Scientific Computing WS 2019/2020

Lecture $22+23$

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Elements of iterative methods (Saad Ch.4)

Let $V=\mathbb{R}^{n}$ be equipped with the inner product (\cdot, \cdot). Let A be an $n \times n$ nonsingular matrix.

Solve $A u=b$ iteratively. For this purpose, two components are needed:

- Preconditioner: a matrix $M \approx A$ "approximating" the matrix A but with the property that the system $M v=f$ is easy to solve
- Iteration scheme: algorithmic sequence using M and A which updates the solution step by step

Simple iteration with preconditioning

Idea: $A \hat{u}=b \Rightarrow$

$$
\hat{u}=\hat{u}-M^{-1}(A \hat{u}-b)
$$

\Rightarrow iterative scheme

$$
u_{k+1}=u_{k}-M^{-1}\left(A u_{k}-b\right) \quad(k=0,1 \ldots)
$$

1. Choose initial value u_{0}, tolerance ε, set $k=0$
2. Calculate residuum $r_{k}=A u_{k}-b$
3. Test convergence: if $\left\|r_{k}\right\|<\varepsilon$ set $u=u_{k}$, finish
4. Calculate update: solve $M v_{k}=r_{k}$
5. Update solution: $u_{k+1}=u_{k}-v_{k}$, set $k=k+1$, repeat with step 2 .

- Let $A=D-E-F$, where D : main diagonal, E : negative lower triangular part F : negative upper triangular part
- Preconditioner: $M=D$, where D is the main diagonal of $A \Rightarrow$

$$
u_{k+1, i}=u_{k, i}-\frac{1}{a_{i i}}\left(\sum_{i=1 \ldots n} a_{i j} u_{k, j}-b_{i}\right) \quad(i=1 \ldots n)
$$

- Equivalent to the succesive (row by row) solution of

$$
a_{i i} u_{k+1, i}+\sum_{j=1 \ldots n, j \neq i} a_{i j} u_{k, j}=b_{i} \quad(i=1 \ldots n)
$$

- Already calculated results not taken into account
- Alternative formulation with $A=M-N$:

$$
\begin{aligned}
u_{k+1} & =D^{-1}(E+F) u_{k}+D^{-1} b \\
& =M^{-1} N u_{k}+M^{-1} b
\end{aligned}
$$

- Variable ordering does not matter
- Solve for main diagonal element row by row
- Take already calculated results into account

$$
\begin{aligned}
a_{i i} u_{k+1, i}+\sum_{j<i} a_{i j} u_{k+1, j}+\sum_{j>i} a_{i j} u_{k, j}=b_{i} \quad(i=1 \ldots n) \\
(D-E) u_{k+1}-F u_{k}=b
\end{aligned}
$$

- May be it is faster
- Variable order probably matters
- Preconditioners: forward $M=D-E$, backward: $M=D-F$
- Splitting formulation: $A=M-N$ forward: $N=F$, backward: $M=E$
- Forward case:

$$
\begin{aligned}
u_{k+1} & =(D-E)^{-1} F u_{k}+(D-E)^{-1} b \\
& =M^{-1} N u_{k}+M^{-1} b
\end{aligned}
$$

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

- fix a predefined zero pattern
- apply the standard LU factorization method, but calculate only those elements, which do not correspond to the given zero pattern
- Result: incomplete LU factors L, U, remainder R :

$$
A=L U-R
$$

- Problem: with complete LU factorization procedure, for any nonsingular matrix, the method is stable, i.e. zero pivots never occur. Is this true for the incomplete LU Factorization as well ?

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute the incomplete LU factorization with a given nonzero pattern

$$
A=L U-R
$$

is stable. Moreover, $A=L U-R$ is a regular splitting.

ILU(0)

- Special case of ILU: ignore any fill-in.
- Representation:

$$
M=(\tilde{D}-E) \tilde{D}^{-1}(\tilde{D}-F)
$$

- \tilde{D} is a diagonal matrix (wich can be stored in one vector) which is calculated by the incomplete factorization algorithm.
- Setup:

```
for i=1:n
    d[i]=a[i,i]
end
for i=1:n
    d[i]=1.0/d[i]
    for j=i+1:n
        d[j]=d[j]-a[i,j]*d[i]*a[j,i]
    end
end
```

