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The Galerkin method I

@ Let V be a Hilbert space. Let a: V x V — R be a self-adjoint
bilinear form, and f a linear functional on V. Assume a is coercive
with coercivity constant «, and continuity constant ~.

@ Continuous problem: search u € V such that
a(u,v)=f(v)Vv eV

o Let V), C V be a finite dimensional subspace of V

@ “Discrete” problem = Galerkin approximation:
Search up € V), such that

a(uh, Vh) = f(vh) Vv, € Vh

By Lax-Milgram, this problem has a unique solution as well.




Céa's lemma

@ What is the connection between u and uj ?

o Let v, € V), be arbitrary. Then

IN

allu— up|? < a(u — up, u— up)  (Coercivity)

(

a(u— up,u—vp)+ a(u — up, vy — up)
(v — up,u—vy) (Galerkin Orthogonality)
|

a
<7

|u— up|| - ||lu—va|]| (Boundedness)

@ As a result

o,
— < — inf -
lu=upll < T inf, Jlu =

@ Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace V.




From the Galerkin method to the matrix eqation

o Let ¢1...¢, be a set of basis functions of V.
@ Then, we have the representation up = Zle ujp;
@ In order to search u, € V), such that

a(uh, Vh) = f(vh) Yvp € Vy
it is actually sufficient to require

a(up, i) = f(¢i) (i=1...n)

a (Z Uj¢ja¢i> =f(¢:)(i=1...n)

n

>y d)u = F(¢7) (i=1...n)

j=1
AU=F

with A = (a,-j), ajj = a(¢,-,¢j), F = (f;), f; = F(¢,‘), U
@ Matrix dimension is n x n. Matrix sparsity ?

= (U,‘).




Obtaining a finite dimensional subspace

o Let Q= (a,b) CR!
o Let a(u,v) = [Y §VuVvdX + au(a)v(a) + au(b)v(b)

@ Calculus 101 provides a finite dimensional subspace: the space of
sin/cos functions up to a certain frequency = spectral method

@ Ansatz functions have global support = full n x n matrix
@ OTOH: rather fast convergence for smooth data
@ Generalization to higher dimensions possible

@ Big problem in irregular domains: we need the eigenfunction basis of
some operator...

@ Spectral methods are successful in cases where one has regular
geometry structures and smooth/constant coefficients — e.g.
“Spectral Einstein Code”




The finite element idea |

@ Choose basis functions with local support. = only integrals of basis
function pairs with overlapping support contribute to matrix.

o Linear finite elements in Q = (a, b) C RL:
@ Partitiona=x1 <x <.---<x,=5b

@ Basis functions (for i =1...n)

s 1> 1x € (xim1, %)
oi(x) = ﬁ7 i< nx€ (Xi,Xit1)
0, else

.
.
— 4’\

- %
— ¢
— $n1
— ¢

x1=a X2 X3 X4 Xp-1 Xp=b




FE matrix elements for 1D heat equation |

o Any function up € V), = span{¢s ... ¢,} is piecewise linear, and the
coefficients in the representation up = 27:1 uj¢; are the values
Uh(X,‘).

@ Fortunately, we are working with a weak formulation, and weak
derivatives are well defined (and coincide with the classical derivatives
where the basis functions are smooth)

o Let ¢;, ¢; be two basis functions, regard

b
S,'j = / ﬁgb, . 6¢Jd X

o We have supp¢; Nsuppgp; =B unless i =j, i+1=jori—1=j.
@ Therefore sy =0 unless i = j, i+ 1=jori—1=j.




FE matrix elements for 1D heat equation Il

Let j =i+ 1. Then supp ¢; Nsupp ¢; = (X, Xi41), ¢} = _%’
¢; = fraclh where h = xi11 — x

b_, = . Xi+1 L e Xit1 ] . 1
/avas,w,-dx:/x ¢i¢jdx:—/x i =

g i

Similarly, for j =i —1: fab ﬁgf),ﬁgbjdz =-1
For1<i<N:

b . _ N Xi+1 N o Xi+1 1 . 2
/a VoiVeidx = /X 1 (67) dx:/x ﬁdX: n

i— i—1

Fori=1ori=N: fab ViVeidx = 1
For the right hand side, calculate vector elements f; = fab f(x)pidx
using a quadrature rule.




