Scientific Computing WS 2019/2020

Lecture 18

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

The Galerkin method II

- Let V be a Hilbert space. Let a : V × V → ℝ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α, and continuity constant γ.
- Continuous problem: search $u \in V$ such that

$$a(u,v)=f(v) \ \forall v \in V$$

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_h ?
- Let $v_h \in V_h$ be arbitrary. Then

$$\begin{split} \alpha ||u - u_h||^2 &\leq a(u - u_h, u - u_h) \quad (\text{Coercivity}) \\ &= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h) \\ &= a(u - u_h, u - v_h) \quad (\text{Galerkin Orthogonality}) \\ &\leq \gamma ||u - u_h|| \cdot ||u - v_h|| \quad (\text{Boundedness}) \end{split}$$

As a result

$$||u-u_h|| \leq \frac{\gamma}{\alpha} \inf_{v_h \in V_h} ||u-v_h||$$

• Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_h .

From the Galerkin method to the matrix eqation

- Let $\phi_1 \dots \phi_n$ be a set of basis functions of V_h .
- Then, we have the representation $u_h = \sum_{j=1}^n u_j \phi_j$
- In order to search $u_h \in V_h$ such that

$$a(u_h,v_h)=f(v_h) \; \forall v_h \in V_h$$

it is actually sufficient to require

$$a(u_h, \phi_i) = f(\phi_i) \ (i = 1 \dots n)$$
$$a\left(\sum_{j=1}^n u_j \phi_j, \phi_i\right) = f(\phi_i) \ (i = 1 \dots n)$$
$$\sum_{j=1}^n a(\phi_j, \phi_i) u_j = f(\phi_i) \ (i = 1 \dots n)$$
$$AU = F$$

with
$$A = (a_{ij}), a_{ij} = a(\phi_i, \phi_j), F = (f_i), f_i = F(\phi_i), U = (u_i).$$

• Matrix dimension is $n \times n$. Matrix sparsity ?

Obtaining a finite dimensional subspace

- Let $\Omega = (a, b) \subset \mathbb{R}^1$
- Let $a(u, v) = \int_a^b \delta \vec{\nabla} u \vec{\nabla} v d\vec{x} + \alpha u(a) v(a) + \alpha u(b) v(b)$
- Calculus 101 provides a finite dimensional subspace: the space of sin/cos functions up to a certain frequency ⇒ spectral method
- Ansatz functions have global support \Rightarrow full $n \times n$ matrix
- OTOH: rather fast convergence for smooth data
- Generalization to higher dimensions possible
- Big problem in irregular domains: we need the eigenfunction basis of some operator...
- Spectral methods are successful in cases where one has regular geometry structures and smooth/constant coefficients – e.g. "Spectral Einstein Code"

The finite element idea I

- Choose basis functions with local support. ⇒ only integrals of basis function pairs with overlapping support contribute to matrix.
- Linear finite elements in Ω = (a, b) ⊂ ℝ¹:
- Partition $a = x_1 \le x_2 \le \cdots \le x_n = b$
- Basis functions (for $i = 1 \dots n$)

FE matrix elements for 1D heat equation I

- Any function u_h ∈ V_h = span{φ₁...φ_n} is piecewise linear, and the coefficients in the representation u_h = ∑ⁿ_{i=1} u_iφ_i are the values u_h(x_i).
- Fortunately, we are working with a weak formulation, and weak derivatives are well defined (and coincide with the classical derivatives where the basis functions are smooth)
- Let ϕ_i , ϕ_j be two basis functions, regard

$$s_{ij} = \int_a^b \vec{\nabla} \phi_i \cdot \vec{\nabla} \phi_j d x$$

- We have supp $\phi_i \cap \text{supp } \phi_i = \emptyset$ unless i = j, i + 1 = j or i 1 = j.
- Therefore $s_{ij} = 0$ unless i = j, i + 1 = j or i 1 = j.

