Scientific Computing WS 2019/2020

Lecture 21

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Convection-Diffusion problems

The convection - diffusion equation

Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\nabla \cdot(D \vec{\nabla} u-u \vec{v}) & =f & & \text { in } \Omega \\
u & =g & & \text { on } \Gamma
\end{aligned}
$$

- $u(x)$: species concentration, temperature
- $\vec{j}=D \vec{\nabla} u-u \vec{v}$: species flux
- D : diffusion coefficient
- $\vec{v}(x)$: velocity of medium (e.g. fluid)
- Given analytically
- Solution of free flow problem (Navier-Stokes equation)
- Flow in porous medium (Darcy equation): $\vec{v}=-\kappa \vec{\nabla} p$ where

$$
-\nabla \cdot(\kappa \vec{\nabla} p)=0
$$

- For constant density, the divergence conditon $\nabla \cdot \vec{v}=0$ holds.

Weak formulation

- Let $u_{g} \in H^{1}(\Omega)$ a lifting of g. Find $u \in H^{1}(\Omega)$ such that

$$
\begin{aligned}
u & =u_{g}+\phi \\
\int_{\Omega}(D \vec{\nabla} \phi-\phi \vec{v}) \cdot \vec{\nabla} w d \vec{x} & =\int_{\Omega} f w d \vec{x}+\int_{\Omega}\left(D \vec{\nabla} u_{g}-u_{g} \vec{v}\right) \cdot \vec{\nabla} w \quad \forall w \in H_{0}^{1}(\Omega
\end{aligned}
$$

Is this bilinear form coercive ? - Use Lax-Milgram, for it being true, is not necessary that the bilinear form is self-adjoint.

- It follows, that

$$
\int_{\Omega}(D \vec{\nabla} u-u \vec{v}) \cdot \vec{\nabla} w d \vec{x}=\int_{\Omega} f w d \vec{x} \quad \forall w \in H_{0}^{1}(\Omega)
$$

- Green's theorem: If $w=0$ on $\partial \Omega$:

$$
\int_{\Omega} \vec{v} \cdot \vec{\nabla} w d \vec{x}=-\int_{\Omega} w \nabla \cdot \vec{v} d \vec{x}
$$

Coercivity of bilinear form

Regard the convection contribution to the coercivity estimate:

$$
\begin{aligned}
&-\int_{\Omega} u \vec{v} \cdot \vec{\nabla} u d \vec{x}=\int u \vec{\nabla} \cdot(u \vec{v}) d \vec{x} \\
& \int_{\Omega} u^{2} \vec{\nabla} \cdot \vec{v} d \vec{x}+\int_{\Omega} u \vec{v} \cdot \vec{\nabla} u d \vec{x}=\int u \vec{\nabla} \cdot(u \vec{v}) d \vec{x} \quad \text { Proen's theorem } \\
& \int_{\Omega} u^{2} \vec{\nabla} \cdot \vec{v} d \vec{x}+2 \int_{\Omega} u \vec{v} \cdot \vec{\nabla} u d \vec{x}=0 \\
& \int_{\Omega} u \vec{v} \cdot \vec{\nabla} u d \vec{x}=0 \\
& \text { Equation difference }
\end{aligned}
$$

Then

$$
\int_{\Omega}(D \vec{\nabla} u-u \vec{v}) \cdot \vec{\nabla} u d \vec{x}=\int_{\Omega} D \vec{\nabla} u \cdot \vec{\nabla} u d \vec{x} \geq C\|u\|_{H_{0}^{1}(\Omega)}
$$

One could allow for fixed sign of $\nabla \cdot \vec{v}$.

The Lax-Milgram lemma

Theorem: Let V be a Hilbert space. Let $a: V \times V \rightarrow \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

$$
\exists \alpha>0: \forall u \in V, a(u, u) \geq \alpha\|u\|_{V}^{2}
$$

Then the problem: find $u \in V$ such that

$$
a(u, v)=f(v) \forall v \in V
$$

admits one and only one solution with an a priori estimate

$$
\|u\|_{v} \leq \frac{1}{\alpha}\|f\|_{v^{\prime}}
$$

Convection diffusion problem: maximum principle

- Let $f \leq 0, \nabla \cdot \vec{v}=0$
- Let $g^{\sharp}=\sup _{\partial \Omega} g$.
- Let $w=\left(u-g^{\sharp}\right)^{+}=\max \left\{u-g^{\sharp}, 0\right\} \in H_{0}^{1}(\Omega)$
- Consequently, $w \geq 0$
- As $\vec{\nabla} u=\vec{\nabla}\left(u-g^{\sharp}\right)$ and $\vec{\nabla} w=0$ where $w \neq u-g^{\sharp}$, one has