FE matrix elements for 1D heat equation Il

Adding the boundary integrals yields

=

>IN -
> -

1
1 h
T

=
>IN,
>

.. the same matrix as for the finite difference and finite volume methods




Simplices

o Let {31...34.1} C RY such that the d vectors 3, — 31 ...3q41 — a1
are linearly independent. Then the convex hull K of a;...3d4.1 is
called simplex, and 31 ... 34,1 are called vertices of the simplex.

e Unit simplex: 3 = (0...0),3; = (0,1...0)...34:1 =(0...0,1).

d
K—{?GRd:X;ZO(i—l...d)and Zx,-gl}
i=1

@ A general simplex can be defined as an image of the unit simplex
under some affine transformation

o F;: face of K opposite to 3;

e n;: outward normal to F;




Simplex characteristics

o Diameter of K: hx = maxz, gex ||X1 — %]
= length of longest edge if K

@ pk diameter of largest ball that can be inscribed into K
0 oK = Z—’;: local shape regularity measure
o oK =23 for equilateral triangle

e ok — oo if largest angle approaches .




Barycentric coordinates

Definition: Let K C RY be a d-simplex given by the points 3 ... 3g41.
Let A(x) = (M1(X) ... Ag11(X)) be a vector such that for all X ¢ RY

d+1 d+1

dManE) =% > NEF) =1
j=1 j=1

This vector is called the vector of barycentric coordinates of X with
respect to K.




Barycentric coordinates |l

Lemma The barycentric coordinates of a given point is well defined and
unique. Moreover, for the simplex edges &;, one has

Ai(3i) = 05

Proof: The definition of A given by a d + 1 x d + 1 system of equations
with the matrix

a1,1 d21 ... Aad+1,1
ai2 d22 ... dad+1.2
M=1 : : :
did d2d --- dd+l,d
1 1 - 1
Subtracting the first column from the others gives
ar1 421 — a1 ... ad+1,1 — a1
ai2 d22—a12 ... Add+1,2 — d1.2
M/ _ . .
a1d d2d—4d1d --- dd+1,d — dl,d

1 0 0




Barycentric coordinates Il

det M = det M’ is the determinant of the matrix whose columns are the
edge vectors of K which are linearly independent.

For the simplex edges one has

d+1

> FN(E) =3
j=1

which is fulfilled if A\;(3;) =1 for i = j and X;(§;) = 0 for i # j. And we
have uniqueness. [

At the same time, the measure (area) is calculated as |K| = | det M'|.




Barycentric coordinates 1V

o Let K;j(X) be the subsimplex of K
made of X and &; ... 3¢ with 3;
omitted.

o Its measure |Kj(X)| is established
from its determinant and a linear
function of the coordiates for X.

@ One has w = §j; and therefore,
o _ IKi(X)]
Ai(X) =
’ K|

is the ratio of the measures of Kj(X)
and K.




Conformal triangulations Il

o d =1: Each intersection F = K, N K, is either empty or a common
vertex

@ d =2 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge

o d =3 : Each intersection F = K, N K, is either empty or a common
vertex or a common edge or a common face

@ Delaunay triangulations are conformal




Shape regularity

@ Now we discuss a family of meshes 7}, for h — 0.

For given Tp, assume that h = maxkeT; hk

A family of meshes is called shape regular if

h
Vh,VYK € Th,ox = —~ < ag
PK

e InlD, ok =1

@ In2D, ok < ﬁ where 6 is the smallest angle




Polynomial space Py

@ Space of polynomials in x; ... xy of total degree < k with real
coefficients o,

p i

Py = ¢ p(x) = E Qg Xy Xy
0<iy...ig<k
it tig <k

@ Dimension:

k+1,
dim Py = (dtk) = { Lk +1)(k +2),
F(k+1)(k+2)(k+3),

Q o q
I
w N =

3, d=1
dimIF’2= 6, d=2
10, d=3




Py simplex finite elements

o K: simplex spanned by 3y ...3441 in RY

@ For0<ii...igy1 <k, i1 + -+ igy1 = k, let the set of nodes
Y = {01...0} be defined by the points &j..;,x with barycentric
coordinates (i ... %2,

P, P2 Py

Y

@ s =cardX = dimPyx = there exists a basis 0 ...0s of P such that
0:(05) = 9




IP; simplex finite elements

@ K: simplex spanned by a; ...ag41 in RY
es=d+1
o Nodes = vertices

@ Basis functions 65 ...60,11 = barycentric coordinates A1 ... Ag+1

NN




Global degrees of freedom

@ Given a triangulation 7j
o Let {a1...dan} = U {Fk1...0ks} be the set of global degrees of
freedom. e
@ Degree of freedom map
JoTax{l...s} = {1...N}
(K, m) — j(K, m) the global degree of freedom number




