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Practical realization of boundary conditions

Robin boundary value problem

−∇ · δ~∇u = f in Ω
δ~∇u + α(u − g) = 0 on ∂Ω

Weak formulation: search u ∈ H1(Ω) such that

∫

Ω
δ~∇u~∇v d~x +

∫

∂Ω
αuv ds =

∫

Ω
fv d~x +

∫

∂Ω
αgv ds ∀v ∈ H1(Ω)

In 2D, for P1 FEM, boundary integrals can be calculated by
trapezoidal rule without sacrificing approximation order
Use Dirichlet penalty method to handle Dirichlet boundary conditions
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More complicated integrals

Assume non-constant right hand side f , space dependent heat
conduction coefficient δ.

Right hand side integrals

fi =
∫

K
f (x)λi(x) d~x

P1 stiffness matrix elements

aij =
∫

K
δ(x) ~∇λi ~∇λj d~x

Pk stiffness matrix elements created from higher order ansatz
functions
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Quadrature rules
Quadrature rule:

∫

K
g(x) d~x ≈ |K |

lq∑

l=1
ωlg(ξl)

ξl : nodes, Gauss points
ωl : weights
The largest number k such that the quadrature is exact for
polynomials of order k is called order kq of the quadrature rule, i.e.

∀k ≤ kq, ∀p ∈ Pk
∫

K
p(x) d~x = |K |

lq∑

l=1
ωlp(ξl)

Error estimate:

∀φ ∈ Ckq+1(K),

∣∣∣∣∣∣
1

|K |

∫

K
φ(x) d~x −

lq∑

l=1
ωlg(ξl)

∣∣∣∣∣∣

≤ chkq+1
K sup

x∈K ,|α|=kq+1
|∂αφ(x)|
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Some common quadrature rules

Nodes are characterized by the barycentric coordinates
d kq lq Nodes Weights
1 1 1 ( 1

2 , 1
2 ) 1

1 2 (1, 0), (0, 1) 1
2 , 1

2
3 2 ( 1

2 +
√

3
6 , 1

2 −
√

3
6 ), ( 1

2 −
√

3
6 , 1

2 +
√

3
6 ) 1

2 , 1
2

5 3 ( 1
2 , ), ( 1

2 +
√

3
20 , 1

2 −
√

3
20 ), ( 1

2 −
√

3
20 , 1

2 +
√

3
20 ) 8

18 , 5
18 , 5

18
2 1 1 ( 1

3 , 1
3 , 1

3 ) 1
1 3 (1, 0, 0), (0, 1, 0), (0, 0, 1) 1

3 , 1
3 , 1

3
2 3 ( 1

2 , 1
2 , 0), ( 1

2 , 0, 1
2 ), (0, 1

2 , 1
2 ) 1

3 , 1
3 , 1

3
3 4 ( 1

3 , 1
3 , 1

3 ), ( 1
5 , 1

5 , 3
5 ), ( 1

5 , 3
5 , 1

5 ), ( 3
5 , 1

5 , 1
5 ), − 9

16 , 25
48 , 25

48 , 25
48

3 1 1 ( 1
4 , 1

4 , 1
4 , 1

4 ) 1
1 4 (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) 1

4 , 1
4 , 1

4 , 1
4

2 4 ( 5−
√

5
20 , 5−

√
5

20 , 5−
√

5
20 , 5+3

√
5

20 ) . . . 1
4 , 1

4 , 1
4 , 1

4
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Matching of approximation order and quadrature order

“Variational crime”: instead of

a(uh, vh) = f (vh) ∀vh ∈ Vh

we solve
ah(uh, vh) = fh(vh) ∀vh ∈ Vh

where ah, fh are derived from their exact counterparts by quadrature

For P1 finite elements, zero order quadrature for volume integrals and
first order quadrature for surface intergals is sufficient to keep the
convergence order estimates stated before

The rule of thumb for the volume quadrature is that the highest order
terms must be evaluated exactly if the coefficients of the PDE are
constant.
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Practical realization of integrals

Integral over barycentric coordinate function
∫

K
λi(x) d~x = 1

3 |K |

Right hand side integrals. Assume f (x) is given as a piecewise linear
function with given values in the nodes of the triangulation

fi =
∫

K
f (x)λi(x) d~x ≈ 1

3 |K |(f (a0) + f (a1) + f (a2))

Integral over space dependent heat conduction coefficient: Assume
δ(x) is given as a piecewise linear function with given values in the
nodes of the triangulation

aij =
∫

K
δ(x) ~∇λi ~∇λj d~x = 1

3 (δ(a0)+δ(a1)+δ(a2))
∫

K
~∇λi ~∇λj d~x
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P1 FEM stiffness matrix condition number

