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Convection-Diffusion problems




The convection - diffusion equation

Search function v : Q — R such that

—V - (DVu—u?)=Ff inQ
u=g onl

@ u(x): species concentration, temperature
°0j= DVu — uv: species flux
o D: diffusion coefficient
@ V(x): velocity of medium (e.g. fluid)
o Given analytically
e Solution of free flow problem (Navier-Stokes equation)
o Flow in porous medium (Darcy equation): vV = —riﬁp where

-V - (kVp) =0

o For constant density, the divergence conditon V - vV = 0 holds.




Weak formulation

o Let u, € HY(Q) a lifting of g. Find u € H'(R) such that
u=ug+¢

/(Dﬁ(ﬁf(b\?)-ﬁwd)?:/ fwdﬂ/(oﬁuf ug¥) - Tw Vw € HL(Q
Q Q Q

Is this bilinear form coercive 7 - Use Lax-Milgram, for it being true, is
not necessary that the bilinear form is self-adjoint.

o It follows, that

/(Dﬁu—umﬁwdz:/ fwds Vw e H(Q)
Q Q

@ Green's theorem: If w = 0 on 9Q:

/vvwdz:—/wv‘m
Q Q




Coercivity of bilinear form

Regard the convection contribution to the coercivity estimate:
- /Q uv-Vuds = /uﬁ -(uv)dxX Green's theorem
/Quzﬁ -VdX + /Q uv-Vuds = /uﬁ -(uv)dxX Product rule
0 Equation difference
/ uv-Vudx =0 Divergence conditionV - ¥ = 0
Then
/Q(Dﬁu —uV)-Vudx = /Q DVu-Vudg> Cllull e

One could allow for fixed sign of V - V.




The Lax-Milgram lemma

Theorem: Let V be a Hilbert space. Let a: V x V — R be a self-adjoint
bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

Ja>0:Vu e V,a(u,u) > allull}.
Then the problem: find u € V such that
a(u,v)=f(v)VveV

admits one and only one solution with an a priori estimate

1
< —||f]||y-
lJullv < ozH Ilv




Convection diffusion problem: maximum principle

Let f <0, V-v=0

Let g = supyq &
Let w = (u— g?)* = max{u— g*,0} € H}(Q)
Consequently, w > 0

OZ/fwd?:/D(ﬁuqu)ﬁwdf(
Q Q

:/D(ﬁwaV)ﬁwdingu/V-?Wd)?

Q Q

:/D(ﬁw—wf/’)ﬁwd?—&— Dgu/wﬁ-\_/d)?
Q Q

> ClIwlmy e

@ Therefore: w = (u—g*)~ =0and u < g*
@ Similar for minimum part

As Vu=V(u—g') and Vw = 0 where w # u — g%, one has

Variational identity
Replace v by w

Green

Coercivity, V- v =0




Mimimax for convection-diffusion

Theorem: If V-V =0, the weak solution of the inhomogeneous Dirichlet
problem
—V - (DVu—u?)=f inQ
u=g onodf
fulfills the global minimax principle: it attains its maximum at the
boundary if f < 0 and attains its minimum at the boundary if f > 0.

Corollary: If f =0 then u attains both its minimum and its maximum at
the boundary.

Corolloary: Local minimax principle: This is true of any subdomain
w C Q.




Finite volumes for convection diffusion

-V-j=0 inQ
J-A+au=g onl =080

@ Integrate time discrete equation over control volume

0:—/V-fdw:—/f-ﬁkdfy
Wk

Owyi

== % [7-tucr ~ [y

1€Nkgy, Yk

ag
~ Y lhikllgk/(uk,ul)+|7k|auk—|w|gk
IEN il y
k

—Ar
—>Ag

o A=Aqg+Ar




Central Difference Flux Approximation

@ gy approximates normal convective-diffusive flux between control
volumes wy, wy: gu(ux — u)) = —(DVu — uv) - ny

o Let oy = wr Nwy
Let vy = ‘U%/‘ fok, V - figd~y approximate the normal velocity V - iy