Lagrange finite element space

@ Given a triangulation 7, of €2, define the spaces

Pk ={vy € C°(Q) : vialx € Px VK € Tj} C HY(Q)
P&h = {vh € Pf : vhloq = 0} C H3(Q)

@ Global shape functions 64, ...,0y € P,’,‘ defined by

Omn if3ne{l...s}:j(K,n)=i
0 otherwise

oilk(3k,m) = {

@ {¢1,...,0n} is a basis of Py, and 41 ...y is a basis of L(Pp, R):

o {¢1,...,¢n} are linearly independent: if z,N:1 aj¢; = 0 then
evaluation at 3 ... 3y yields that a1 ...ay = 0.

o Let v € Py. Let wy = > vi(3)¢y. Then for all K € T, vi|x and

whp|k coincide in the local nodes 3k 1 ... 3k2, = Vhlk = walk.




Finite element approximation space

We have

W WWNNNNNERF~RRF| A

WNFEF WNFE WN =X




Local Lagrange interpolation operator

o Let {K,P,X} be a finite element with shape function bases
{61...0:}. Let V(K) =C%K) and P C V(K)
@ local interpolation operator

I V(K) = P

@ P is invariant under the action of Zg, i.e. Vp € P,Zx(p) = p:
o Let p= Z;Zl a;f; Then,

Tk(p) = Zp(m)o — 3> b

i=1 j=1

—ZZ&,&,H 7204] i

i=1 j=1




Global Lagrange interpolation operator

Let V, = Pk

Ih . CO(Qh) — Vh
N

V(%) = vh(X) = Y v(3)i(X)

i=1




Local interpolation error estimate |

Theorem: Let {R, P, f} be a finite element with associated normed
vector space V(K). Assume that

P, C P C H*(K) c V(K)

Then there exists ¢ > 0 such that for all m=0...2, K € Tp,, v € H*(K):

|v — I,1<v|m,K < chf(_ma;’g\vb,;(.

l.e. the the local interpolation error can be estimated through hyk, ok and
the norm of a higher derivative.




Local interpolation: special cases

e m=0: |v—Tkv|ox < ch2|v]ak

e m=1: |v—Tkv|1k < chkok|v]ak




Global interpolation error estimate for Lagrangian finite

elements, k=1

e Assume v € H?(Q), e.g. if problem coefficients are smooth and the
domain is convex

[|v 7I},VH07Q + h|v fI,%v\LQ < ch2|v|279

lv—T}v
lim | inf [v—wvpl10] =0
0 \ vev:

e If v € H?(Q) cannot be guaranteed, estimates become worse.
Example: L-shaped domain.

1,0 < chlv|z,0

@ These results immediately can be applied in Cea's lemma.




Error estimates for homogeneous Dirichlet problem

@ Search u € H}(Q) such that

/Wuﬁvd;’:/fvdzwe H3 (Q)+
Q Q

Then, limp_yo||u — up||1.0 = 0. If u € H?(Q) (e.g. on convex domains)
then

llu— unlli,a < chluzq

l|u— unllo,0 < ch?|ulr,0

Under certain conditions (convex domain, smooth coefficients) one also has

|lu = unllon < chlula

(“Aubin-Nitsche-Lemma™)




H?-Regularity

u € H?(Q) may be not fulfilled e.g.

e if Q has re-entrant corners

e if on a smooth part of the domain, the boundary condition type
changes

o if problem coefficients () are discontinuos

o Situations differ as well between two and three space dimensions
@ Delicate theory, ongoing research in functional analysis
@ Consequence for simuations

o Deterioration of convergence rate
o Remedy: local refinement of the discretization mesh
@ using a priori information
@ using a posteriori error estimators 4+ automatic refinement of
discretizatiom mesh




Weak formulation of homogeneous Dirichlet problem

@ Search u € V = H}(Q) such that
/Nuﬁvd;e:/fvdwve HL(Q)
Q Q
@ Then,
a(u,v) = / SVuVv dx
Q

is a self-adjoint bilinear form defined on the Hilbert space H}(£2).