$$
\begin{aligned}
0 & \geq \int_{\Omega} f w d \vec{x}=\int_{\Omega} D(\vec{\nabla} u-u \vec{v}) \vec{\nabla} w d \vec{x} & & \text { Variational identity } \\
& =\int_{\Omega} D(\vec{\nabla} w-w \vec{v}) \vec{\nabla} w d \vec{x}-D g^{\sharp} \int_{\Omega} \vec{v} \cdot \vec{\nabla} w d \vec{x} & & \text { Replace } u \text { by } w \\
& =\int_{\Omega} D(\vec{\nabla} w-w \vec{v}) \vec{\nabla} w d \vec{x}+D g^{\sharp} \int_{\Omega} w \vec{\nabla} \cdot \vec{v} d \vec{x} & & \text { Green } \\
& \geq C\|w\|_{H_{0}^{1}(\Omega)} & & \text { Coercivity, } \nabla \cdot \vec{v}=0
\end{aligned}
$$

- Therefore: $w=\left(u-g^{\sharp}\right)^{-}=0$ and $u \leq g^{\sharp}$
- Similar for minimum part

Mimimax for convection-diffusion

Theorem: If $\nabla \cdot \vec{v}=0$, the weak solution of the inhomogeneous Dirichlet problem

$$
\begin{aligned}
-\nabla \cdot(D \vec{\nabla} u-u \vec{v}) & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

fulfills the global minimax principle: it attains its maximum at the boundary if $f \leq 0$ and attains its minimum at the boundary if $f \geq 0$.

Corollary: If $f=0$ then u attains both its minimum and its maximum at the boundary.

Corolloary: Local minimax principle: This is true of any subdomain $\omega \subset \Omega$.

Finite volumes for convection diffusion

$$
\begin{aligned}
-\nabla \cdot \vec{j} & =0 & & \text { in } \Omega \\
\vec{j} \cdot \vec{n}+\alpha u & =g & & \text { on } \Gamma=\partial \Omega
\end{aligned}
$$

- Integrate time discrete equation over control volume

$$
\begin{aligned}
0 & =-\int_{\omega_{k}} \nabla \cdot \vec{j} d \omega=-\int_{\partial \omega_{k}} \vec{j} \cdot \vec{n}_{k} d \gamma \\
& =-\sum_{I \in \mathcal{N}_{k}} \int_{\sigma_{k l}} \vec{j} \cdot \vec{n}_{k l} d \gamma-\int_{\gamma_{k}}^{\vec{j} \cdot \vec{n} d \gamma} \\
& \approx \sum_{I \in \mathcal{N}_{k}} \underbrace{\frac{\left|\sigma_{k l}\right|}{h_{k l}} g_{k l}\left(u_{k}, u_{l}\right)}_{\rightarrow A_{\Omega}}+\underbrace{\left|\gamma_{k}\right| \alpha u_{k}}_{\rightarrow A_{\Gamma}}-\left|\gamma_{k}\right| g_{k}
\end{aligned}
$$

- $A=A_{\Omega}+A_{\Gamma}$

Central Difference Flux Approximation

- $g_{k l}$ approximates normal convective-diffusive flux between control volumes $\omega_{k}, \omega_{l}: g_{k l}\left(u_{k}-u_{l}\right) \approx-(D \vec{\nabla} u-u \vec{v}) \cdot n_{k l}$
- Let $\sigma_{k l}=\omega_{k} \cap \omega_{l}$

Let $v_{k l}=\frac{1}{\left|\sigma_{k l}\right|} \int_{\sigma_{k l}} \vec{v} \cdot \vec{n}_{k l} d \gamma$ approximate the normal velocity $\vec{v} \cdot \vec{n}_{k l}$

- Central difference flux:

$$
\begin{aligned}
g_{k l}\left(u_{k}, u_{l}\right) & =D\left(u_{k}-u_{l}\right)+h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l} \\
& =\left(D+\frac{1}{2} h_{k l} v_{k l}\right) u_{k}-\left(D-\frac{1}{2} h_{k l} v_{k l}\right) u_{l}
\end{aligned}
$$

- if $v_{k l}$ is large compared to $h_{k l}$, the corresponding matrix (off-diagonal) entry may become positive
- Non-positive off-diagonal entries only guaranteed for $h \rightarrow 0$!
- If all off-diagonal entries are non-positive, we can prove the discrete maximum principle