@ Central difference flux:
1
gri(u, u) = D(ue — up) + hklE(Uk + up)vi

1 1
=(D+ ihk,vk,)uk —(D- EthVkI)UI

@ if vy is large compared to hy, the corresponding matrix (off-diagonal)
entry may become positive

@ Non-positive off-diagonal entries only guaranteed for h — 0 !

o If all off-diagonal entries are non-positive, we can prove the discrete
maximum principle




Simple upwind flux discretization

@ Force correct sign of convective flux approximation by replacing
central difference flux approximation hk,%(uk + uy)vi by

hiugvig, vig <0 1
<{ KT > = hui(u+u)vie+  Shalva|l  (u—uw)

huvia,  vie >0 2 ,

Artificial Diffusion D
o Upwind flux:
hukvig,  vig >0

gri(u, ur) = D(ue — up) +
hauvig,  vie <0

. 1
=(D+D)(ux — uy) + hkli(uk + up)vi
o M-Property guaranteed unconditonally !

o Artificial diffusion introduces error: second order approximation
replaced by first order approximation




Exponential fitting flux |

@ Project equation onto edge xxx; of length h = hyy, let v = —vyy,
integrate once

u—uv=j
ulo = uk
u|h:u/

@ Linear ODE

@ Solution of the homogeneus problem:

v —uv=0
u/ju=v
Inu= ug+ vx

u = Kexp(vx)




Exponential fitting Il

@ Solution of the inhomogeneous problem: set K = K(x):

K’ exp(vx) + vK exp(vx) — vK exp(vx) = —j
K' = —jexp(—wx)

1
K= Ko+ ;jexp(fvx)
@ Therefore,
1,
u= Koexp(vx)+ —j
v
1
ue =Ko+ —Jj
v

1
uy = Ko exp(vh) + ;j




Exponential fitting Il

@ Use boundary conditions

Uk — Uy
Ko= 77—
0 1 — exp(vh)
Uy 1.
uk_lfexp(vh)+vj
= oot )+
=————(u —u) + vy
J exp(vh) —1 koA ,

1 v
VY (S DY —
Y <exp(vh) -1 + ) Hk exp(vh) — 1 u/

exp(vh) v
- <exp(vh) - 1> e exp(vh) — 1
—v v
:exp(fvh) —1tT exp(vh) — 1 u/
_ B(—vh)u, — B(vh)u
h

where B(§) = exp(gm: Bernoulli function




Exponential fitting IV

o General case: Du' — uv = D(u' — uf)

@ Upwind flux:

gui(ui, u) = D(B(—~—

Vit hi

Allen+Southwell 1955
Scharfetter+Gummel 1969

Chang+Cooper 1970
Guaranteed sign pattern, M




Exponential fitting: Artificial diffusion

o Difference of exponential fitting scheme and central scheme

e Use: B(—x) = B(x)+x =

B(x) + 3x = B(—x) — 5x = B(lx|) + 4 x

Dae (1 — u) :D(B(ih)uk - B(V—h)u,) ~ D(ue— w)+ h%(uk + )y

—D<Qg’7 B2 )k — D5+ B o) — Dl — )

—o(3151+ B(H) 1) — )

@ Further, for x > 0:

1 1
§X>§X+B(X)—120

@ Therefore




Exponential fitting: Artificial diffusion Il

1.0 T T T
— upwind
— exp. fitting
0.5
0.0+
-0.51
-1.0,

-2.0 =15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Comparison of artificial diffusion functions |x| (upwind)
and 3[x| + B(|x|) — 1 (exp. fitting)




Convection-Diffusion test problem, N=20

— expfit
0.8l{ — central
— upwind

<<i§i§

0.0 0.2 0.4 0.6 0.8 1.0

@ Exponential fitting: sharp boundary layer, for this problem it is exact
@ Central differences: unphysical
o Upwind: larger boundary layer




Convection-Diffusion test problem, N=40

— expfit
0.8l{ — central
— upwind

0.0 0.2 0.4 0.6 0.8 1.0

@ Exponential fitting: sharp boundary layer, for this problem it is exact
o Central differences: unphysical, but less “"wiggles”
o Upwind: larger boundary layer




