken into account
I Alternative formulation with A = M − N:

uk+1 = D−1(E + F)uk + D−1b

= M−1Nuk + M−1b

I Variable ordering does not matter

Lecture 22 Slide 4

Lecture 7 Slide 25

The Gauss-Seidel method

I Solve for main diagonal element row by row
I Take already calculated results into account

aiiuk+1,i +
∑

j<i

aijuk+1,j +
∑

j>i

aijuk,j = bi (i = 1 . . . n)

(D − E)uk+1 − Fuk = b

I May be it is faster
I Variable order probably matters
I Preconditioners: forward M = D − E , backward: M = D − F
I Splitting formulation: A = M − N

forward: N = F , backward: M = E
I Forward case:

uk+1 = (D − E)−1Fuk + (D − E)−1b

= M−1Nuk + M−1b

Lecture 22 Slide 5

Lecture 10 Slide 26

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):
I fix a predefined zero pattern
I apply the standard LU factorization method, but calculate only those

elements, which do not correspond to the given zero pattern
I Result: incomplete LU factors L, U, remainder R :

A = LU − R

I Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?

Lecture 22 Slide 6

Lecture 10 Slide 28

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to
compute the incomplete LU factorization with a given nonzero pattern

A = LU − R

is stable. Moreover, A = LU − R is a regular splitting.

Lecture 22 Slide 7

Lecture 10 Slide 30

ILU(0)
I Special case of ILU: ignore any fill-in.
I Representation:

M = (D̃ − E)D̃−1(D̃ − F)

I D̃ is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

I Setup:

for i=1:n
d[i]=a[i,i]

end

for i=1:n
d[i]=1.0/d[i]
for j=i+1:n

d[j]=d[j]-a[i,j]*d[i]*a[j,i]
end

end

Lecture 22 Slide 8

Lecture 10 Slide 32

ILU(0)

I Generally better convergence properties than Jacobi, Gauss-Seidel
I One can develop block variants
I Alternatives:

I ILUM: (“modified”): add ignored off-diagonal entries to D̃
I ILUT: zero pattern calculated dynamically based on drop tolerance

I Dependence on ordering
I Can be parallelized using graph coloring
I Not much theory: experiment for particular systems
I I recommend it as the default initial guess for a sensible preconditioner
I Incomplete Cholesky: symmetric variant of ILU

Lecture 22 Slide 9

Lecture 11 Slide 32

Preconditioned CG II
Assume r̃i = E−1ri , d̃i = ET di , we get the equivalent algorithm

r0 = b − Au0

d0 = M−1r0

αi = (M−1ri , ri)
(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (M−1ri+1, ri+1)
(ri , ri)

di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of
the matrix vector product and the calculation of the scalar product.

The convergence rate of the method is

||ei ||E−1AE−T ≤ 2
(√

κ − 1√
κ + 1

)i

||e0||E−1AE−T

where κ = γmax
γmin

comes from γmin(Mu, u) ≤ (Au, u) ≤ γmax(Mu, u).
Lecture 22 Slide 10

Lecture 11 Slide 33

Issues and consequences

I Usually we stop the iteration when the residual r becomes small.
However during the iteration, floating point errors occur which distort
the calculations and lead to the fact that the accumulated residuals

ri+1 = ri − αiAdi

give a much more optimistic picture on the state of the iteration than
the real residual

ri+1 = b − Aui+1

I The convergence rate estimate in terms of
√

κ−1√
κ+1 indeed provides a

qualitatively better complexity estimate for the solution algorithm
I Always consider CG when solving symmetric positive definite linear

systems iteratively

Lecture 22 Slide 11

Lecture 7 Slide 47

Iterative solver complexity I

I Solve linear system iteratively until ||ek || = ||(I − M−1A)ke0|| ≤ ε

ρke0 ≤ ε

k ln ρ < ln ε − ln e0

k ≥ kρ =
⌈

ln e0 − ln ε

ln ρ

⌉

I ⇒ we need at least kρ iteration steps to reach accuracy ε

I Optimal iterative solver complexity - assume:
I ρ < ρ0 < 1 independent of h resp. N
I A sparse (A · u has complexity O(N))
I Solution of Mv = r has complexity O(N).