Simple upwind flux discretization

- Force correct sign of convective flux approximation by replacing central difference flux approximation $h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l}$ by

$$
(\left\{\begin{array}{ll}
h_{k l} u_{k} v_{k l}, & v_{k l}<0 \\
h_{k l} u_{l} v_{k l}, & v_{k l}>0
\end{array}\right)=h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l}+\underbrace{\frac{1}{2} h_{k l}\left|v_{k l}\right|}_{\text {Artificial Diffusion } \tilde{D}}\left(u_{k}-u_{l}\right)
$$

- Upwind flux:

$$
\begin{aligned}
g_{k l}\left(u_{k}, u_{l}\right) & =D\left(u_{k}-u_{l}\right)+ \begin{cases}h_{k l} u_{k} v_{k l}, & v_{k l}>0 \\
h_{k l} u_{l} v_{k l}, & v_{k l}<0\end{cases} \\
& =(D+\tilde{D})\left(u_{k}-u_{l}\right)+h_{k l} \frac{1}{2}\left(u_{k}+u_{l}\right) v_{k l}
\end{aligned}
$$

- M-Property guaranteed unconditonally !
- Artificial diffusion introduces error: second order approximation replaced by first order approximation

Exponential fitting flux I

- Project equation onto edge $x_{K} x_{L}$ of length $h=h_{k l}$, let $v=-v_{k l}$, integrate once

$$
\begin{aligned}
u^{\prime}-u v & =j \\
\left.u\right|_{0} & =u_{k} \\
\left.u\right|_{h} & =u_{l}
\end{aligned}
$$

- Linear ODE
- Solution of the homogeneus problem:

$$
\begin{array}{r}
u^{\prime}-u v=0 \\
u^{\prime} / u=v \\
\ln u=u_{0}+v x \\
u=K \exp (v x)
\end{array}
$$

Exponential fitting II

- Solution of the inhomogeneous problem: set $K=K(x)$:

$$
\begin{aligned}
K^{\prime} \exp (v x)+v K \exp (v x)-v K \exp (v x) & =-j \\
K^{\prime} & =-j \exp (-v x) \\
K & =K_{0}+\frac{1}{v} j \exp (-v x)
\end{aligned}
$$

- Therefore,

$$
\begin{aligned}
u & =K_{0} \exp (v x)+\frac{1}{v} j \\
u_{k} & =K_{0}+\frac{1}{v} j \\
u_{l} & =K_{0} \exp (v h)+\frac{1}{v} j
\end{aligned}
$$

Exponential fitting III

- Use boundary conditions

$$
\begin{aligned}
K_{0} & =\frac{u_{k}-u_{l}}{1-\exp (v h)} \\
u_{k} & =\frac{u_{k}-u_{l}}{1-\exp (v h)}+\frac{1}{v} j \\
j & =\frac{v}{\exp (v h)-1}\left(u_{k}-u_{l}\right)+v u_{k} \\
& =v\left(\frac{1}{\exp (v h)-1}+1\right) u_{k}-\frac{v}{\exp (v h)-1} u_{l} \\
& =v\left(\frac{\exp (v h)}{\exp (v h)-1}\right) u_{k}-\frac{v}{\exp (v h)-1} u_{l} \\
& =\frac{-v}{\exp (-v h)-1} u_{k}-\frac{v}{\exp (v h)-1} u_{l} \\
& =\frac{B(-v h) u_{k}-B(v h) u_{l}}{h}
\end{aligned}
$$

where $B(\xi)=\frac{\xi}{\exp (\xi)-1}$: Bernoulli function

Exponential fitting IV

- General case: $D u^{\prime}-u v=D\left(u^{\prime}-u \frac{v}{D}\right)$
- Upwind flux:

$$
g_{k l}\left(u_{k}, u_{l}\right)=D\left(B\left(\frac{-v_{k l} h_{k l}}{D}\right) u_{k}-B\left(\frac{v_{k l} h_{k l}}{D}\right) u_{l}\right)
$$

- Allen+Southwell 1955
- Scharfetter+Gummel 1969
- Ilin 1969
- Chang+Cooper 1970
- Guaranteed sign pattern, M property!

Exponential fitting: Artificial diffusion

- Difference of exponential fitting scheme and central scheme
- Use: $B(-x)=B(x)+x \Rightarrow$

$$
\begin{aligned}
& B(x)+\frac{1}{2} x=B(-x)-\frac{1}{2} x=B(|x|)+\frac{1}{2}|x| \\
& D_{a r t}\left(u_{k}-u_{l}\right)=D\left(B\left(\frac{-v h}{D}\right) u_{k}-B\left(\frac{v h}{D}\right) u_{l}\right)-D\left(u_{k}-u_{l}\right)+h \frac{1}{2}\left(u_{k}+u_{l}\right) v \\
&=D\left(\frac{-v h}{2 D}+B\left(\frac{-v h}{D}\right)\right) u_{k}-D\left(\frac{v h}{2 D}+B\left(\frac{v h}{D}\right) u_{l}\right)-D\left(u_{k}-u_{l}\right) \\
&=D\left(\frac{1}{2}\left|\frac{v h}{D}\right|+B\left(\left|\frac{v h}{D}\right|\right)-1\right)\left(u_{k}-u_{l}\right)
\end{aligned}
$$