Convection-Diffusion test problem, N=80

e Q=(0,1), =V - (DVu+ uw) =0, u(0) =0, u(1) =1
o V=1 D=0.01

—  expfit
0.8L| — central
— upwind

oo
g 2
N

0.0 0.2 0.4 0.6 0.8 1.0

@ Exponential fitting: sharp boundary layer, for this problem it is exact
o Central differences: grid is fine enough to yield M-Matrix property,

good approximation of boundary layer due to higher convergence order
o Upwind: “smearing” of boundary layer




1D convection diffusion summary

o Upwinding and exponential fitting unconditionally yield the
M-property of the discretization matrix

@ Exponential fitting for this case (zero right hand side, 1D) yields exact
solution. It is anyway “less diffusive” as artificial diffusion is optimized

o Central scheme has higher convergence order than upwind (and
exponential fitting) but on coarse grid it may lead to unphysical
oscillations

@ For 2/3D problems, sufficiently fine grids to stabilize central scheme
may be prohibitively expensive

@ Local grid refinement may help to offset artificial diffusion




Discrete minimax principle

e Au=f
@ A: matrix from diffusion or convection- diffusion

@ A irreducibly diagonally dominant, positive main diagonal entries,

negative off diagonal entries

ajil; = E —ajju; + f;

J#i
ajj
up = E **JUJ' + f;
3
a0 "
e For interior points,, a;j = — Z#i ajj
@ Assume i is interior point. Assume f; > 0 =
. ajj .
uip Z  min u; E —— = min u;
j#i,2;70 ajj  j#i,a;#0
J#i,a# #2570 ii J#iay#
@ Assume i is interior point. Assume f; <0 =
aij
up < max uj E —— = max u;
Jj#i,a;j7#0 dji Jj#i,aij7#0

#1370




Discussion of discrete minimax principle |

@ P1 finite elements, Voronoi finite volumes: matrix graph =
triangulation of domain

o The set {j # i, a; # 0} is exactly the set of neigbor nodes
@ Solution in point x; estimated by solution in neigborhood

@ The estimate can be propagated to the boundary of the domain




Discussion of discrete minimax principle Il

@ Minimax principle + positivity/nonnegativity of solutions can be seen
as an important qualitative property of the physical process

@ Along with good approximation quality, its preservation in the
discretization process may be necessary

o Guaranteed for irreducibly diagonally dominant matrices

@ Nonnegativity for nonnegative right hand sides guaranteed by
M-Property

@ Finite volume method may be preferred as it can guarantee these
properties for boundary conforming Delaunay grids.




Convection-diffusion and finite elements

Search function u : Q — R such that
—V(-DVu—u?)=f inQ
u=g ondQ
@ Assume v is divergence-free, i.e. V-v =0.
@ Then the main part of the equation can be reformulated as
—V(-DVu)+7V-Vu=0 inQ

yielding a weak formulation: find u € H*(£) such that
u—g € H} Q) and Vw € H}(Q),

/Dﬁwﬁwdx—l—/?-ﬁuwdx:/fwdx
Q Q Q

o Galerkin formulation: find up, € V}, with bc. such that Yw, € V,,

/Dﬁuhﬁw,, dx+/\7-€uh w, dx:/fw,, dx
JQ JQ JQ




Convection-diffusion and finite elements Il

@ Galerkin ansatz has similar problems as central difference ansatz in
the finite volume/finite difference case = stabilization ?

@ Most popular: streamline upwind Petrov-Galerkin (SUPG)
/ DV uy - Vwy dx+/ V-V wy dx + S(up, wp) = / fwy, dx
Q Q Q
with

S(up, wp) = Z/(—%(Dﬁuh — upV) — F)okv - wy dx
< JK

where 6 = h—’vif Vlhic Y with £(a) = coth(a) — £ and hY, is the size of
2|V| D K

«
element K in the direction of V.