Galerkin ansatz

o Let V;, C V be a finite dimensional subspace of V

@ “Discrete” problem = Galerkin approximation:
Search up € V), such that

a(u;” Vh) = f(Vh) Vvh S Vh

o E.g. Vj is the space of P1 Lagrange finite element approximations




Stiffness matrix for Laplace operator for P1 FEM

@ Element-wise calculation:

ay = a(oi, ¢;) = /Qﬁﬁbﬁqﬁj C’;:/ > VoilkVojlk ds

KeTh

@ Standard assembly loop:
fori,j=1...N do
| seta;=0
end
for K € 7, do
for m,n=0...d do

Smn = / VARV, d3
K

3o (Ko m) sjuor (K1) = Qjgor (K,m) o (K,m) T Smn

end
end

@ Local stiffness matrix:

SK = (SK;m,n) = / V/\mV/\n dx
K




Local stiffness matrix calculation for P1 FEM

@ ag...ay: vertices of the simplex K, a € K.

[K;(a)l

@ Barycentric coordinates: \j(a) = SR

o For indexing modulo d+1 we can write
1
|K| = E det (aj+1 —3j,...3j+d — aj)

1
|KJ(a)| = E det (3j+1 —da,...3dj4d — a)

@ From this information, we can calculate explicitelyﬁ)\j(x) (which are
constant vectors due to linearity) and the corresponding entries of the
local stiffness

S,'J' = / ﬁ/\,ﬁ/\J dx
K




Local stiffness matrix calculation for P1 FEM in 2D

@ ap = (x0,)0)---ad = (x2,y2): vertices of the simplex K,
a=(x,y) € K.

@ Barycentric coordinates: Aj(x,y) = W
@ For indexing modulo d+1 we can write

1= Lae (327 2
2 Yitr =Y Yir2 =Y

1 Xit1 — X Xigo — X
Ki(x,y)| = = det | 7*! 2 )
LIl 2 (yj+1_y Yi42 — Y

@ Therefore, we have

K51 = 5 (G2 = X)02 = ¥) = (52 = )50 =)
DR = 2 (051 =) = (o2 = 9)) = 20— )
NN VA




Local stiffness matrix calculation for P1 FEM in 2D II

K

@ So, let V = (Xl X% X2 XO)
Yyi—Yo Y2—M%
@ Then

x1—xo= Voo — Viu
yi—y2=Vio— Vi
and

2K T = ()ﬁ —)/2> _ <V1o - Vi

X2 — X1 Vor — Voo
, - v,
2k o= (27 0) = ()
K| T, = (Y01 = —Vio
K V2 = xx—x0) \ Voo

W (}’i+1 = Yit2, Xi+2 — Xi+1) <yj+l B yj+2)

Xj+2 — Xj+1

)




Degree of freedom map representation for P1 finite

elements

@ List of global nodes ag...apn: two dimensional array of coordinate
values with N rows and d columns

o Local-global degree of freedom map: two-dimensional array C of
index values with Ng rows and d + 1 columns such that
C(i, m) = jaor (Ki, m).

@ The mesh generator triangle generates this information directly




Practical realization of boundary conditions

@ Robin boundary value problem
~V-oVu=f inQ
Vu+a(u—g)=0 ondQ

o Weak formulation: search u € H(Q) such that

/5ﬁu§vd>?+/ auv d5:/ fvd>?+/ agvds Vv € HY(Q)
Q o9 Q o9

@ In 2D, for P! FEM, boundary integrals can be calculated by
trapezoidal rule without sacrificing approximation order
@ Use Dirichlet penalty method to handle Dirichlet boundary conditions



More complicated integrals

@ Assume non-constant right hand side f, space dependent heat
conduction coefficient .

@ Right hand side integrals
f; :/ f(x)Ni(x) dX
K

@ P! stiffness matrix elements

a,-j:/é(x) VX V) d&
K

e Pk stiffness matrix elements created from higher order ansatz
functions



Quadrature rules

@ Quadrature rule:

lq
[ g0 dx~ K1Y@
K =1
@ &1 nodes, Gauss points
@ w;: weights

@ The largest number k such that the quadrature is exact for
polynomials of order k is called order k, of the quadrature rule, i.e.

lq
Wk < kg, Vp € ]P’"/ p(x) d% = K| 3 wip(€)
K I=1
@ Error estimate:

Vo € Cktl(K |K|/¢> dx—Zw/gé“/

<Schd™ sup [079(x))
x€K,|a|=kq+1
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Matching of approximation order and quadrature order

@ “Variational crime”: instead of
a(uh, Vh) = f(vh) Yvp € V
we solve
an(un, vi) = fa(vh) Yvi € Vj
where ap, f, are derived from their exact counterparts by quadrature

@ For P! finite elements, zero order quadrature for volume integrals and
first order quadrature for surface intergals is sufficient to keep the
convergence order estimates stated before

@ The rule of thumb for the volume quadrature is that the highest order
terms must be evaluated exactly if the coefficients of the PDE are
constant.