- Further, for $x>0$:

$$
\frac{1}{2} x \geq \frac{1}{2} x+B(x)-1 \geq 0
$$

- Therefore

$$
\frac{|v h|}{2} \geq D_{a r t} \geq 0
$$

Exponential fitting: Artificial diffusion II

Comparison of artificial diffusion functions $\frac{1}{2}|x|$ (upwind) and $\frac{1}{2}|x|+B(|x|)-1$ (exp. fitting)

Convection-Diffusion test problem, $\mathrm{N}=20$

- $\Omega=(0,1),-\nabla \cdot(D \vec{\nabla} u+u v)=0, u(0)=0, u(1)=1$
- $V=1, D=0.01$

- Exponential fitting: sharp boundary layer, for this problem it is exact
- Central differences: unphysical
- Upwind: larger boundary layer

Convection-Diffusion test problem, N=40

- $\Omega=(0,1),-\nabla \cdot(D \vec{\nabla} u+u v)=0, u(0)=0, u(1)=1$
- $V=1, D=0.01$

- Exponential fitting: sharp boundary layer, for this problem it is exact
- Central differences: unphysical, but less "'wiggles"
- Upwind: larger boundary layer

Convection-Diffusion test problem, $\mathrm{N}=80$

- $\Omega=(0,1),-\nabla \cdot(D \vec{\nabla} u+u v)=0, u(0)=0, u(1)=1$
- $V=1, D=0.01$

- Exponential fitting: sharp boundary layer, for this problem it is exact
- Central differences: grid is fine enough to yield M-Matrix property, good approximation of boundary layer due to higher convergence order
- Upwind: "smearing" of boundary layer

1D convection diffusion summary

- Upwinding and exponential fitting unconditionally yield the M-property of the discretization matrix
- Exponential fitting for this case (zero right hand side, 1D) yields exact solution. It is anyway "less diffusive" as artificial diffusion is optimized
- Central scheme has higher convergence order than upwind (and exponential fitting) but on coarse grid it may lead to unphysical oscillations
- For 2/3D problems, sufficiently fine grids to stabilize central scheme may be prohibitively expensive
- Local grid refinement may help to offset artificial diffusion

Discrete minimax principle

- $A u=f$
- A: matrix from diffusion or convection- diffusion
- A irreducibly diagonally dominant, positive main diagonal entries, negative off diagonal entries

$$
\begin{aligned}
a_{i i} u_{i} & =\sum_{j \neq i}-a_{i j} u_{j}+f_{i} \\
u_{i} & =\sum_{j \neq i, a_{i j} \neq 0}-\frac{a_{i j}}{a_{i i}} u_{j}+f_{i}
\end{aligned}
$$

- For interior points,, $a_{i i}=-\sum_{j \neq i} a_{i j}$
- Assume i is interior point. Assume $f_{i} \geq 0 \Rightarrow$

$$
u_{i} \geq \min _{j \neq i, a_{i j} \neq 0} u_{j} \sum_{j \neq i, a_{i j} \neq 0}-\frac{a_{i j}}{a_{i i}}=\min _{j \neq i, a_{i j} \neq 0} u_{j}
$$

- Assume i is interior point. Assume $f_{i} \leq 0 \Rightarrow$

$$
u_{i} \leq \max _{j \neq i, a_{i j} \neq 0} u_{j} \sum_{j \neq i, a_{i j} \neq 0}-\frac{a_{i j}}{a_{i j}}=\max _{j \neq i, a_{i j} \neq 0} u_{j}
$$

Discussion of discrete minimax principle I

- P1 finite elements, Voronoi finite volumes: matrix graph \equiv triangulation of domain
- The set $\left\{j \neq i, a_{i j} \neq 0\right\}$ is exactly the set of neigbor nodes
- Solution in point x_{i} estimated by solution in neigborhood
- The estimate can be propagated to the boundary of the domain

Discussion of discrete minimax principle II

- Minimax principle + positivity/nonnegativity of solutions can be seen as an important qualitative property of the physical process
- Along with good approximation quality, its preservation in the discretization process may be necessary
- Guaranteed for irreducibly diagonally dominant matrices
- Nonnegativity for nonnegative right hand sides guaranteed by M-Property
- Finite volume method may be preferred as it can guarantee these properties for boundary conforming Delaunay grids.