Convection-diffusion and finite elements Il

@ Many methods to stabilize, none guarantees M-Property even on
weakly acute meshes ! (V. John, P. Knobloch, Computer Methods in
Applied Mechanics and Engineering, 2007)

o Comparison paper:

M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke, and
R. Umla, “An assessment of discretizations for convection-dominated
convection-diffusion equations,” Comp. Meth. Appl. Mech. Engrg., vol.
200, pp. 3395-3409, 2011:

o if it is necessary to compute solutions without spurious oscilla-
tions: use FVM, taking care on the construction of an appropri-
ate grid might be essential for reducing the smearing of the
layers,

o if sharpness and position of layers are important and spurious
oscillations can be tolerated: often the SUPG method is a good
choice.

@ Topic of ongoing research




Transient problems




Time dependent Robin boundary value problem

@ Choose final time T > 0. Regard functions (x, t) — R.

Ou—V-DVu=Ff inQx][0,T]
DVu-fi+au=g ondQx][0,T]
u(x,0) = up(x) inQ

@ This is an initial boundary value problem

@ This problem has a weak formulation in the Sobolev space
L2 ([0, T], H*(R2)), which then allows for a Galerkin approximation in
a corresponding subspace

@ We will proceed in a simpler manner: first, perform a finite difference
discretization in time, then perform a finite element (finite volume)
discretization in space.

o Rothe method: first discretize in time, then in space

o Method of lines: first discretize in space, get a huge ODE system,
then apply perfom discretization




Time discretization

o Choose time discretization points 0 =t < t1... < tN =T

o let 7" =1t"— "1
Fori=1...N, solve

n__ ,n—1 .
=8 9DV =f inQx|0,T]

Tﬂ

DVug-i+au’ =g ondQx[0,T]

where u® = 0u" + (1 — )u"!

@ ¢ = 1: backward (implicit) Euler method
Solve PDE problem in each timestep. First order accuracy in time.

e 0 =1: Crank-Nicolson scheme
Solve PDE problem in each timestep. Second order accuracy in time.

e 0 =0: forward (explicit) Euler method
First order accurate in time. This does not involve the solution of a
PDE problem = Cheap? What do we have to pay for this ?




Finite volumes for time dependent hom. Neumann problem

Search function v : Q x [0, T] — R such that u(x,0) = ug(x) and
du—V-DVu=0 inQx0,T]
DVu-fi=0 onl x[0,T]

@ Given control volume wy, integrate equation over space-time control
volume wy x (t"~1,t"), divide by 7

0= / <in(u” —u"hH V. D§u9> dw
T

Wk

1" -
- /(U —u” )dw - / DV - firdy

-

Owy
- 1”
=" Z /DVU figdy — /DVU9 CAdy — = /(u” — " Ndw
/GN;(O.H T 2

|wi| |Ukl| y
~ o > ")

T leNk k’

—A




Matrix equation

@ Resulting matrix equation:
1

n

(Mu™ — Mu"1) + Ad® =0
1 n n 1 n—1 n—1
—Mu" + AL = —Mu""" + (6 — 1)Au
Tn "
u" T "MTHAL = "+ MO — 1)Au"
o M= (mk,), A= (ak/) with

lowr _
2ren, DR 1=k
a = —D3e, I € Ny
0, else

P \wk\ /I k
= 0, else

o = A+ M is strictly diagonally dominant!




A matrix norm estimate

Lemma: Assume A has positive main diagonal entries, nonpositive
off-diagonal entries and row sum zero. Then, ||(/ + A)7!||o <1

Proof: Assume that ||(/ + A)7Y||oc > 1. [+ Ais a irreducible M-matrix,
thus (/ + A)~! has positive entries. Then for «;; being the entries of

(I+A)1,

n
rpgalx aj > 1.
j=1
Let k be a row where the maximum is reached. Let e = (1...1)7. Then
for v = (I + A)~le we have that v > 0, vx > 1 and v, > v; for all j # k.
The kth equation of e = (/ + A)v then looks like