Practical realization of integrals

@ Integral over barycentric coordinate function

| A a5 = 51K
K 3

@ Right hand side integrals. Assume f(x) is given as a piecewise linear
function with given values in the nodes of the triangulation

fi= [ G0N 05~ 3IKI(F(a0) + Flar) + Fla)

@ Integral over space dependent heat conduction coefficient: Assume
d(x) is given as a piecewise linear function with given values in the
nodes of the triangulation

- =

560 90,9 2’:7(6(a0)+6(31)+5(a2))/ﬁ)\;ﬁ)\jdi
K



P1 FEM stiffness matrix condition number

@ Homogeneous dirichlet boundary value problem

~V-Vu="f inQ
u|3Q:0

o Lagrange degrees of freedom a; ... ay corresponding to global basis
functions ¢ ... ¢n such that ¢;|aq = 0 aka ¢; € Vi, C H}(Q)
o Stiffness matrix A = (a;):

aj = a(qﬁ,-,@-) = /Q(5€¢,§¢J dx

o bilinear form a(-,-) is self-adjoint, therefore A is symmetric, positive
definite
e Condition number estimate for P! finite elements on quasi-uniform

triangulation:
w(A) < ch™



The problem with Dirichlet boundary conditions

@ Homogeneous Dirichlet BC = include boundary condition into set of
basis functions

@ Inhomogeneous Dirichlet, may be only at a part of the boundary

Use exact approach from as in continous formulation (with lifting ug
etc) = highly technical

Eliminate Dirichlet BC algebraically after building of the matrix, i.e.
fix “known unknowns” at the Dirichlet boundary = highly technical

Modifiy matrix such that equations at boundary exactly result in
Dirichlet values = loss of symmetry of the matrix

Penalty method



Dirichlet BC: Algebraic manipulation

@ Assume 1D situation with BC u; = g
e From integration in H' regardless of boundary values:

Sl
<
flrs

=N

1
h

[

>
>IN
>=
<
N
Sh

AU =

=
SN
|
>
P -
[N
|
&h

@ Fix u; and eliminate:
2 _
h

up Hh+1ig
AU _1 2 _
=|=% &

us | — 3

Sl
>
\

@ A’ becomes idd and stays symmetric
@ operation is quite technical



Dirichlet BC: Modify boundary equations

e From integration in H' regardless of boundary values:

1 1
b h up f
1 2" P
AU “h h h u2 2
= 1 2 1 =
~h b h us fs

@ Modify equation at boundary to exactly represent Dirichlet values

1 1
5 0 Uy +8
1 2 1 f.
Au—| o T ) el [
- ~h h  "h us fs

o A’ becomes idd
@ loses symmetry = problem e.g. with CG method



Dirichlet BC: Discrete penalty trick

e From integration in H' regardless of boundary values:

1 1 f;
h " h i 1
1 2 1 £
“h h “h 2 2
AU = 1 2 1 =
~h h ~h us 13

o Add penalty terms
i1 w\ (fi+lg
1 2 1
, ~h  h b U2 f
e R I

o A’ becomes idd, keeps symmetry, and the realization is technically
easy.

If € is small enough, u; = g will be satisfied exactly within floating
point accuracy.

Iterative methods should be initialized with Dirichlet values.
Works for nonlinear problems, finite volume methods



Dirichlet penalty trick, general formulation

@ Dirichlet boundary value problem

-V - Vu=f

ulog =g

in Q

@ We discussed approximation of Dirichlet problem by Robin problem
@ Practical realization uses discrete approach for Lagrange degrees of

freedom a; ... ap corresponding to global basis functions ¢1 ... ¢n:
@ Search up = vazl uip; € Vi = span{¢y ... ¢y} such that

where

AU+NU=F +NG

o U=(u1...un) L
o A= (a;): stiffness matrix with a; = fQ oV ¢V, dx
o F= [ fV¢;dx

o G=

. g(ai), aj €00
) with g =
(&) £ {0, else
1 . .
2, i=j,a €0Q
o I = (m;) is a diagonal matrix with 7; = < €’ F=Ji3 €
0, else



