Scientific Computing WS 2019/2020

Lecture 19

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Practical realization of boundary conditions

- Robin boundary value problem

$$
\begin{array}{rll}
-\nabla \cdot \delta \vec{\nabla} u=f & \text { in } \Omega \\
\delta \vec{\nabla} u+\alpha(u-g)=0 & \text { on } \partial \Omega
\end{array}
$$

- Weak formulation: search $u \in H^{1}(\Omega)$ such that

$$
\int_{\Omega} \delta \vec{\nabla} u \vec{\nabla} v d \vec{x}+\int_{\partial \Omega} \alpha u v d s=\int_{\Omega} f v d \vec{x}+\int_{\partial \Omega} \alpha g v d s \forall v \in H^{1}(\Omega)
$$

- In 2D, for P^{1} FEM, boundary integrals can be calculated by trapezoidal rule without sacrificing approximation order
- Use Dirichlet penalty method to handle Dirichlet boundary conditions

More complicated integrals

- Assume non-constant right hand side f, space dependent heat conduction coefficient δ.
- Right hand side integrals

$$
f_{i}=\int_{K} f(x) \lambda_{i}(x) d \vec{x}
$$

- P^{1} stiffness matrix elements

$$
a_{i j}=\int_{K} \delta(x) \vec{\nabla} \lambda_{i} \vec{\nabla} \lambda_{j} d \vec{x}
$$

- P^{k} stiffness matrix elements created from higher order ansatz functions

Quadrature rules

- Quadrature rule:

$$
\int_{K} g(x) d \vec{x} \approx|K| \sum_{l=1}^{l_{q}} \omega_{l} g\left(\xi_{l}\right)
$$

- $\xi_{l}:$ nodes, Gauss points
- ω_{1} : weights
- The largest number k such that the quadrature is exact for polynomials of order k is called order k_{q} of the quadrature rule, i.e.

$$
\forall k \leq k_{q}, \forall p \in \mathbb{P}^{k} \int_{K} p(x) d \vec{x}=|K| \sum_{l=1}^{I_{q}} \omega_{l} p\left(\xi_{l}\right)
$$

- Error estimate:

$$
\begin{aligned}
\forall \phi \in \mathcal{C}^{k_{q}+1}(K), \left\lvert\, \frac{1}{|K|} \int_{K} \phi(x) d \vec{x}\right. & -\sum_{l=1}^{I_{q}} \omega_{l} g\left(\xi_{l}\right) \mid \\
& \leq c h_{K}^{k_{q}+1} \sup _{x \in K,|\alpha|=k_{q}+1}\left|\partial^{\alpha} \phi(x)\right|
\end{aligned}
$$

Some common quadrature rules

Nodes are characterized by the barycentric coordinates

d	k_{q}	I_{q}	Nodes	Weights
1	1	1	$\left(\frac{1}{2}, \frac{1}{2}\right)$	1
	1	2	$(1,0),(0,1)$	$\frac{1}{2}, \frac{1}{2}$
	3	2	$\left(\frac{1}{2}+\frac{\sqrt{3}}{6}, \frac{1}{2}-\frac{\sqrt{3}}{6}\right),\left(\frac{1}{2}-\frac{\sqrt{3}}{6}, \frac{1}{2}+\frac{\sqrt{3}}{6}\right)$	$\frac{1}{2}, \frac{1}{2}$
	5	3	$\left(\frac{1}{2},\right),\left(\frac{1}{2}+\sqrt{\frac{3}{20}}, \frac{1}{2}-\sqrt{\frac{3}{20}}\right),\left(\frac{1}{2}-\sqrt{\frac{3}{20}}, \frac{1}{2}+\sqrt{\frac{3}{20}}\right)$	$\frac{8}{18}, \frac{5}{18}, \frac{5}{18}$
2	1	1	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	1
	1	3	$(1,0,0),(0,1,0),(0,0,1)$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	2	3	$\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(0, \frac{1}{2}, \frac{1}{2}\right)$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	3	4	$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3},,\left(\frac{1}{5}, \frac{1}{5}, \frac{3}{5}\right),\left(\frac{1}{5}, \frac{3}{5}, \frac{1}{5}\right),\left(\frac{3}{5}, \frac{1}{5}, \frac{1}{5}\right)\right.$,	$-\frac{9}{16}, \frac{5}{48}, \frac{25}{48}, \frac{25}{48}$
3	1	1	$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$	1
	1	4	$(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
	2	4	$\left(\frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5+3 \sqrt{5}}{20}\right) \ldots$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