Convection-diffusion and finite elements

Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\vec{\nabla}(\cdot D \vec{\nabla} u-u \vec{v}) & =f & & \text { in } \Omega \\
u & =g & & \text { on } \partial \Omega
\end{aligned}
$$

- Assume v is divergence-free, i.e. $\nabla \cdot v=0$.
- Then the main part of the equation can be reformulated as

$$
-\vec{\nabla}(\cdot D \vec{\nabla} u)+\vec{v} \cdot \vec{\nabla} u=0 \quad \text { in } \Omega
$$

yielding a weak formulation: find $u \in H^{1}(\Omega)$ such that $u-g \in H_{0}^{1}(\Omega)$ and $\forall w \in H_{0}^{1}(\Omega)$,

$$
\int_{\Omega} D \vec{\nabla} u \cdot \vec{\nabla} w d x+\int_{\Omega} \vec{v} \cdot \vec{\nabla} u w d x=\int_{\Omega} f w d x
$$

- Galerkin formulation: find $u_{h} \in V_{h}$ with bc. such that $\forall w_{h} \in V_{h}$

$$
\int_{\Omega} D \vec{\nabla} u_{h} \cdot \vec{\nabla} w_{h} d x+\int_{\Omega} \vec{v} \cdot \vec{\nabla} u_{h} w_{h} d x=\int_{\Omega} f w_{h} d x
$$

Convection-diffusion and finite elements II

- Galerkin ansatz has similar problems as central difference ansatz in the finite volume/finite difference case \Rightarrow stabilization ?
- Most popular: streamline upwind Petrov-Galerkin (SUPG)

$$
\int_{\Omega} D \vec{\nabla} u_{h} \cdot \vec{\nabla} w_{h} d x+\int_{\Omega} \vec{v} \cdot \vec{\nabla} u_{h} w_{h} d x+S\left(u_{h}, w_{h}\right)=\int_{\Omega} f w_{h} d x
$$

with

$$
S\left(u_{h}, w_{h}\right)=\sum_{K} \int_{K}\left(-\vec{\nabla}\left(\cdot D \vec{\nabla} u_{h}-u_{h} \vec{v}\right)-f\right) \delta_{K} v \cdot w_{h} d x
$$

where $\delta_{K}=\frac{h_{K}^{v}}{2 \mid \vec{v}} \xi\left(\frac{|\vec{v}| h_{K}^{\nu}}{D}\right)$ with $\xi(\alpha)=\operatorname{coth}(\alpha)-\frac{1}{\alpha}$ and h_{K}^{ν} is the size of element K in the direction of \vec{v}.

Convection-diffusion and finite elements III

- Many methods to stabilize, none guarantees M-Property even on weakly acute meshes! (V. John, P. Knobloch, Computer Methods in Applied Mechanics and Engineering, 2007)
- Comparison paper:
M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke, and R. Umla, "An assessment of discretizations for convection-dominated convection-diffusion equations," Comp. Meth. Appl. Mech. Engrg., vol. 200, pp. 3395-3409, 2011:
- if it is necessary to compute solutions without spurious oscillations: use FVM, taking care on the construction of an appropriate grid might be essential for reducing the smearing of the layers,
- if sharpness and position of layers are important and spurious oscillations can be tolerated: often the SUPG method is a good choice.
- Topic of ongoing research

Transient problems

Time dependent Robin boundary value problem

- Choose final time $T>0$. Regard functions $(x, t) \rightarrow \mathbb{R}$.

$$
\begin{aligned}
\partial_{t} u-\nabla \cdot D \vec{\nabla} u & =f \quad \text { in } \Omega \times[0, T] \\
D \vec{\nabla} u \cdot \vec{n}+\alpha u & =g \quad \text { on } \partial \Omega \times[0, T] \\
u(x, 0) & =u_{0}(x) \quad \operatorname{in} \Omega
\end{aligned}
$$

- This is an initial boundary value problem
- This problem has a weak formulation in the Sobolev space $L^{2}\left([0, T], H^{1}(\Omega)\right)$, which then allows for a Galerkin approximation in a corresponding subspace
- We will proceed in a simpler manner: first, perform a finite difference discretization in time, then perform a finite element (finite volume) discretization in space.
- Rothe method: first discretize in time, then in space
- Method of lines: first discretize in space, get a huge ODE system, then apply perfom discretization

Time discretization

- Choose time discretization points $0=t^{0}<t^{1} \cdots<t^{N}=T$
- let $\tau^{n}=t^{n}-t^{n-1}$

For $i=1 \ldots N$, solve

$$
\begin{aligned}
\frac{u^{n}-u^{n-1}}{\tau^{n}}-\nabla \cdot D \vec{\nabla} u^{\theta}=f & \text { in } \Omega \times[0, T] \\
D \vec{\nabla} u_{\theta} \cdot \vec{n}+\alpha u^{\theta}=g & \text { on } \partial \Omega \times[0, T]
\end{aligned}
$$

where $u^{\theta}=\theta u^{n}+(1-\theta) u^{n-1}$

- $\theta=1$: backward (implicit) Euler method

Solve PDE problem in each timestep. First order accuracy in time.