P1 FEM Stiffness matrix row sums

Row sums:

N N . . . . N
o N dx = ; | d
;a,, JZ_;/QW Ve, dx /Qwv (jz_;qb,) x

:/%,ﬁ(l) dx
Q



P1 FEM stiffness matrix entry signs

Local stiffness matrix Sk

_ =\ _ |K‘ Yi+1 — Yj+2
Sjj = /KV)\IV)\J dx = W (YI+1 — Yi+2, Xjiy2 — X/+1) Xii2 — Xji1

@ Main diagonal entries positive

@ Local contributions from element stiffness matrices: Scalar products
of vectors orthogonal to edges. These are nonpositive if the angle
between the edges are < 90°

@ weakly acute triangulation: all triangle angles are less than < 90°

@ In fact, for constant coefficients, in 2D, Delaunay is sufficient, as
contributions from opposite angles compensate each other

@ All row sums are zero = A is singular

@ Matrix becomes irreducibly diagonally dominant if we add at least one
positive value to the main diagonal, e.g. from Dirichlet BC



Stationary linear reaction-diffusion

@ Assume additional process in each REV which produces or destroys
species depending on the amount of species present with given rate r.

Search function v : Q — R such that
~V - Vu+rm=f inQ
Vu-i+a(u—g)=0 ondQ
o Coercivity guaranteed e.g. for @ > 0, r > 0 which means species

destruction FEM formulation: search up € Vj, = span{¢; ... o}
such that

/5ﬁuh§vh d)?—i—/ rupvpdX + / aupvy ds
Q Q 9

"stiffness matrix” "mass matrix” "boundary mass matrix”

:/ fvy, d>'<'+/ agvy ds Vv, € Vp,
Q Q

o Coercivity + symmetry = positive definiteness



Mass matrix properties

@ Mass matrix (for r = 1): M = (mj):

mjj = /Q¢i¢j dx

@ Self-adjoint, coercive bilinear form = M is symmetric, positiv definite

o For a family of quasi-uniform, shape-regular triangulations, for every
eigenvalue i one has the estimate

ch? <p<ch?
T = condition number (M) bounded by constant independent of h:
k(M) <c
@ How to see this 7 Let u, = ZfV:l Ui¢i, and p an eigenvalue
(positive,real!) Then
[lunll§ = (U, MU)gw = (U, U)sw = pl|U| [
From quasi-uniformity we obtain

ah?||U|2n < |unl]3 < c2h?||U]|20



Mass matrix M-Property (P1 FEM) 7

e For P!-finite elements, all integrals m;; = [, ¢i¢; dx are zero or
positive, so we get positive off diagonal elements.

@ No M-Property!



Mass matrix lumping (P1 FEM)

@ Local mass matrix for P1 FEM on element K
(calculated by 2nd order exact edge midpoint quadrature rule):

R
2 12 6

@ Lumping: sum up off diagonal elements to main diagonal, set off
diagonal entries to zero

) 100
Mk =|K[ |0 3 0
00 %

@ Interpretation as change of quadrature rule to first order exact vertex
based quadrature rule

@ Loss of accuracy, gain of stability



Effect

of mass matrix lumping

For P1 FEM on weakly acute or Delaunay triangulations, mass matrix
lumping can guarantee M-Property of system matrix

Adding a mass matrix which is not lumped yields a positive definite
matrix (due to coercivity) and thus nonsingularity, but destroys
M-property unless the absolute values of its off diagonal entries are
less than those of A, i.e. for small r.

Same situation witb Robin boundary conditions and boundary mass
matrix

Introducing the Dirichlet Penalty trick at continuous level without
mass lumping would be disastrous.



The values of a piecewise linear function u = u(x) can be defined in
dependence of the values u; = u(p;) at the vertices of the simplex by the
expression

n
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k=0
The gradient of this function is given by
(M) Vu(x) = Z uV Ak(x)
k=0
where the V), can be determinated from the equations
n
B Ok oA . .
_Zpk’ai)(j7 ZaXJ (Y] 7...,”)
k=0

(cf. (3)), i.e. we have to solve the linear systems
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Comparing this with the determination of the normals of the faces (cf.



(2)) we get the identities
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and therefore
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holds. That means that
n n 1
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can be considered as a discrete gradient of a function w.



