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Convection-Diffusion problems
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The convection - diffusion equation

Search function u : Ω→ R such that

−∇ · (D~∇u − u~v) = f in Ω
u = g on Γ

u(x): species concentration, temperature
~j = D~∇u − u~v : species flux
D: diffusion coefficient
~v(x): velocity of medium (e.g. fluid)

Given analytically
Solution of free flow problem (Navier-Stokes equation)
Flow in porous medium (Darcy equation): ~v = −κ~∇p where

−∇ · (κ~∇p) = 0

For constant density, the divergence conditon ∇ · ~v = 0 holds.
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Weak formulation

Let ug ∈ H1(Ω) a lifting of g . Find u ∈ H1(Ω) such that

u = ug + φ∫
Ω

(D~∇φ− φ~v) · ~∇w d~x =
∫

Ω
fw d~x +

∫
Ω

(D~∇ug − ug~v) · ~∇w ∀w ∈ H1
0 (Ω)

Is this bilinear form coercive ? - Use Lax-Milgram, for it being true, is
not necessary that the bilinear form is self-adjoint.

It follows, that∫
Ω

(D~∇u − u~v) · ~∇w d~x =
∫

Ω
fw d~x ∀w ∈ H1

0 (Ω)

Green’s theorem: If w = 0 on ∂Ω:∫
Ω
~v · ~∇w d~x = −

∫
Ω

w∇ · ~v d~x
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Coercivity of bilinear form

Regard the convection contribution to the coercivity estimate:

−
∫

Ω
u~v · ~∇u d~x =

∫
u~∇ · (u~v) d~x Green’s theorem∫

Ω
u2~∇ · ~v d~x +

∫
Ω

u~v · ~∇u d~x =
∫

u~∇ · (u~v) d~x Product rule∫
Ω

u2~∇ · ~v d~x + 2
∫

Ω
u~v · ~∇u d~x = 0 Equation difference∫

Ω
u~v · ~∇u d~x = 0 Divergence condition~∇ · ~v = 0

Then ∫
Ω

(D~∇u − u~v) · ~∇u d~x =
∫

Ω
D~∇u · ~∇u d~x ≥ C ||u||H1

0 (Ω)

One could allow for fixed sign of ∇ · ~v .
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Convection diffusion problem: maximum principle

Let f ≤ 0, ∇ · ~v = 0
Let g ] = sup∂Ω g .
Let w = (u − g ])+ = max{u − g ], 0} ∈ H1

0 (Ω)
Consequently, w ≥ 0
As ~∇u = ~∇(u − g ]) and ~∇w = 0 where w 6= u − g ], one has

0 ≥
∫

Ω
fw d~x =

∫
Ω

D(~∇u − u~v)~∇w d~x Variational identity

=
∫

Ω
D(~∇w − w~v)~∇w d~x − Dg ]

∫
Ω
~v · ~∇w d~x Replace u by w

=
∫

Ω
D(~∇w − w~v)~∇w d~x + Dg ]

∫
Ω

w ~∇ · ~v d~x Green

≥ C ||w ||H1
0 (Ω) Coercivity, ∇ · ~v = 0

Therefore: w = (u − g ])− = 0 and u ≤ g ]
Similar for minimum part
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Mimimax for convection-diffusion

Theorem: If ∇ · ~v = 0, the weak solution of the inhomogeneous Dirichlet
problem

−∇ · (D~∇u − u~v) = f in Ω
u = g on ∂Ω

fulfills the global minimax principle: it attains its maximum at the
boundary if f ≤ 0 and attains its minimum at the boundary if f ≥ 0.

Corollary: If f = 0 then u attains both its minimum and its maximum at
the boundary.