⇒ Number of iteration steps kρ independent of N
⇒ Overall complexity O(N)

Lecture 22 Slide 12

Lecture 7 Slide 48

Iterative solver complexity II

I Assume
I ρ = 1 − hδ ⇒ ln ρ ≈ −hδ → kρ = O(h−δ)

I d: space dimension ⇒ h ≈ N− 1
d ⇒ kρ = O(N δ

d)
I O(N) complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)

⇒ Overall complexity O(N1+ δ
d)=O(N d+δ

d)
I Jacobi: δ = 2
I Hypothetical “Improved iterative solver” with δ = 1 ?
I Overview on complexity estimates

dim ρ = 1 − O(h2) ρ = 1 − O(h) LU fact. LU solve
1 O(N3) O(N2) O(N) O(N)
2 O(N2) O(N 3

2) O(N 3
2) O(N log N)

3 O(N 5
3) O(N 4

3) O(N2) O(N 4
3)

Lecture 22 Slide 13

Lecture 7 Slide 49

Solver complexity scaling for 1D problems

dim ρ = 1 − O(h2) ρ = 1 − O(h) LU fact. LU solve
1 O(N3) O(N2) O(N) O(N)

0 200000 400000 600000 800000 1000000
N

100

102

104

106

108

1010

1012

1014

1016

1018

O
p
e
ra

ti
o
n
s

Complexity scaling for 1D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

10-4 10-3 10-2 10-1 100

h

100

102

104

106

108

1010

1012

1014

1016

1018

1020

1022

1024

O
p
e
ra

ti
o
n
s

Complexity scaling for 1D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

I Direct solvers significantly better than iterative ones

Lecture 22 Slide 14

Lecture 7 Slide 51

Solver complexity scaling for 3D problems

dim ρ = 1 − O(h2) ρ = 1 − O(h) LU fact. LU solve
3 O(N 5

3) O(N 4
3) O(N2) O(N 4

3)

0 200000 400000 600000 800000 1000000
N

100

102

104

106

108

1010

1012

1014

1016

1018

O
p
e
ra

ti
o
n
s

Complexity scaling for 3D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

10-4 10-3 10-2 10-1 100

h

100

102

104

106

108

1010

1012

1014

1016

1018

1020

1022

1024

O
p
e
ra

ti
o
n
s

Complexity scaling for 3D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

I LU factorization is expensive
I LU solve on par with improved iterative solvers

Lecture 22 Slide 15

Lecture 22 Slide 16

Multigrid: Iterative solver with O(N) complexity

Idea: combine classical preconditioners with coarse grid correction
Assume embedded finite element spaces V0 . . .Vl such tha
V0 ⊂ V1 ⊂ . . .Vl

Vk is produced from Vk−1 by subdividing each triangle into four
Alternative: finite difference refinement by halving x and y intervals
⇒ interpolation operator from embedding of spaces
Ik
k−1 : Vk−1 → Vk

⇒ restriction operator Rk
k−1 = (Ik

k−1)T : Vk → Vk−1

Discretization matrix Ak on each level k = 0 . . . l
“Smoother” (Jacobi, ILU, . . .) Mk on each level k = 1 . . . l
Number of smoothig steps ns

Coarse grid solver
Number of coarse grid correction steps γ

Lecture 22 Slide 17

Multigrid Algorithm
Procedure Multigrid(l , ul , fl)

if l = 0 then
u0 = A−1

0 f0 // coarse grid solution
else

for i = 1, ns do
ul = ul −M−1

l (Alul − fl) // pre-smoothing
end
fl−1 = R l

l−1(Alul − fl) // restriction
ul−1 = 0
for i = 1, γ do

Multigrid(l − 1, ul−1, fl−1) // coarse grid corr.
end
ul = ul − I l

l−1ul−1 // interpolation
for i = 1, ns do

ul = ul −M−1
l (Alul − fl) // post-smoothing

end
end

end

Lecture 22 Slide 18

Multigrid remarks

γ = 1 ⇒ V-Cycle, γ = 2 ⇒ W-Cycle
Use as a preconditioner in CG methods
First development in early 60ies by Bakhvalov, Fedorenko
Works well for hierarchically embedded grid systems and smooth
problem coefficients: O(N) solution complexity
Other variant can use embedding of FEM spaces of growing
polynomial degree
“Algebraic multigrid”: define coarse grid, interpolations in an
algebraic way by choosing coarse grid points and an interpolation
from matrix entries
Hybrid variant: structured grid, matrix dependent transfer operators
for problems with strongly varying coefficients (my PhD. thesis)

Slide 26

Matrix dependent transfer operators

I Finite Difference/finite volume discretizations on tensor product grids give
rise to canonical multigrid hierarchies

I For standard (linear) interpolation/restriction, bad convergence behaviour in
the case of strongly varying coefficients, e.g. for equations of type

−∇ · a(x)∇u = f inΩ ⊂ R1,2,3

where a(x) has jumps ⇒ loss of regularity
I Remedy: multigrid with matrix dependent transfer operators
I Hybrid between algebraic and geometric multigrid

Lecture 22 Slide 19

Slide 27

Matrix dependent transfer operators: the 1D case

I One-dimensional grid: C F C F C A =
(

AFF AFC
ACF ACC

)

I Interpolation from C -points to F -points: I =
(
−A−1

FF AFC
I

)

C F C F C

C C C

I Restriction to C points: R =
(
−ACF A−1

FF I
)