- $\theta=\frac{1}{2}$: Crank-Nicolson scheme

Solve PDE problem in each timestep. Second order accuracy in time.

- $\theta=0$: forward (explicit) Euler method

First order accurate in time. This does not involve the solution of a PDE problem \Rightarrow Cheap? What do we have to pay for this ?

Finite volumes for time dependent hom. Neumann problem

Search function $u: \Omega \times[0, T] \rightarrow \mathbb{R}$ such that $u(x, 0)=u_{0}(x)$ and

$$
\begin{aligned}
\partial_{t} u-\nabla \cdot D \vec{\nabla} u=0 & \text { in } \Omega \times[0, T] \\
D \vec{\nabla} u \cdot \vec{n}=0 & \text { on } \Gamma \times[0, T]
\end{aligned}
$$

- Given control volume ω_{k}, integrate equation over space-time control volume $\omega_{k} \times\left(t^{n-1}, t^{n}\right)$, divide by τ^{n} :

$$
\begin{aligned}
0 & =\int_{\omega_{k}}\left(\frac{1}{\tau^{n}}\left(u^{n}-u^{n-1}\right)-\nabla \cdot D \vec{\nabla} u^{\theta}\right) d \omega \\
& =\frac{1^{n}}{\tau} \int_{\omega_{k}}\left(u^{n}-u^{n-1}\right) d \omega-\int_{\partial \omega_{k}} D \vec{\nabla} u^{\theta} \cdot \vec{n}_{k} d \gamma \\
& =-\sum_{\mid \in \mathcal{N}_{k}} \int_{\sigma_{k l}} D \vec{\nabla} u^{\theta} \cdot \vec{n}_{k l} d \gamma-\int_{\gamma_{k}} D \vec{\nabla} u^{\theta} \cdot \vec{n} d \gamma-\frac{1^{n}}{\tau} \int_{\omega_{k}}\left(u^{n}-u^{n-1}\right) d \omega \\
& \approx \underbrace{\frac{\left|\omega_{k}\right|}{\tau^{n}}\left(u_{k}^{n}-u_{k}^{n-1}\right)}_{\rightarrow M}+\underbrace{\sum_{\mid \in \mathcal{N}_{k}} \frac{\left|\sigma_{k \mid}\right|}{h_{k l}}\left(u_{k}^{\theta}-u_{l}^{\theta}\right)}_{\rightarrow A}
\end{aligned}
$$

Matrix equation

- Resulting matrix equation:

$$
\begin{aligned}
\frac{1}{\tau^{n}}\left(M u^{n}-M u^{n-1}\right)+A u^{\theta} & =0 \\
\frac{1}{\tau^{n}} M u^{n}+\theta A u^{n} & =\frac{1}{\tau^{n}} M u^{n-1}+(\theta-1) A u^{n-1} \\
u^{n}+\tau^{n} M^{-1} \theta A u^{n} & =u^{n-1}+\tau^{n} M^{-1}(\theta-1) A u^{n-1}
\end{aligned}
$$

- $M=\left(m_{k l}\right), A=\left(a_{k l}\right)$ with

$$
\begin{aligned}
& a_{k l}= \begin{cases}\sum_{l^{\prime} \in \mathcal{N}_{k}} D \frac{\left|\sigma_{k l^{\prime}}\right|}{h_{k l^{\prime}}} & I=k \\
-D \frac{\sigma_{k l}}{h_{k l}}, & I \in \mathcal{N}_{k} \\
0, & \text { else }\end{cases} \\
& m_{k l}= \begin{cases}\left|\omega_{k}\right| & I=k \\
0, & \text { else }\end{cases}
\end{aligned}
$$

- $\Rightarrow \theta A+M$ is strictly diagonally dominant!