FE matrix elements for 1D heat equation II

• Let j = i + 1. Then supp $\phi_i \cap$ supp $\phi_j = (x_i, x_{i+1})$, $\phi'_i = -\frac{1}{h}$, $\phi'_i = frac1h$ where $h = x_{i+1} - x_i$

$$\int_{a}^{b} \vec{\nabla} \phi_{i} \vec{\nabla} \phi_{j} d\vec{x} = \int_{x_{i}}^{x_{i+1}} \phi_{i}' \phi_{j}' d\vec{x} = -\int_{x_{i}}^{x_{i+1}} \frac{1}{h^{2}} d\vec{x} = -\frac{1}{h}$$

• Similarly, for j = i - 1: $\int_a^b \vec{\nabla} \phi_i \vec{\nabla} \phi_j d\vec{x} = -\frac{1}{h}$ • For 1 < i < N:

$$\int_{a}^{b} \vec{\nabla} \phi_{i} \vec{\nabla} \phi_{i} d\vec{x} = \int_{x_{i-1}}^{x_{i+1}} (\phi_{i}')^{2} d\vec{x} = \int_{x_{i-1}}^{x_{i+1}} \frac{1}{h^{2}} d\vec{x} = \frac{2}{h}$$

- For i = 1 or i = N: $\int_{a}^{b} \vec{\nabla} \phi_{i} \vec{\nabla} \phi_{i} d\vec{x} = \frac{1}{h}$
- For the right hand side, calculate vector elements $f_i = \int_a^b f(x)\phi_i dx$ using a quadrature rule.

FE matrix elements for 1D heat equation III

Adding the boundary integrals yields

$$A = \begin{pmatrix} \alpha + \frac{1}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} + \alpha \end{pmatrix}$$

... the same matrix as for the finite difference and finite volume methods

Simplices

- Let $\{\vec{a}_1 \dots \vec{a}_{d+1}\} \subset \mathbb{R}^d$ such that the *d* vectors $\vec{a}_2 \vec{a}_1 \dots \vec{a}_{d+1} \vec{a}_1$ are linearly independent. Then the convex hull *K* of $\vec{a}_1 \dots \vec{a}_{d+1}$ is called *simplex*, and $\vec{a}_1 \dots \vec{a}_{d+1}$ are called *vertices* of the simplex.
- Unit simplex: $\vec{a}_1 = (0...0), \vec{a}_1 = (0, 1...0) \dots \vec{a}_{d+1} = (0...0, 1).$

$$\mathcal{K} = \left\{ ec{x} \in \mathbb{R}^d : x_i \geq 0 \ (i = 1 \dots d) \ \mathsf{and} \ \sum_{i=1}^d x_i \leq 1
ight\}$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- F_i : face of K opposite to \vec{a}_i
- \vec{n}_i : outward normal to F_i

Simplex characteristics

- Diameter of K: $h_K = \max_{\vec{x}_1, \vec{x}_2 \in K} ||\vec{x}_1 \vec{x}_2||$ \equiv length of longest edge if K
- ρ_K diameter of largest ball that can be inscribed into K
- $\sigma_K = \frac{h_K}{\rho_K}$: local shape regularity measure
 - $\sigma_{\rm K}=2\sqrt{3}$ for equilateral triangle
 - $\sigma_K \to \infty$ if largest angle approaches π .

Definition: Let $K \subset \mathbb{R}^d$ be a *d*-simplex given by the points $\vec{a}_1 \dots \vec{a}_{d+1}$. Let $\Lambda(x) = (\lambda_1(\vec{x}) \dots \lambda_{d+1}(\vec{x}))$ be a vector such that for all $\vec{x} \in \mathbb{R}^d$

$$\sum_{j=1}^{d+1} ec{a}_j \lambda_j(ec{x}) = ec{x}, \qquad \sum_{j=1}^{d+1} \lambda_j(ec{x}) = 1$$

This vector is called the vector of *barycentric coordinates* of \vec{x} with respect to K.

Barycentric coordinates II

Lemma The barycentric coordinates of a given point is well defined and unique. Moreover, for the simplex edges \vec{a}_i , one has

$$\lambda_j(\vec{a}_i) = \delta_{ij}$$

Proof: The definition of Λ given by a $d + 1 \times d + 1$ system of equations with the matrix

$$M = \begin{pmatrix} a_{1,1} & a_{2,1} & \dots & a_{d+1,1} \\ a_{1,2} & a_{2,2} & \dots & a_{d+1,2} \\ \vdots & \vdots & & \vdots \\ a_{1,d} & a_{2,d} & \dots & a_{d+1,d} \\ 1 & 1 & \dots & 1 \end{pmatrix}$$

Subtracting the first column from the others gives

$$M' = \begin{pmatrix} a_{1,1} & a_{2,1} - a_{1,1} & \dots & a_{d+1,1} - a_{1,1} \\ a_{1,2} & a_{2,2} - a_{1,2} & \dots & a_{d+1,2} - a_{1,2} \\ \vdots & \vdots & & \vdots \\ a_{1,d} & a_{2,d} - a_{1,d} & \dots & a_{d+1,d} - a_{1,d} \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

det $M = \det M'$ is the determinant of the matrix whose columns are the edge vectors of K which are linearly independent.