- Generally better convergence properties than Jacobi, Gauss-Seidel
- One can develop block variants
- Alternatives:
- ILUM: ("modified"): add ignored off-diagonal entries to \tilde{D}
- ILUT: zero pattern calculated dynamically based on drop tolerance
- Dependence on ordering
- Can be parallelized using graph coloring
- Not much theory: experiment for particular systems
- I recommend it as the default initial guess for a sensible preconditioner
- Incomplete Cholesky: symmetric variant of ILU

Preconditioned CG II

Assume $\tilde{r}_{i}=E^{-1} r_{i}, \tilde{d}_{i}=E^{T} d_{i}$, we get the equivalent algorithm

$$
\begin{aligned}
r_{0} & =b-A u_{0} \\
d_{0} & =M^{-1} r_{0} \\
\alpha_{i} & =\frac{\left(M^{-1} r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(M^{-1} r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =M^{-1} r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

The convergence rate of the method is

$$
\left\|e_{i}\right\|_{E^{-1} A E^{-T}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{E^{-1} A E^{-T}}
$$

where $\kappa=\frac{\gamma_{\text {max }}}{\gamma_{\text {min }}}$ comes from $\gamma_{\text {min }}(M u, u) \leq(A u, u) \leq \gamma_{\max }(M u, u)$.

Issues and consequences

- Usually we stop the iteration when the residual r becomes small. However during the iteration, floating point errors occur which distort the calculations and lead to the fact that the accumulated residuals

$$
r_{i+1}=r_{i}-\alpha_{i} A d_{i}
$$

give a much more optimistic picture on the state of the iteration than the real residual

$$
r_{i+1}=b-A u_{i+1}
$$

- The convergence rate estimate in terms of $\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$ indeed provides a qualitatively better complexity estimate for the solution algorithm
- Always consider CG when solving symmetric positive definite linear systems iteratively

Iterative solver complexity I

- Solve linear system iteratively until $\left\|e_{k}\right\|=\left\|\left(I-M^{-1} A\right)^{k} e_{0}\right\| \leq \epsilon$

$$
\begin{aligned}
\rho^{k} e_{0} & \leq \epsilon \\
k \ln \rho & <\ln \epsilon-\ln e_{0} \\
k \geq k_{\rho} & =\left\lceil\frac{\ln e_{0}-\ln \epsilon}{\ln \rho}\right\rceil
\end{aligned}
$$

- \Rightarrow we need at least k_{ρ} iteration steps to reach accuracy ϵ
- Optimal iterative solver complexity - assume:
- $\rho<\rho_{0}<1$ independent of h resp. N
- A sparse ($A \cdot u$ has complexity $O(N)$)
- Solution of $M v=r$ has complexity $O(N)$.
\Rightarrow Number of iteration steps k_{ρ} independent of N
\Rightarrow Overall complexity $O(N)$

Iterative solver complexity II

- Assume
- $\rho=1-h^{\delta} \Rightarrow \ln \rho \approx-h^{\delta} \rightarrow k_{\rho}=O\left(h^{-\delta}\right)$
- d: space dimension $\Rightarrow h \approx N^{-\frac{1}{d}} \Rightarrow k_{\rho}=O\left(N^{\frac{\delta}{d}}\right)$
- $O(N)$ complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)
\Rightarrow Overall complexity $O\left(N^{1+\frac{\delta}{d}}\right)=O\left(N^{\frac{d+\delta}{d}}\right)$
- Jacobi: $\delta=2$
- Hypothetical "Improved iterative solver" with $\delta=1$?
- Overview on complexity estimates

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 1 & O\left(N^{3}\right) & O\left(N^{2}\right) & O(N) & O(N) \\
2 & O\left(N^{2}\right) & O\left(N^{\frac{3}{2}}\right) & O\left(N^{\frac{3}{2}}\right) & O(N \log N) \\
3 & O\left(N^{\frac{5}{3}}\right) & O\left(N^{\frac{4}{3}}\right) & O\left(N^{2}\right) & O\left(N^{\frac{4}{3}}\right)
\end{array}
$$

Solver complexity scaling for 1D problems

- Direct solvers significantly better than iterative ones

Solver complexity scaling for 3D problems

- LU factorization is expensive
- LU solve on par with improved iterative solvers