A matrix norm estimate

Lemma: Assume A has positive main diagonal entries, nonpositive off-diagonal entries and row sum zero. Then, $\left\|(I+A)^{-1}\right\|_{\infty} \leq 1$
Proof: Assume that $\left\|(I+A)^{-1}\right\|_{\infty}>1$. I $+A$ is a irreducible M-matrix, thus $(I+A)^{-1}$ has positive entries. Then for $\alpha_{i j}$ being the entries of $(I+A)^{-1}$,

$$
\max _{i=1}^{n} \sum_{j=1}^{n} \alpha_{i j}>1
$$

Let k be a row where the maximum is reached. Let $e=(1 \ldots 1)^{T}$. Then for $v=(I+A)^{-1} e$ we have that $v>0, v_{k}>1$ and $v_{k} \geq v_{j}$ for all $j \neq k$. The k th equation of $e=(I+A) v$ then looks like

$$
\begin{aligned}
1 & =v_{k}+v_{k} \sum_{j \neq k}\left|a_{k j}\right|-\sum_{j \neq k}\left|a_{k j}\right| v_{j} \\
& \geq v_{k}+v_{k} \sum_{j \neq k}\left|a_{k j}\right|-\sum_{j \neq k}\left|a_{k j}\right| v_{k} \\
& =v_{k} \\
& >1
\end{aligned}
$$

Stability estimate

- Matrix equation again:

$$
\begin{aligned}
u^{n}+\tau^{n} M^{-1} \theta A u^{n} & =u^{n-1}+\tau^{n} M^{-1}(\theta-1) A u^{n-1}=: B^{n} u^{n-1} \\
u^{n} & =\left(I+\tau^{n} M^{-1} \theta A\right)^{-1} B^{n} u^{n-1}
\end{aligned}
$$

- From the lemma we have $\left\|\left(I+\tau^{n} M^{-1} \theta A\right)^{n}\right\|_{\infty} \leq 1$

$$
\Rightarrow\left\|u^{n}\right\|_{\infty} \leq\left\|B^{n} u^{n-1}\right\|_{\infty}
$$

- For the entries $b_{k l}^{n}$ of B^{n}, we have

$$
b_{k l}^{n}= \begin{cases}1+\frac{\tau^{n}}{m_{k k}}(\theta-1) a_{k k}, & k=l \\ \frac{\tau^{n}}{m_{k k}}(\theta-1) a_{k l}, & \text { else }\end{cases}
$$

- In any case, $b_{k l} \geq 0$ for $k \neq 1$.

If $b_{k k} \geq 0$, one estimates $\|B\|_{\infty}=\max _{k=1}^{N} \sum_{l=1}^{N} b_{k l}$.

- But

$$
\sum_{l=1}^{N} b_{k l}=1+(\theta-1) \frac{\tau^{n}}{m_{k k}}\left(a_{k k}+\sum_{l \in \mathcal{N}_{k}} a_{k l}\right)=1 \quad \Rightarrow\|B\|_{\infty}=1
$$

Stability conditions

- For a shape regular triangulation in \mathbb{R}^{d}, we can assume that

$$
m_{k k}=\left|\omega_{k}\right| \sim h^{d}, \text { and } a_{k l}=\frac{\left|\sigma_{k \mid}\right|}{h_{k l}} \sim \frac{h^{d-1}}{h}=h^{d-2}, \text { thus } \frac{a_{k k}}{m_{k k}} \leq \frac{1}{C h^{2}}
$$

- $b_{k k} \geq 0$ gives

$$
(1-\theta) \frac{\tau^{n}}{m_{k k}} a_{k k} \leq 1
$$

- A sufficient condition is that for some $C>0$,

$$
\begin{aligned}
& (1-\theta) \frac{\tau^{n}}{C h^{2}} \leq 1 \\
& (1-\theta) \tau^{n} \leq C h^{2}
\end{aligned}
$$

- Method stability:
- Implicit Euler: $\theta=1 \Rightarrow$ unconditional stability !
- Explicit Euler: $\theta=0 \Rightarrow \mathrm{CFL}$ condition $\tau \leq C h^{2}$
- Crank-Nicolson: $\theta=\frac{1}{2} \Rightarrow$ CFL condition $\tau \leq 2$ Ch 2 Tradeoff stability vs. accuracy.

Stability discussion

- $\tau \leq \mathrm{Ch}^{2} \mathrm{CFL}==$ "Courant-Friedrichs-Levy"
- Explicit (forward) Euler method can be applied on very fast systems (GPU), with small time step comes a high accuracy in time.
- Implicit Euler: unconditional stability - helpful when stability is of utmost importance, and accuracy in time is less important
- For hyperbolic systems (pure convection without diffusion), the CFL conditions is $\tau \leq C h$, thus in this case explicit computations are ubiquitous
- Comparison for a fixed size of the time interval. Assume for implicit Euler, time accuracy is less important, and the number of time steps is independent of the size of the space discretization.