For the simplex edges one has

$$\sum_{j=1}^{d+1}ec{a}_j\lambda_j(ec{a}_i)=ec{a}_i$$

which is fulfilled if $\lambda_j(\vec{a}_i) = 1$ for i = j and $\lambda_j(\vec{a}_i) = 0$ for $i \neq j$. And we have uniqueness. \Box

At the same time, the measure (area) is calculated as $|K| = \frac{1}{d!} |\det M'|$.

Barycentric coordinates IV

- Let K_j(x) be the subsimplex of K made of x and a₁... a_{d+1} with a_j omitted.
- Its measure $|K_j(\vec{x})|$ is established from its determinant and a linear function of the coordiates for \vec{x} .
- One has $\frac{|\kappa_j(\vec{a}_i)|}{|\kappa|} = \delta_{ij}$ and therefore,

$$\lambda_j(\vec{x}) = \frac{|K_j(\vec{x})|}{|K|}$$

is the ratio of the measures of $K_j(\vec{x})$ and K.

Conformal triangulations II

- d = 1: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex
- d = 2: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge

- d = 3: Each intersection $F = K_m \cap K_n$ is either empty or a common vertex or a common edge or a common face
- Delaunay triangulations are conformal

Shape regularity

- Now we discuss a family of meshes \mathcal{T}_h for $h \to 0$.
- For given \mathcal{T}_h , assume that $h = \max_{K \in \mathcal{T}_h} h_K$
- A family of meshes is called shape regular if

$$\forall h, \forall K \in \mathcal{T}_h, \sigma_K = rac{h_K}{
ho_K} \leq \sigma_0$$

• In 1D, $\sigma_K = 1$ • In 2D, $\sigma_K \leq \frac{2}{\sin \theta_K}$ where θ_K is the smallest angle

Polynomial space \mathbb{P}_k

Space of polynomials in x₁...x_d of total degree ≤ k with real coefficients α_{i1...id}:

$$\mathbb{P}_{k} = \left\{ p(x) = \sum_{\substack{0 \leq i_{1} \dots i_{d} \leq k \\ i_{1} + \dots + i_{d} \leq k}} \alpha_{i_{1} \dots i_{d}} x_{1}^{i_{1}} \dots x_{d}^{i_{d}} \right\}$$

• Dimension:

$$\dim \mathbb{P}_{k} = \binom{d+k}{k} = \begin{cases} k+1, & d=1\\ \frac{1}{2}(k+1)(k+2), & d=2\\ \frac{1}{6}(k+1)(k+2)(k+3), & d=3 \end{cases}$$
$$\dim \mathbb{P}_{1} = d+1$$
$$\dim \mathbb{P}_{2} = \begin{cases} 3, & d=1\\ 6, & d=2\\ 10, & d=3 \end{cases}$$

\mathbb{P}_k simplex finite elements

- K: simplex spanned by $\vec{a}_1 \dots \vec{a}_{d+1}$ in \mathbb{R}^d
- For $0 \le i_1 \dots i_{d+1} \le k$, $i_1 + \dots + i_{d+1} = k$, let the set of nodes $\Sigma = \{\vec{\sigma}_1 \dots \vec{\sigma}_s\}$ be defined by the points $\vec{a}_{i_1 \dots i_d;k}$ with barycentric coordinates $(\frac{i_k}{k} \dots \frac{i_{d+1}}{k})$.