I Coarse grid operator on grid of C -points:
Acoarse = RAI = ACC − ACF A−1

FF AFC ≡ Schur complement
I ≡ Gaussian elemination where F points are eliminated first
I Continue recursively, as Schur complement has linear graph
I Cyclic Reduction – a variant of Gaussian elemination

Lecture 22 Slide 20

Slide 28

Matrix dependent transfer operators: the 2D case

I Two-dimensional case, “5-point star”: F and E points are fine grid points

I A =



(

AFF AFE
AEF AEE

) (
0

AEC

)

(
0 ACE

)
ACC




I I =



(

A−1
FF AFE Ã−1

EE AEN
−Ã−1

EE AEN

)

I


 C C

C C

E

E

E

E

F

I ÃEE = AEE− off diagonal elements AEF added to diagonal
I R = IT , AC = 2(ACC − ACE Ã−1

EE AEC) ≈ RAI

J. Fuhrmann, Ph.D thesis, 1994

Lecture 22 Slide 21

Slide 29

Matrix dependent transfer operators: numerical results

2D test problem, similar structure for 3D:

log a(x) solution u(x)

Grid d=2, ρS d=2, ρCG d=3, ρS d=3, ρCG
16d 0.087 0.040 0.086 0.049
32d 0.086 0.047 0.094 0.046
64d 0.086 0.065 0.114 0.064

J. Fuhrmann, Ph.D thesis, 1994

Lecture 22 Slide 22

Slide 30

Algebraic Multigrid
I Heuristic choice of coarse points by “strong connections” in matrix graph
I Definition of interpolation from algebraic considerations
I Galerkin construction AC = RAI in general leads to unwanted fill-in ⇒ what

can we omit ?
I Agglomeration variant: cluster fine grid nodes together, use piecewise linear

interpolation ⇒ easier to build, but slower convergence
I For a recent comprehensive intro to AMG see Xu&Zikatanov, Acta

Numerica 2017
I Hard to prove anything due to ubiquitous heuristic

Lecture 22 Slide 23

Lecture 22 Slide 24

Smoothed Aggregation Multigrid

Coarsening ≡ aggregation of nodes into clusters
In the finite volume context we can see this as joining control volumes
Piecewise constant interpolation: all fine grid nodes get the same
value from the coarse grid cluster
Adjoint restriction adds up values.

Lecture 22 Slide 25

“Ruge-Stüben” Multigrid

Coarsening: selection of coarse grid points by certain heuristics
Matrix dependent interpolation and restriction operators

Lecture 22 Slide 26

2D Convergence experiments

Lecture 22 Slide 27

Summary of 2D iteration experiments I

Let N be the number of unknowns and space dimension d = 2
In the estimates in lecture 7, based κ(A) = O(h−2) the combination
of CG and Jacobi preconditioner gives an effective iteration rate
estimate of ρ ∼ 1− O(hδ) with δ = 1

⇒ Number of iteration steps kρ = O(N δ
d) = O(N 1

2)
O(N) complexity of each iteration step (sparsity of matrix and
preconditioner) ⇒ overall complexity O(N1+ δ

d) = O(N 3
2)

This is the same complexity estimate as for the direct solver
Confirmed in the experiments:
Jacobi method has this complexity scaling
For ILU it is the same, just different prefactors which become smaller
as we allow for more fill-in
The direct solver performs better here than predicted and is an order
of magnitude faster than most simple iterative schemes

Lecture 22 Slide 28

Summary of 2D iteration experiments II

Multigrid methods:

We observe a scaling of the iteration numbers with O(N 1
4 or better,

ideally we would hope for O(1), currently this is possible only on
highly structured mesh hierarchies

Solution times on par with the direct solver (which is highly optimized)

Conclusion: in 2D, well designed direct solvers are easy to use, and
we can assume that the perform well up to 106 unknowns (. . . which
should be checked for any particular application)
On highly structured grid hierarchies, multigrid might “win”.
How about 3D ? Complexity scaling for PCG and for LU solve is
O(N 4

3), but for LU factorization it is O(N2)

Lecture 22 Slide 29

3D Convergence experiments

Lecture 22 Slide 30

Summary of 3D iteration experiments in Julia

Direct solver is barely usable - it was not possible to run an example
with 106 unknowns on this laptop (as it was in 2D)
Predicted complexity of PCG methods seems to appear
Algebraic multigrid saves iteration numbers, but due to inherent
complexity they perform on par with the simpler preconditioners
Potential for parallelization: simpler with simple preconditioners

Lecture 22 Slide 31

Exam dates

Tentative dates
Feb 18 6 slots, are they needed ?
Feb 19 or Feb 21 2-3 slots if really necessary
March 4
March 5
March 17
March 18
March 19

If these do not suffice, March 3, 16 would be possible in addition.
Inscription starts on Tuesday