Multigrid: Iterative solver with $\mathrm{O}(\mathrm{N})$ complexity

Idea: combine classical preconditioners with coarse grid correction

- Assume embedded finite element spaces $V_{0} \ldots V_{l}$ such tha $V_{0} \subset V_{1} \subset \ldots V_{1}$
- V_{k} is produced from V_{k-1} by subdividing each triangle into four Alternative: finite difference refinement by halving x and y intervals
- \Rightarrow interpolation operator from embedding of spaces
$I_{k-1}^{k}: V_{k-1} \rightarrow V_{k}$
- \Rightarrow restriction operator $R_{k-1}^{k}=\left(l_{k-1}^{k}\right)^{T}: V_{k} \rightarrow V_{k-1}$
- Discretization matrix A_{k} on each level $k=0 \ldots$ I
- "Smoother" (Jacobi, ILU, ...) M_{k} on each level $k=1 \ldots$.
- Number of smoothig steps n_{s}
- Coarse grid solver
- Number of coarse grid correction steps γ

Multigrid Algorithm

Procedure Multigrid($/, u_{l}, f_{l}$)

if $I=0$ then

$$
u_{0}=A_{0}^{-1} f_{0}
$$

else

$$
\text { for } i=1, n_{s} \text { do }
$$

$$
u_{l}=u_{l}-M_{l}^{-1}\left(A_{l} u_{l}-f_{l}\right)
$$

end

$$
f_{l-1}=R_{l-1}^{\prime}\left(A_{l} u_{l}-f_{l}\right)
$$

$$
u_{I-1}=0
$$

$$
\text { for } i=1, \gamma \text { do }
$$

$$
\text { | Multigrid(} \left./-1, u_{l-1}, f_{l-1}\right) \quad / / \text { coarse grid corr. }
$$

end

$$
u_{l}=u_{l}-l_{l-1}^{l} u_{l-1} \quad \text { // interpolation }
$$

$$
\text { for } i=1, n_{s} \text { do }
$$

$$
\mid u_{l}=u_{l}-M_{l}^{-1}\left(A_{l} u_{l}-f_{l}\right) \quad / / \text { post-smoothing }
$$

Multigrid remarks

- $\gamma=1 \Rightarrow$ V-Cycle, $\gamma=2 \Rightarrow$ W-Cycle
- Use as a preconditioner in CG methods
- First development in early 60 ies by Bakhvalov, Fedorenko
- Works well for hierarchically embedded grid systems and smooth problem coefficients: $O(N)$ solution complexity
- Other variant can use embedding of FEM spaces of growing polynomial degree
- "Algebraic multigrid": define coarse grid, interpolations in an algebraic way by choosing coarse grid points and an interpolation from matrix entries
- Hybrid variant: structured grid, matrix dependent transfer operators for problems with strongly varying coefficients (my PhD. thesis)

Matrix dependent transfer operators

- Finite Difference/finite volume discretizations on tensor product grids give rise to canonical multigrid hierarchies
- For standard (linear) interpolation/restriction, bad convergence behaviour in the case of strongly varying coefficients, e.g. for equations of type

$$
-\nabla \cdot a(\mathbf{x}) \nabla u=f \quad \text { in } \Omega \subset \mathbb{R}^{1,2,3}
$$

where $a(\mathbf{x})$ has jumps \Rightarrow loss of regularity

- Remedy: multigrid with matrix dependent transfer operators
- Hybrid between algebraic and geometric multigrid

Matrix dependent transfer operators: the 1D case

- One-dimensional grid: (c-(F-C-C-(c) $A=\left(\begin{array}{ll}A_{F F} & A_{F C} \\ A_{C F} & A_{C C}\end{array}\right)$
- Interpolation from C-points to F-points: $I=\binom{-A_{F F}^{-1} A_{F C}}{I}$

- Restriction to C points: $R=\left(-A_{C F} A_{F F}^{-1} \quad I\right)$
- Coarse grid operator on grid of C-points:
$A_{\text {coarse }}=R A I=A_{C C}-A_{C F} A_{F F}^{-1} A_{F C} \equiv$ Schur complement
- \equiv Gaussian elemination where F points are eliminated first
- Continue recursively, as Schur complement has linear graph
- Cyclic Reduction - a variant of Gaussian elemination

Matrix dependent transfer operators: the 2D case

- Two-dimensional case, " 5 -point star": F and E points are fine grid points
- $A=\left(\begin{array}{cc}\left(\begin{array}{cc}A_{F F} & A_{F E} \\ A_{E F} & A_{E E}\end{array}\right) & \binom{0}{A_{E C}} \\ \left(\begin{array}{cc}0 & A_{C E}\end{array}\right) & A_{C C}\end{array}\right)$
$-I=\left(\left(\begin{array}{c}A_{F F}^{-1} A_{F E} \tilde{A}_{E E}^{-1} A_{E N} \\ -\tilde{A}_{E E}^{-1} A_{E N} \\ I\end{array}\right)\right)$