• $s = \operatorname{card} \Sigma = \dim \mathbb{P}_{\mathcal{K}} \Rightarrow$ there exists a basis $\theta_1 \dots \theta_s$ of \mathbb{P}_k such that $\theta_i(\vec{\sigma}_j) = \delta_{ij}$

\mathbb{P}_1 simplex finite elements

- K: simplex spanned by $a_1 \dots a_{d+1}$ in \mathbb{R}^d
- s = d + 1
- Nodes \equiv vertices
- Basis functions $\theta_1 \dots \theta_{d+1} \equiv$ barycentric coordinates $\lambda_1 \dots \lambda_{d+1}$

Global degrees of freedom

- Given a triangulation \mathcal{T}_h
- Let $\{\vec{a}_1 \dots \vec{a}_N\} = \bigcup_{K \in \mathcal{T}_h} \{\vec{\sigma}_{K,1} \dots \vec{\sigma}_{K,s}\}$ be the set of global degrees of freedom.
- Degree of freedom map

$$j: \mathcal{T}_h imes \{1 \dots s\} o \{1 \dots N\}$$

 $(K, m) \mapsto j(K, m)$ the global degree of freedom number

Lagrange finite element space

• Given a triangulation \mathcal{T}_h of Ω , define the spaces

$$\begin{aligned} P_h^k &= \{ \mathbf{v}_h \in \mathbb{C}^0(\Omega) : \mathbf{v}_h |_{\mathcal{K}} \in \mathbb{P}_{\mathcal{K}} \; \forall \mathcal{K} \in \mathcal{T}_j \} \subset H^1(\Omega) \\ P_{0,h}^k &= \{ \mathbf{v}_h \in P_h^k : \mathbf{v}_h |_{\partial\Omega} = 0 \} \subset H_0^1(\Omega) \end{aligned}$$

• Global shape functions $\theta_1, \ldots, \theta_N \in P_h^k$ defined by

$$\phi_i|_{\mathcal{K}}(\vec{a}_{\mathcal{K},m}) = \begin{cases} \delta_{mn} & \text{if } \exists n \in \{1 \dots s\} : j(\mathcal{K},n) = i \\ 0 & \text{otherwise} \end{cases}$$

• $\{\phi_1, \ldots, \phi_N\}$ is a basis of P_h , and $\gamma_1 \ldots \gamma_N$ is a basis of $\mathcal{L}(P_h, \mathbb{R})$:

- $\{\phi_1, \ldots, \phi_N\}$ are linearly independent: if $\sum_{j=1}^N \alpha_j \phi_j = 0$ then evaluation at $\vec{a}_1 \ldots \vec{a}_N$ yields that $\alpha_1 \ldots \alpha_N = 0$.
- Let $v_h \in P_h$. Let $w_h = \sum_{j=1}^N v_h(\vec{a}_j)\phi_j$. Then for all $K \in \mathcal{T}_h$, $v_h|_K$ and $w_h|_K$ coincide in the local nodes $\vec{a}_{K,1} \dots \vec{a}_{K,2}$, $\Rightarrow v_h|_K = w_h|_K$.

Finite element approximation space

We have

d	k	$N = \dim P_h^k$
1	1	N _v
1	2	$N_v + N_{el}$
1	3	$N_v + 2N_{el}$
2	1	N _v
2	2	$N_v + N_{ed}$
2	3	$N_v + 2N_{ed} + N_{el}$
3	1	N _v
3	2	$N_v + N_{ed}$
3	3	$N_v + 2N_{ed} + N_f$

Local Lagrange interpolation operator

- Let $\{K, P, \Sigma\}$ be a finite element with shape function bases $\{\theta_1 \dots \theta_s\}$. Let $V(K) = \mathbb{C}^0(K)$ and $P \subset V(K)$
- local interpolation operator

$$\mathcal{I}_{\mathcal{K}}: \mathcal{V}(\mathcal{K}) o \mathcal{P}$$
 $v \mapsto \sum_{i=1}^{s} v(ec{\sigma}_i) heta_i$

P is invariant under the action of I_K, i.e. ∀p ∈ P, I_K(p) = p:
 Let p = ∑_{j=1}^s α_jθ_j Then,

$$egin{aligned} \mathcal{I}_{\mathcal{K}}(m{
ho}) &= \sum_{i=1}^{s} m{
ho}(ec{\sigma}_i) heta_i = \sum_{i=1}^{s} \sum_{j=1}^{s} lpha_j heta_j(ec{\sigma}_i) heta_i \ &= \sum_{i=1}^{s} \sum_{j=1}^{s} lpha_j \delta_{ij} heta_i = \sum_{j=1}^{s} lpha_j heta_j \end{aligned}$$