Matching of approximation order and quadrature order

- "Variational crime": instead of

$$
a\left(u_{h}, v_{h}\right)=f\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

we solve

$$
a_{h}\left(u_{h}, v_{h}\right)=f_{h}\left(v_{h}\right) \forall v_{h} \in V_{h}
$$

where a_{h}, f_{h} are derived from their exact counterparts by quadrature

- For P^{1} finite elements, zero order quadrature for volume integrals and first order quadrature for surface intergals is sufficient to keep the convergence order estimates stated before
- The rule of thumb for the volume quadrature is that the highest order terms must be evaluated exactly if the coefficients of the PDE are constant.

Practical realization of integrals

- Integral over barycentric coordinate function

$$
\int_{K} \lambda_{i}(x) d \vec{x}=\frac{1}{3}|K|
$$

- Right hand side integrals. Assume $f(x)$ is given as a piecewise linear function with given values in the nodes of the triangulation

$$
f_{i}=\int_{K} f(x) \lambda_{i}(x) d \vec{x} \approx \frac{1}{3}|K|\left(f\left(a_{0}\right)+f\left(a_{1}\right)+f\left(a_{2}\right)\right)
$$

- Integral over space dependent heat conduction coefficient: Assume $\delta(x)$ is given as a piecewise linear function with given values in the nodes of the triangulation

$$
a_{i j}=\int_{K} \delta(x) \vec{\nabla} \lambda_{i} \vec{\nabla} \lambda_{j} d \vec{x}=\frac{1}{3}\left(\delta\left(a_{0}\right)+\delta\left(a_{1}\right)+\delta\left(a_{2}\right)\right) \int_{K} \vec{\nabla} \lambda_{i} \vec{\nabla} \lambda_{j} d \vec{x}
$$

P1 FEM stiffness matrix condition number

- Homogeneous dirichlet boundary value problem

$$
\begin{aligned}
& -\nabla \cdot \delta \vec{\nabla} u=f \quad \text { in } \Omega \\
& \left.u\right|_{\partial \Omega}=0
\end{aligned}
$$

- Lagrange degrees of freedom $a_{1} \ldots a_{N}$ corresponding to global basis functions $\phi_{1} \ldots \phi_{N}$ such that $\left.\phi_{i}\right|_{\partial \Omega}=0$ aka $\phi_{i} \in V_{h} \subset H_{0}^{1}(\Omega)$
- Stiffness matrix $A=\left(a_{i j}\right)$:

$$
a_{i j}=a\left(\phi_{i}, \phi_{j}\right)=\int_{\Omega} \delta \vec{\nabla} \phi_{i} \vec{\nabla} \phi_{j} d \vec{x}
$$

- bilinear form $a(\cdot, \cdot)$ is self-adjoint, therefore A is symmetric, positive definite
- Condition number estimate for P^{1} finite elements on quasi-uniform triangulation:

$$
\kappa(A) \leq c h^{-2}
$$

P1 FEM Stiffness matrix row sums

Row sums:

$$
\begin{aligned}
\sum_{j=1}^{N} a_{i j} & =\sum_{j=1}^{N} \int_{\Omega} \vec{\nabla} \phi_{i} \vec{\nabla} \phi_{j} d x=\int_{\Omega} \vec{\nabla} \phi_{i} \vec{\nabla}\left(\sum_{j=1}^{N} \phi_{j}\right) d x \\
& =\int_{\Omega} \vec{\nabla} \phi_{i} \vec{\nabla}(1) d x \\
& =0
\end{aligned}
$$

P1 FEM stiffness matrix entry signs

Local stiffness matrix S_{K}

$$
s_{i j}=\int_{K} \vec{\nabla} \lambda_{i} \vec{\nabla} \lambda_{j} d x=\frac{|K|}{2|K|^{2}}\left(y_{i+1}-y_{i+2}, x_{i+2}-x_{i+1}\right)\binom{y_{j+1}-y_{j+2}}{x_{j+2}-x_{j+1}}
$$

- Main diagonal entries positive
- Local contributions from element stiffness matrices: Scalar products of vectors orthogonal to edges. These are nonpositive if the angle between the edges are $\leq 90^{\circ}$
- weakly acute triangulation: all triangle angles are less than $\leq 90^{\circ}$
- In fact, for constant coefficients, in 2D, Delaunay is sufficient, as contributions from opposite angles compensate each other
- All row sums are zero $\Rightarrow A$ is singular
- Matrix becomes irreducibly diagonally dominant if we add at least one positive value to the main diagonal, e.g. from Dirichlet BC

Stationary linear reaction-diffusion

- Assume additional process in each REV which produces or destroys species depending on the amount of species present with given rate r.

Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\nabla \cdot \delta \vec{\nabla} u+r u & =f & & \text { in } \Omega \\
\delta \vec{\nabla} u \cdot \vec{n}+\alpha(u-g) & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

- Coercivity guaranteed e.g. for $\alpha \geq 0, r>0$ which means species destruction FEM formulation: search $u_{h} \in V_{h}=\operatorname{span}\left\{\phi_{1} \ldots \phi_{N}\right\}$ such that

$$
\begin{aligned}
& \underbrace{\int_{\Omega} \delta \vec{\nabla} u_{h} \vec{\nabla} v_{h} d \vec{x}}_{\text {"stiffness matrix" }}+\underbrace{\int_{\Omega} r u_{h} v_{h} d \vec{x}}_{\text {"mass matrix" }}+\underbrace{\int_{\partial \Omega} \alpha u_{h} v_{h} d s}_{\text {"boundary mass matrix" }} \\
&=\int_{\Omega} f v_{h} d \vec{x}+\int_{\partial \Omega} \alpha g v_{h} d s \forall v_{h} \in V_{h}
\end{aligned}
$$

- Coercivity + symmetry \Rightarrow positive definiteness

Mass matrix properties

- Mass matrix (for $r=1): M=\left(m_{i j}\right)$:

$$
m_{i j}=\int_{\Omega} \phi_{i} \phi_{j} d x
$$

- Self-adjoint, coercive bilinear form $\Rightarrow M$ is symmetric, positiv definite
- For a family of quasi-uniform, shape-regular triangulations, for every eigenvalue μ one has the estimate

$$
c_{1} h^{d} \leq \mu \leq c_{2} h^{d}
$$

$\mathrm{T} \Rightarrow$ condition number $\kappa(M)$ bounded by constant independent of h :

$$
\kappa(M) \leq c
$$

- How to see this ? Let $u_{h}=\sum_{i=1}^{N} U_{i} \phi_{i}$, and μ an eigenvalue (positive,real!) Then

$$
\left\|u_{h}\right\|_{0}^{2}=(U, M U)_{\mathbb{R}^{N}}=\mu(U, U)_{\mathbb{R}^{N}}=\mu\|U\|_{\mathbb{R}^{N}}^{2}
$$

From quasi-uniformity we obtain

$$
c_{1} h^{d}\|U\|_{\mathbb{R}^{N}}^{2} \leq\left\|u_{h}\right\|_{0}^{2} \leq c_{2} h^{d}\|U\|_{\mathbb{R}^{N}}^{2}
$$

Mass matrix M-Property (P1 FEM) ?

- For P^{1}-finite elements, all integrals $m_{i j}=\int_{\Omega} \phi_{i} \phi_{j} d x$ are zero or positive, so we get positive off diagonal elements.
- No M-Property!

Mass matrix lumping (P1 FEM)

- Local mass matrix for P1 FEM on element K (calculated by 2 nd order exact edge midpoint quadrature rule):

$$
M_{K}=|K|\left(\begin{array}{ccc}
\frac{1}{6} & \frac{1}{12} & \frac{1}{12} \\
\frac{1}{12} & \frac{1}{6} & \frac{1}{12} \\
\frac{1}{12} & \frac{1}{12} & \frac{1}{6}
\end{array}\right)
$$

- Lumping: sum up off diagonal elements to main diagonal, set off diagonal entries to zero

$$
\tilde{M}_{K}=|K|\left(\begin{array}{ccc}
\frac{1}{3} & 0 & 0 \\
0 & \frac{1}{3} & 0 \\
0 & 0 & \frac{1}{3}
\end{array}\right)
$$

- Interpretation as change of quadrature rule to first order exact vertex based quadrature rule
- Loss of accuracy, gain of stability

Effect of mass matrix lumping

- For P1 FEM on weakly acute or Delaunay triangulations, mass matrix lumping can guarantee M-Property of system matrix
- Adding a mass matrix which is not lumped yields a positive definite matrix (due to coercivity) and thus nonsingularity, but destroys M-property unless the absolute values of its off diagonal entries are less than those of A, i.e. for small r.
- Same situation witb Robin boundary conditions and boundary mass matrix
- Introducing the Dirichlet Penalty trick at continuous level without mass lumping would be disastrous.