- $\tilde{A}_{E E}=A_{E E}-$ off diagonal elements $A_{E F}$ added to diagonal
- $R=I^{T}, A_{C}=2\left(A_{C C}-A_{C E} \tilde{A}_{E E}^{-1} A_{E C}\right) \approx R A I$

Matrix dependent transfer operators: numerical results

2D test problem, similar structure for 3D:

Grid	$\mathrm{d}=2, \rho_{S}$	$\mathrm{~d}=2, \rho_{\text {CG }}$	$\mathrm{d}=3, \rho_{S}$	$\mathrm{~d}=3, \rho_{\text {CG }}$
16^{d}	0.087	0.040	0.086	0.049
32^{d}	0.086	0.047	0.094	0.046
64^{d}	0.086	0.065	0.114	0.064

Algebraic Multigrid

- Heuristic choice of coarse points by "strong connections" in matrix graph
- Definition of interpolation from algebraic considerations
- Galerkin construction $A_{C}=R A I$ in general leads to unwanted fill-in \Rightarrow what can we omit?
- Agglomeration variant: cluster fine grid nodes together, use piecewise linear interpolation \Rightarrow easier to build, but slower convergence
- For a recent comprehensive intro to AMG see Xu\&Zikatanov, Acta Numerica 2017
- Hard to prove anything due to ubiquitous heuristic

Smoothed Aggregation Multigrid

- Coarsening \equiv aggregation of nodes into clusters
- In the finite volume context we can see this as joining control volumes
- Piecewise constant interpolation: all fine grid nodes get the same value from the coarse grid cluster
- Adjoint restriction adds up values.

"Ruge-Stüben" Multigrid

- Coarsening: selection of coarse grid points by certain heuristics
- Matrix dependent interpolation and restriction operators

2D Convergence experiments

Summary of 2D iteration experiments I

Let N be the number of unknowns and space dimension $d=2$

- In the estimates in lecture 7, based $\kappa(A)=O\left(h^{-2}\right)$ the combination of CG and Jacobi preconditioner gives an effective iteration rate estimate of $\rho \sim 1-O\left(h^{\delta}\right)$ with $\delta=1$
- \Rightarrow Number of iteration steps $k_{\rho}=O\left(N^{\frac{\delta}{d}}\right)=O\left(N^{\frac{1}{2}}\right)$
- $O(N)$ complexity of each iteration step (sparsity of matrix and preconditioner) \Rightarrow overall complexity $O\left(N^{1+\frac{\delta}{d}}\right)=O\left(N^{\frac{3}{2}}\right)$
- This is the same complexity estimate as for the direct solver
- Confirmed in the experiments: Jacobi method has this complexity scaling
- For ILU it is the same, just different prefactors which become smaller as we allow for more fill-in
- The direct solver performs better here than predicted and is an order of magnitude faster than most simple iterative schemes

Summary of 2D iteration experiments II

- Multigrid methods:
- We observe a scaling of the iteration numbers with $O\left(N^{\frac{1}{4}}\right.$ or better, ideally we would hope for $O(1)$, currently this is possible only on highly structured mesh hierarchies
- Solution times on par with the direct solver (which is highly optimized)
- Conclusion: in 2D, well designed direct solvers are easy to use, and we can assume that the perform well up to 10^{6} unknowns (... which should be checked for any particular application)
- On highly structured grid hierarchies, multigrid might "win".
- How about 3D ? Complexity scaling for PCG and for LU solve is $O\left(N^{\frac{4}{3}}\right)$, but for LU factorization it is $O\left(N^{2}\right)$

3D Convergence experiments

Summary of 3D iteration experiments in Julia

- Direct solver is barely usable - it was not possible to run an example with 10^{6} unknowns on this laptop (as it was in 2D)
- Predicted complexity of PCG methods seems to appear
- Algebraic multigrid saves iteration numbers, but due to inherent complexity they perform on par with the simpler preconditioners
- Potential for parallelization: simpler with simple preconditioners

Exam dates

Tentative dates
Feb $18 \quad 6$ slots, are they needed ?
Feb 19 or Feb 21 2-3 slots if really necessary
March 4
March 5
March 17
March 18
March 19
If these do not suffice, March 3,16 would be possible in addition.
Inscription starts on Tuesday