L=vi+ vy lagl =D lagly

J#k i#k

> v+ vy lal = Y laiglvi
J#k J#k

= Vk

>1




Stability estimate

o Matrix equation again:
"+ T"MTHAL" = v+ "M (0 — 1)Au" = BTy !
u" = (I +7"M710A) B "t

From the lemma we have ||(/ + 7"M~10A)"||.c < 1
= [[u"se < 1B"u" Moo

o For the entries b}, of B", we have

by 1+—k(071)akk, k=1
W= (0 — 1)aw, else

mkk

@ In any case, by >0 for k # /.
If brk > 0, one estimates ||B||oc = max}_, Z;V:l by

° But

Zbk171+(971)f (akk+ Zak/) =1 =Bl =1

I=1 1ENK




Stability conditions

@ For a shape regular triangulation in R, we can assume that

_ d _ owul Tt o d—2 £
Mk = |wik| ~ h?, and ay = Tt~ e = h?=2, thus e <

@ by, > 0 gives

Tn

(1—9) akkgl

Mk
o A sufficient condition is that for some C > 0,

7_I']
)= <
(1-0)g5 <1

(1—0)r" < Ch?

o Method stability:
o Implicit Euler: # = 1 = unconditional stability !
o Explicit Euler: §# = 0 = CFL condition 7 < Ch?

o Crank-Nicolson: § = 2 = CFL condition T < 2Ch*
Tradeoff stability vs. accuracy.

1

Ch?




Stability discussion

e 7 < Ch? CFL == "Courant-Friedrichs-Levy"

o Explicit (forward) Euler method can be applied on very fast systems
(GPU), with small time step comes a high accuracy in time.

@ Implicit Euler: unconditional stability — helpful when stability is of
utmost importance, and accuracy in time is less important

@ For hyperbolic systems (pure convection without diffusion), the CFL
conditions is 7 < Ch, thus in this case explicit computations are
ubiquitous

@ Comparison for a fixed size of the time interval. Assume for implicit
Euler, time accuracy is less important, and the number of time steps
is independent of the size of the space discretization.

1D 2D 3D
# unknowns N =0(h"1) N=0O(h"2) N=0O(h3
#steps M=O(N?>) M=O(N) M= O(N*3)
complexity M = O(N3) M= 0O(N?) M = O(N°/3)




Backward Euler: discrete maximum principle

1 1
—Mu" + Au" = ZMu"1
Tn T
1 1 -1
;mk,{u[(’ + akkuyp = ﬁmkkuz + ;(—ak/)u,"
= e (e ()
= My + Zl;ék(_akl) T I#k

= Mg + > izk(—an)
= Mg + > izk(—an)
< max({uf" YU {u]}iens)

<

max({u] "YU {u]}ien,)

@ Provided, the right hand side is zero, the solution in a given node is
bounded by the value from the old timestep, and by the solution in
the neigboring points.

@ No new local maxima can appear during time evolution

@ There is a continuous counterpart which can be derived from weak
solution

@ Sign pattern is crucial for the proof.



Backward Euler: Nonnegativity

U+ "M AL = "t

Ut = (/ + TanlA)flunfl

o (I +7"M~1A) is an M-Matrix

o If upg >0, thenu”" >0Vn>0



Mass conservation

e Equivalent of [,V - DV udx = Joa DVu - fidy = 0:

N N N
Z <3kkUk + Z akIUl> = Z Z awi(ur — uk)

k=1 IEN k=1 I=1,I#k
N N
= Z Z awi(u — uk) + aw(uk — up))
11=1,I<k

e = Equivalent of [, u"dX = [, u" 'dX:

° ZI,:I:I My = Zk | Mty



Weak formulation of time step problem

e Weak formulation: search u € H(Q) such that Vv € H}(Q)

—/u vdx—l—@/DVu”Vvdx-

—/ “tvdx + ( 1—0)/ DV u" Vv dx
Q

@ Matrix formulation
1 n n 1 n—1 n—1
—Mu" + 0Au" = —Mu""" + (1 - 0)Au
T T

@ M: mass matrix, A: stiffness matrix.

o With FEM, Mass matrix lumping important for getting the previous
estimates