Corolloary: Local minimax principle: This is true of any subdomain
ω ⊂ Ω.
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Finite volumes for convection diffusion

−∇ ·~j = 0 in Ω
~j · ~n + αu = g on Γ = ∂Ω

Integrate time discrete equation over control volume

0 = −
∫
ωk

∇ ·~jdω = −
∫
∂ωk

~j · ~nkdγ

= −
∑
l∈Nk

∫
σkl

~j · ~nkldγ −
∫
γk

~j · ~ndγ

≈
∑
l∈Nk

|σkl |
hkl

gkl (uk , ul )︸ ︷︷ ︸
→AΩ

+ |γk |αuk︸ ︷︷ ︸
→AΓ

−|γk |gk

A = AΩ + AΓ
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Central Difference Flux Approximation

gkl approximates normal convective-diffusive flux between control
volumes ωk , ωl : gkl (uk − ul ) ≈ −(D~∇u − u~v) · nkl

Let σkl = ωk ∩ ωl
Let vkl = 1

|σkl |
∫
σkl
~v · ~nkldγ approximate the normal velocity ~v · ~nkl

Central difference flux:

gkl (uk , ul ) = D(uk − ul ) + hkl
1
2 (uk + ul )vkl

= (D + 1
2hklvkl )uk − (D − 1

2hklvkl )ul

if vkl is large compared to hkl , the corresponding matrix (off-diagonal)
entry may become positive

Non-positive off-diagonal entries only guaranteed for h→ 0 !

If all off-diagonal entries are non-positive, we can prove the discrete
maximum principle
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Simple upwind flux discretization

Force correct sign of convective flux approximation by replacing
central difference flux approximation hkl

1
2 (uk + ul )vkl by({

hklukvkl , vkl < 0
hklulvkl , vkl > 0

)
= hkl

1
2 (uk + ul )vkl + 1

2hkl |vkl |︸ ︷︷ ︸
Artificial Diffusion D̃

(uk −ul )

Upwind flux:

gkl (uk , ul ) = D(uk − ul ) +
{

hklukvkl , vkl > 0
hklulvkl , vkl < 0

= (D + D̃)(uk − ul ) + hkl
1
2 (uk + ul )vkl

M-Property guaranteed unconditonally !
Artificial diffusion introduces error: second order approximation
replaced by first order approximation
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Exponential fitting flux I

Project equation onto edge xK xL of length h = hkl , let v = −vkl ,
integrate once

u′ − uv = j
u|0 = uk

u|h = ul

Linear ODE

Solution of the homogeneus problem:

u′ − uv = 0
u′/u = v

ln u = u0 + vx
u = K exp(vx)



Lecture 20 Slide 12

Exponential fitting II

Solution of the inhomogeneous problem: set K = K (x):

K ′ exp(vx) + vK exp(vx)− vK exp(vx) = −j
K ′ = −j exp(−vx)

K = K0 + 1
v j exp(−vx)

Therefore,

u = K0 exp(vx) + 1
v j

uk = K0 + 1
v j

ul = K0 exp(vh) + 1
v j
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Exponential fitting III
Use boundary conditions

K0 = uk − ul
1− exp(vh)

uk = uk − ul
1− exp(vh) + 1

v j

j = v
exp(vh)− 1 (uk − ul ) + vuk

=v
(

1
exp(vh)− 1 + 1

)
uk −

v
exp(vh)− 1ul

=v
(

exp(vh)
exp(vh)− 1

)
uk −

v
exp(vh)− 1ul

= −v
exp(−vh)− 1uk −

v
exp(vh)− 1ul

=B(−vh)uk − B(vh)ul
h

where B(ξ) = ξ
exp(ξ)−1 : Bernoulli function
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Exponential fitting IV

General case: Du′ − uv = D(u′ − u v
D )

Upwind flux:

gkl (uk , ul ) = D(B(−vklhkl
D )uk − B(vklhkl

D )ul )

Allen+Southwell 1955
Scharfetter+Gummel 1969
Ilin 1969
Chang+Cooper 1970
Guaranteed sign pattern, M
property!
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Exponential fitting: Artificial diffusion
Difference of exponential fitting scheme and central scheme

Use: B(−x) = B(x) + x ⇒

B(x) + 1
2x = B(−x)− 1

2x = B(|x |) + 1
2 |x |

Dart(uk − ul ) =D(B(−vh
D )uk − B(vh

D )ul )− D(uk − ul ) + h 1
2 (uk + ul )v

=D(−vh
2D + B(−vh

D ))uk − D( vh
2D + B(vh

D )ul )− D(uk − ul )