Global Lagrange interpolation operator

Let
$$V_h = P_h^k$$

$$egin{aligned} \mathcal{I}_h : \mathcal{C}^0(ar{\Omega}_h) o V_h \ v(ec{x}) \mapsto v_h(ec{x}) = \sum_{i=1}^N v(ec{a}_i) \phi_i(ec{x}) \end{aligned}$$

Lecture 16 Slide 38

Theorem: Let $\{\widehat{K}, \widehat{P}, \widehat{\Sigma}\}$ be a finite element with associated normed vector space $V(\widehat{K})$. Assume that

$$\mathbb{P}_k \subset \widehat{P} \subset H^2(\widehat{K}) \subset V(\widehat{K})$$

Then there exists c > 0 such that for all m = 0...2, $K \in \mathcal{T}_h$, $v \in H^2(K)$:

$$|v - \mathcal{I}_{K}^{1}v|_{m,K} \leq ch_{K}^{2-m}\sigma_{K}^{m}|v|_{2,K}.$$

I.e. the the local interpolation error can be estimated through h_K , σ_K and the norm of a higher derivative.

Local interpolation: special cases

•
$$m = 0$$
: $|v - \mathcal{I}_{K}^{1}v|_{0,K} \le ch_{K}^{2}|v|_{2,K}$
• $m = 1$: $|v - \mathcal{I}_{K}^{1}v|_{1,K} \le ch_{K}\sigma_{K}|v|_{2,K}$

Lecture 16 Slide 46

Global interpolation error estimate for Lagrangian finite elements, k = 1

 Assume ν ∈ H²(Ω), e.g. if problem coefficients are smooth and the domain is convex

$$\begin{aligned} ||v - \mathcal{I}_{h}^{1}v||_{0,\Omega} + h|v - \mathcal{I}_{h}^{1}v|_{1,\Omega} &\leq ch^{2}|v|_{2,\Omega} \\ |v - \mathcal{I}_{h}^{1}v|_{1,\Omega} &\leq ch|v|_{2,\Omega} \\ \lim_{h \to 0} \left(\inf_{v_{h} \in V_{h}^{1}} |v - v_{h}|_{1,\Omega} \right) &= 0 \end{aligned}$$

- If $v \in H^2(\Omega)$ cannot be guaranteed, estimates become worse. Example: L-shaped domain.
- These results immediately can be applied in Cea's lemma.

Error estimates for homogeneous Dirichlet problem

• Search $u \in H^1_0(\Omega)$ such that

$$\int_\Omega \delta ec
abla u ec
abla v \, dec x = \int_\Omega \mathsf{f} v \, dec x \, orall v \in H^1_0(\Omega) +$$

Then, $\lim_{h\to 0} ||u - u_h||_{1,\Omega} = 0$. If $u \in H^2(\Omega)$ (e.g. on convex domains) then

 $\begin{aligned} ||u - u_h||_{1,\Omega} &\leq ch|u|_{2,\Omega} \\ ||u - u_h||_{0,\Omega} &\leq ch^2|u|_{2,\Omega} \end{aligned}$

Under certain conditions (convex domain, smooth coefficients) one also has

$$||u - u_h||_{0,\Omega} \leq ch|u|_{1,\Omega}$$

("Aubin-Nitsche-Lemma")

H^2 -Regularity

• $u \in H^2(\Omega)$ may be *not* fulfilled e.g.

- if Ω has re-entrant corners
- if on a smooth part of the domain, the boundary condition type changes
- if problem coefficients (δ) are discontinuos
- Situations differ as well between two and three space dimensions
- Delicate theory, ongoing research in functional analysis
- Consequence for simuations
 - Deterioration of convergence rate
 - Remedy: local refinement of the discretization mesh
 - using a priori information
 - $\bullet\,$ using a posteriori error estimators + automatic refinement of discretizatiom mesh

Weak formulation of homogeneous Dirichlet problem

• Search
$$u \in V = H_0^1(\Omega)$$
 such that

$$\int_{\Omega} \delta \vec{\nabla} u \vec{\nabla} v \, d\vec{x} = \int_{\Omega} f v \, d\vec{x} \, \forall v \in H^1_0(\Omega)$$

$$a(u,v) := \int_{\Omega} \delta \vec{\nabla} u \vec{\nabla} v \, d\vec{x}$$

is a self-adjoint bilinear form defined on the Hilbert space $H_0^1(\Omega)$.