	1 D	2 D	3D
\# unknowns	$N=O\left(h^{-1}\right)$	$N=O\left(h^{-2}\right)$	$N=O\left(h^{-3}\right)$
\# steps	$M=O\left(N^{2}\right)$	$M=O(N)$	$M=O\left(N^{2 / 3}\right)$
complexity	$M=O\left(N^{3}\right)$	$M=O\left(N^{2}\right)$	$M=O\left(N^{5 / 3}\right)$

Backward Euler: discrete maximum principle

$$
\begin{aligned}
\frac{1}{\tau^{n}} M u^{n}+A u^{n} & =\frac{1}{\tau} M u^{n-1} \\
\frac{1}{\tau^{n}} m_{k k} u_{k}^{n}+a_{k k} u_{k}^{n} & =\frac{1}{\tau^{n}} m_{k k} u_{k}^{n-1}+\sum_{k \neq l}\left(-a_{k l}\right) u_{l}^{n} \\
u_{k}^{n} & =\frac{1}{\frac{1}{\tau^{n}} m_{k k}+\sum_{l \neq k}\left(-a_{k l}\right)}\left(\frac{1}{\tau^{n}} m_{k k} u_{k}^{n-1}+\sum_{l \neq k}\left(-a_{k l}\right) u_{l}^{n}\right) \\
& \leq \frac{1}{\tau^{n}} m_{k k}+\sum_{l \neq k}\left(-a_{k l}\right) \\
\frac{1}{\tau^{n}} m_{k k}+\sum_{l \neq k}\left(-a_{k l}\right) & \max \left(\left\{u_{k}^{n-1}\right\} \cup\left\{u_{l}^{n}\right\}_{l \in \mathcal{N}_{k}}\right) \\
& \leq \max \left(\left\{u_{k}^{n-1}\right\} \cup\left\{u_{l}^{n}\right\}_{\mid \in \mathcal{N}_{k}}\right)
\end{aligned}
$$

- Provided, the right hand side is zero, the solution in a given node is bounded by the value from the old timestep, and by the solution in the neigboring points.
- No new local maxima can appear during time evolution
- There is a continuous counterpart which can be derived from weak solution
- Sign pattern is crucial for the proof.

Backward Euler: Nonnegativity

$$
\begin{aligned}
u^{n}+\tau^{n} M^{-1} A u^{n} & =u^{n-1} \\
u^{n} & =\left(I+\tau^{n} M^{-1} A\right)^{-1} u^{n-1}
\end{aligned}
$$

- $\left(I+\tau^{n} M^{-1} A\right)$ is an M-Matrix
- If $u_{0}>0$, then $u^{n}>0 \forall n>0$

Mass conservation

- Equivalent of $\int_{\Omega} \nabla \cdot D \vec{\nabla} u d \vec{x}=\int_{\partial \Omega} D \vec{\nabla} u \cdot \vec{n} d \gamma=0$:

$$
\begin{aligned}
\sum_{k=1}^{N}\left(a_{k k} u_{k}+\sum_{l \in \mathcal{N}_{k}} a_{k l} u_{l}\right) & =\sum_{k=1}^{N} \sum_{l=1, l \neq k}^{N} a_{k l}\left(u_{l}-u_{k}\right) \\
& =\sum_{k=1}^{N} \sum_{l=1, l<k}^{N}\left(a_{k l}\left(u_{l}-u_{k}\right)+a_{l k}\left(u_{k}-u_{l}\right)\right) \\
& =0
\end{aligned}
$$

- \Rightarrow Equivalent of $\int_{\Omega} u^{n} d \vec{x}=\int_{\Omega} u^{n-1} d \vec{x}$:
- $\sum_{k=1}^{N} m_{k k} u_{k}^{n}=\sum_{k=1}^{N} m_{k k} u_{k}^{n-1}$

Weak formulation of time step problem

- Weak formulation: search $u \in H^{1}(\Omega)$ such that $\forall v \in H^{1}(\Omega)$

$$
\begin{aligned}
& \frac{1}{\tau^{n}} \int_{\Omega} u^{n} v d x+\theta \int_{\Omega} D \vec{\nabla} u^{n} \vec{\nabla} v d x= \\
& \quad \frac{1}{\tau^{n}} \int_{\Omega} u^{n-1} v d x+(1-\theta) \int_{\Omega} D \vec{\nabla} u^{n-1} \vec{\nabla} v d x
\end{aligned}
$$

- Matrix formulation

$$
\frac{1}{\tau^{n}} M u^{n}+\theta A u^{n}=\frac{1}{\tau^{n}} M u^{n-1}+(1-\theta) A u^{n-1}
$$

- M : mass matrix, A : stiffness matrix.
- With FEM, Mass matrix lumping important for getting the previous estimates