=D
(

1
2 |

vh
D |+ B(|vh

D |
)
− 1)(uk − ul )

Further, for x > 0:
1
2x ≥ 1

2x + B(x)− 1 ≥ 0

Therefore
|vh|

2 ≥ Dart ≥ 0
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Exponential fitting: Artificial diffusion II
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Convection-Diffusion test problem, N=20

Ω = (0, 1), −∇ · (D~∇u + uv) = 0, u(0) = 0, u(1) = 1
V = 1, D = 0.01
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Exponential fitting: sharp boundary layer, for this problem it is exact
Central differences: unphysical
Upwind: larger boundary layer
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Convection-Diffusion test problem, N=40

Ω = (0, 1), −∇ · (D~∇u + uv) = 0, u(0) = 0, u(1) = 1
V = 1, D = 0.01
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Exponential fitting: sharp boundary layer, for this problem it is exact
Central differences: unphysical, but less ‘’wiggles”
Upwind: larger boundary layer
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Convection-Diffusion test problem, N=80
Ω = (0, 1), −∇ · (D~∇u + uv) = 0, u(0) = 0, u(1) = 1
V = 1, D = 0.01
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Exponential fitting: sharp boundary layer, for this problem it is exact
Central differences: grid is fine enough to yield M-Matrix property,
good approximation of boundary layer due to higher convergence order
Upwind: “smearing” of boundary layer
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1D convection diffusion summary

Upwinding and exponential fitting unconditionally yield the
M-property of the discretization matrix

Exponential fitting for this case (zero right hand side, 1D) yields exact
solution. It is anyway “less diffusive” as artificial diffusion is optimized

Central scheme has higher convergence order than upwind (and
exponential fitting) but on coarse grid it may lead to unphysical
oscillations

For 2/3D problems, sufficiently fine grids to stabilize central scheme
may be prohibitively expensive

Local grid refinement may help to offset artificial diffusion
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Discrete minimax principle
Au = f
A: matrix from diffusion or convection- diffusion
A irreducibly diagonally dominant, positive main diagonal entries,
negative off diagonal entries

aiiui =
∑
j 6=i
−aijuj + fi

ui =
∑

j 6=i,aij 6=0
−aij

aii
uj + fi

For interior points„ aii = −
∑

j 6=i aij
Assume i is interior point. Assume fi ≥ 0 ⇒

ui ≥ min
j 6=i,aij 6=0

uj
∑

j 6=i,aij 6=0
−aij

aii
= min

j 6=i,aij 6=0
uj

Assume i is interior point. Assume fi ≤ 0 ⇒

ui ≤ max
j 6=i,aij 6=0

uj
∑

j 6=i,aij 6=0
−aij

aii
= max

j 6=i,aij 6=0
uj
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Discussion of discrete minimax principle I

P1 finite elements, Voronoi finite volumes: matrix graph ≡
triangulation of domain

The set {j 6= i , aij 6= 0} is exactly the set of neigbor nodes

Solution in point xi estimated by solution in neigborhood

The estimate can be propagated to the boundary of the domain
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Discussion of discrete minimax principle II

Minimax principle + positivity/nonnegativity of solutions can be seen
as an important qualitative property of the physical process

Along with good approximation quality, its preservation in the
discretization process may be necessary

Guaranteed for irreducibly diagonally dominant matrices

Nonnegativity for nonnegative right hand sides guaranteed by
M-Property

Finite volume method may be preferred as it can guarantee these
properties for boundary conforming Delaunay grids.
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Convection-diffusion and finite elements
Search function u : Ω→ R such that

−~∇(·D~∇u − u~v) = f in Ω
u = g on ∂Ω

Assume v is divergence-free, i.e. ∇ · v = 0.