Homogeneous dirichlet boundary value problem

−∇ · δ~∇u = f in Ω
u|∂Ω = 0

Lagrange degrees of freedom a1 . . . aN corresponding to global basis
functions φ1 . . . φN such that φi |∂Ω = 0 aka φi ∈ Vh ⊂ H1

0 (Ω)
Stiffness matrix A = (aij):

aij = a(φi , φj) =
∫

Ω
δ~∇φi ~∇φj d~x

bilinear form a(·, ·) is self-adjoint, therefore A is symmetric, positive
definite
Condition number estimate for P1 finite elements on quasi-uniform
triangulation:

κ(A) ≤ ch−2
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P1 FEM Stiffness matrix row sums

Row sums:

N∑

j=1
aij =

N∑

j=1

∫

Ω
~∇φi ~∇φj dx =

∫

Ω
~∇φi ~∇




N∑

j=1
φj


 dx

=
∫

Ω
~∇φi ~∇ (1) dx

= 0
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P1 FEM stiffness matrix entry signs

Local stiffness matrix SK

sij =
∫

K
~∇λi ~∇λj dx = |K |

2|K |2
(
yi+1 − yi+2, xi+2 − xi+1

) (
yj+1 − yj+2
xj+2 − xj+1

)

Main diagonal entries positive

Local contributions from element stiffness matrices: Scalar products
of vectors orthogonal to edges. These are nonpositive if the angle
between the edges are ≤ 90◦

weakly acute triangulation: all triangle angles are less than ≤ 90◦

In fact, for constant coefficients, in 2D, Delaunay is sufficient, as
contributions from opposite angles compensate each other

All row sums are zero ⇒ A is singular

Matrix becomes irreducibly diagonally dominant if we add at least one
positive value to the main diagonal, e.g. from Dirichlet BC
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Stationary linear reaction-diffusion
Assume additional process in each REV which produces or destroys
species depending on the amount of species present with given rate r .

Search function u : Ω → R such that

−∇ · δ~∇u + ru = f inΩ
δ~∇u · ~n + α(u − g) = 0 on∂Ω

Coercivity guaranteed e.g. for α ≥ 0, r > 0 which means species
destruction FEM formulation: search uh ∈ Vh = span{φ1 . . . φN}
such that

∫

Ω
δ~∇uh ~∇vh d~x

︸ ︷︷ ︸
”stiffness matrix”

+
∫

Ω
ruhvhd~x

︸ ︷︷ ︸
”mass matrix”

+
∫

∂Ω
αuhvh ds

︸ ︷︷ ︸
”boundary mass matrix”

=
∫

Ω
fvh d~x +

∫

∂Ω
αgvh ds ∀vh ∈ Vh

Coercivity + symmetry ⇒ positive definiteness
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Mass matrix properties
Mass matrix (for r = 1): M = (mij):

mij =
∫

Ω
φiφj dx

Self-adjoint, coercive bilinear form ⇒ M is symmetric, positiv definite

For a family of quasi-uniform, shape-regular triangulations, for every
eigenvalue µ one has the estimate

c1hd ≤ µ ≤ c2hd

T ⇒ condition number κ(M) bounded by constant independent of h:
κ(M) ≤ c

How to see this ? Let uh =
∑N

i=1 Uiφi , and µ an eigenvalue
(positive,real!) Then

||uh||20 = (U, MU)RN = µ(U, U)RN = µ||U||2RN

From quasi-uniformity we obtain
c1hd ||U||2RN ≤ ||uh||20 ≤ c2hd ||U||2RN

and conclude Lecture 19 Slide 12
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Mass matrix M-Property (P1 FEM) ?

For P1-finite elements, all integrals mij =
∫

Ω φiφj dx are zero or
positive, so we get positive off diagonal elements.

No M-Property!
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Mass matrix lumping (P1 FEM)

Local mass matrix for P1 FEM on element K
(calculated by 2nd order exact edge midpoint quadrature rule):

MK = |K |




1
6

1
12

1
12

1
12

1
6

1
12

1
12

1
12

1
6




Lumping: sum up off diagonal elements to main diagonal, set off
diagonal entries to zero

M̃K = |K |




1
3 0 0
0 1

3 0
0 0 1

3




Interpretation as change of quadrature rule to first order exact vertex
based quadrature rule

Loss of accuracy, gain of stability
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Effect of mass matrix lumping

For P1 FEM on weakly acute or Delaunay triangulations, mass matrix
lumping can guarantee M-Property of system matrix

Adding a mass matrix which is not lumped yields a positive definite
matrix (due to coercivity) and thus nonsingularity, but destroys
M-property unless the absolute values of its off diagonal entries are
less than those of A, i.e. for small r .

Same situation witb Robin boundary conditions and boundary mass
matrix

Introducing the Dirichlet Penalty trick at continuous level without
mass lumping would be disastrous.

Lecture 19 Slide 15