Then the main part of the equation can be reformulated as

−~∇(·D~∇u) + ~v · ~∇u = 0 in Ω

yielding a weak formulation: find u ∈ H1(Ω) such that
u − g ∈ H1

0 (Ω) and ∀w ∈ H1
0 (Ω),∫

Ω
D~∇u · ~∇w dx +

∫
Ω
~v · ~∇u w dx =

∫
Ω

fw dx

Galerkin formulation: find uh ∈ Vh with bc. such that ∀wh ∈ Vh∫
Ω

D~∇uh · ~∇wh dx +
∫

Ω
~v · ~∇uh wh dx =

∫
Ω

fwh dx
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Convection-diffusion and finite elements II

Galerkin ansatz has similar problems as central difference ansatz in
the finite volume/finite difference case ⇒ stabilization ?

Most popular: streamline upwind Petrov-Galerkin (SUPG)

∫
Ω

D~∇uh · ~∇wh dx +
∫

Ω
~v · ~∇uh wh dx + S(uh,wh) =

∫
Ω

fwh dx

with

S(uh,wh) =
∑

K

∫
K

(−~∇(·D~∇uh − uh~v)− f )δK v · wh dx

where δK = hv
K

2|~v |ξ( |~v |h
v
K

D ) with ξ(α) = coth(α)− 1
α and hv

K is the size of
element K in the direction of ~v .
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Convection-diffusion and finite elements III

Many methods to stabilize, none guarantees M-Property even on
weakly acute meshes ! (V. John, P. Knobloch, Computer Methods in
Applied Mechanics and Engineering, 2007)

Comparison paper:

M. Augustin, A. Caiazzo, A. Fiebach, J. Fuhrmann, V. John, A. Linke, and
R. Umla, “An assessment of discretizations for convection-dominated
convection-diffusion equations,” Comp. Meth. Appl. Mech. Engrg., vol.
200, pp. 3395–3409, 2011:

Topic of ongoing research
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Transient problems
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Time dependent Robin boundary value problem
Choose final time T > 0. Regard functions (x , t)→ R.

∂tu −∇ · D~∇u = f in Ω× [0,T ]
D~∇u · ~n + αu = g on ∂Ω× [0,T ]

u(x , 0) = u0(x) inΩ

This is an initial boundary value problem

This problem has a weak formulation in the Sobolev space
L2 ([0,T ],H1(Ω)

)
, which then allows for a Galerkin approximation in

a corresponding subspace
We will proceed in a simpler manner: first, perform a finite difference
discretization in time, then perform a finite element (finite volume)
discretization in space.

Rothe method: first discretize in time, then in space

Method of lines: first discretize in space, get a huge ODE system,
then apply perfom discretization
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Time discretization

Choose time discretization points 0 = t0 < t1 · · · < tN = T

let τn = tn − tn−1

For i = 1 . . .N, solve

un − un−1

τn −∇ · D~∇uθ = f in Ω× [0,T ]

D~∇uθ · ~n + αuθ = g on ∂Ω× [0,T ]

where uθ = θun + (1− θ)un−1

θ = 1: backward (implicit) Euler method
Solve PDE problem in each timestep. First order accuracy in time.

θ = 1
2 : Crank-Nicolson scheme

Solve PDE problem in each timestep. Second order accuracy in time.

θ = 0: forward (explicit) Euler method
First order accurate in time. This does not involve the solution of a
PDE problem ⇒ Cheap? What do we have to pay for this ?
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Finite volumes for time dependent hom. Neumann problem
Search function u : Ω× [0,T ]→ R such that u(x , 0) = u0(x) and

∂tu −∇ · D~∇u = 0 inΩ× [0,T ]
D~∇u · ~n = 0 onΓ× [0,T ]

Given control volume ωk , integrate equation over space-time control
volume ωk × (tn−1, tn), divide by τn:

0 =
∫
ωk

(
1
τn (un − un−1)−∇ · D~∇uθ

)
dω

= 1
τ

n ∫
ωk

(un − un−1)dω −
∫
∂ωk

D~∇uθ · ~nkdγ

= −
∑
l∈Nk

∫
σkl

D~∇uθ · ~nkldγ −
∫
γk

D~∇uθ · ~ndγ − 1
τ

n ∫
ωk

(un − un−1)dω

≈ |ωk |
τn (un

k − un−1
k )︸ ︷︷ ︸

→M

+
∑
l∈Nk

|σkl |
hkl

(uθk − uθl )︸ ︷︷ ︸
→A
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Matrix equation
Resulting matrix equation:

1
τn
(
Mun −Mun−1)+ Auθ = 0

1
τn Mun + θAun = 1

τn Mun−1 + (θ − 1)Aun−1

un + τnM−1θAun = un−1 + τnM−1(θ − 1)Aun−1

M = (mkl ), A = (akl ) with

akl =


∑

l′∈Nk
D |σkl′ |

hkl′
l = k

−D σkl
hkl
, l ∈ Nk

0, else

mkl =
{
|ωk | l = k
0, else

⇒ θA + M is strictly diagonally dominant!
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A matrix norm estimate
Lemma: Assume A has positive main diagonal entries, nonpositive
off-diagonal entries and row sum zero. Then, ||(I + A)−1||∞ ≤ 1

Proof: Assume that ||(I + A)−1||∞ > 1. I + A is a irreducible M-matrix,
thus (I + A)−1 has positive entries. Then for αij being the entries of
(I + A)−1,

nmax
i=1

n∑
j=1

αij > 1.

Let k be a row where the maximum is reached. Let e = (1 . . . 1)T . Then
for v = (I + A)−1e we have that v > 0, vk > 1 and vk ≥ vj for all j 6= k.
The kth equation of e = (I + A)v then looks like

1 = vk + vk
∑
j 6=k
|akj | −

∑
j 6=k
|akj |vj

≥ vk + vk
∑
j 6=k
|akj | −

∑
j 6=k
|akj |vk

= vk

> 1

This contradiction enforces ||(I + A)−1||∞ ≤ 1. �
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Stability estimate
Matrix equation again:

un + τnM−1θAun = un−1 + τnM−1(θ − 1)Aun−1 =: Bnun−1

un = (I + τnM−1θA)−1Bnun−1

From the lemma we have ||(I + τnM−1θA)n||∞ ≤ 1
⇒ ||un||∞ ≤ ||Bnun−1||∞.

For the entries bn
kl of Bn, we have

bn
kl =

{
1 + τn

mkk
(θ − 1)akk , k = l

τn

mkk
(θ − 1)akl , else

In any case, bkl ≥ 0 for k 6= l .
If bkk ≥ 0, one estimates ||B||∞ = maxN

k=1
∑N

l=1 bkl .

But
N∑

l=1
bkl = 1 + (θ − 1) τ

n

mkk

(
akk +

∑
l∈Nk

akl

)
= 1 ⇒ ||B||∞ = 1.
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Stability conditions
For a shape regular triangulation in Rd , we can assume that
mkk = |ωk | ∼ hd , and akl = |σkl |

hkl
∼ hd−1

h = hd−2, thus akk
mkk
≤ 1

Ch2

bkk ≥ 0 gives

(1− θ) τ
n

mkk
akk ≤ 1

A sufficient condition is that for some C > 0,

(1− θ) τ
n

Ch2 ≤ 1

(1− θ)τn ≤ Ch2

Method stability:
Implicit Euler: θ = 1 ⇒ unconditional stability !

Explicit Euler: θ = 0 ⇒ CFL condition τ ≤ Ch2

Crank-Nicolson: θ = 1
2 ⇒ CFL condition τ ≤ 2Ch2

Tradeoff stability vs. accuracy.
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Stability discussion

τ ≤ Ch2 CFL == “Courant-Friedrichs-Levy”

Explicit (forward) Euler method can be applied on very fast systems
(GPU), with small time step comes a high accuracy in time.

Implicit Euler: unconditional stability – helpful when stability is of
utmost importance, and accuracy in time is less important

For hyperbolic systems (pure convection without diffusion), the CFL
conditions is τ ≤ Ch, thus in this case explicit computations are
ubiquitous

Comparison for a fixed size of the time interval. Assume for implicit
Euler, time accuracy is less important, and the number of time steps
is independent of the size of the space discretization.

1D 2D 3D
# unknowns N = O(h−1) N = O(h−2) N = O(h−3)

# steps M = O(N2) M = O(N) M = O(N2/3)
complexity M = O(N3) M = O(N2) M = O(N5/3)