Galerkin ansatz

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

• E.g. V_h is the space of P1 Lagrange finite element approximations

Stiffness matrix for Laplace operator for P1 FEM

• Element-wise calculation:

$$a_{ij} = a(\phi_i, \phi_j) = \int_{\Omega} \vec{\nabla} \phi_i \vec{\nabla} \phi_j \, d\vec{x} = \int_{\Omega} \sum_{K \in \mathcal{T}_h} \vec{\nabla} \phi_i |_K \vec{\nabla} \phi_j |_K \, d\vec{x}$$

• Standard assembly loop:
for
$$i, j = 1 ... N$$
 do
 \mid set $a_{ij} = 0$
end
for $K \in \mathcal{T}_h$ do
 \mid for $m, n=0...d$ do
 \mid $s_{mn} = \int_K \vec{\nabla} \lambda_m \vec{\nabla} \lambda_n \ d\vec{x}$
 $a_{j_{dof}(K,m), j_{dof}(K,n)} = a_{j_{dof}(K,m), j_{dof}(K,n)} + s_{mn}$
end
end

• Local stiffness matrix:

$$S_{K} = (s_{K;m,n}) = \int_{K} \vec{\nabla} \lambda_{m} \vec{\nabla} \lambda_{n} \ d\vec{x}$$

Local stiffness matrix calculation for P1 FEM

- $a_0 \ldots a_d$: vertices of the simplex K, $a \in K$.
- Barycentric coordinates: $\lambda_j(a) = \frac{|K_j(a)|}{|K|}$
- For indexing modulo d+1 we can write

$$|\mathcal{K}| = \frac{1}{d!} \det \left(a_{j+1} - a_j, \dots a_{j+d} - a_j \right)$$
$$|\mathcal{K}_j(a)| = \frac{1}{d!} \det \left(a_{j+1} - a, \dots a_{j+d} - a \right)$$

From this information, we can calculate explicitely V
 λ_j(x) (which are constant vectors due to linearity) and the corresponding entries of the local stiffness

$$s_{ij} = \int_{\mathcal{K}} ec
abla \lambda_i ec
abla_j \, dec x$$

Local stiffness matrix calculation for P1 FEM in 2D

- a₀ = (x₀, y₀)... a_d = (x₂, y₂): vertices of the simplex K, a = (x, y) ∈ K.
- Barycentric coordinates: $\lambda_j(x, y) = \frac{|K_j(x, y)|}{|K|}$
- For indexing modulo d+1 we can write

$$|K| = \frac{1}{2} \det \begin{pmatrix} x_{j+1} - x_j & x_{j+2} - x_j \\ y_{j+1} - y_j & y_{j+2} - y_j \end{pmatrix}$$
$$|K_j(x, y)| = \frac{1}{2} \det \begin{pmatrix} x_{j+1} - x & x_{j+2} - x \\ y_{j+1} - y & y_{j+2} - y \end{pmatrix}$$

• Therefore, we have

$$|K_{j}(x,y)| = \frac{1}{2} \left((x_{j+1} - x)(y_{j+2} - y) - (x_{j+2} - x)(y_{j+1} - y) \right)$$

$$\partial_{x}|K_{j}(x,y)| = \frac{1}{2} \left((y_{j+1} - y) - (y_{j+2} - y) \right) = \frac{1}{2} (y_{j+1} - y_{j+2})$$

$$\partial_{y}|K_{j}(x,y)| = \frac{1}{2} \left((x_{j+2} - x) - (x_{j+1} - x) \right) = \frac{1}{2} (x_{j+2} - x_{j+1})$$

Local stiffness matrix calculation for P1 FEM in 2D II

•

$$s_{ij} = \int_{K} \vec{\nabla} \lambda_{i} \vec{\nabla} \lambda_{j} \, d\vec{x} = \frac{|K|}{4|K|^{2}} \left(y_{i+1} - y_{i+2}, x_{i+2} - x_{i+1} \right) \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}$$
• So, let $V = \begin{pmatrix} x_{1} - x_{0} & x_{2} - x_{0} \\ y_{1} - y_{0} & y_{2} - y_{0} \end{pmatrix}$

Then

$$x_1 - x_2 = V_{00} - V_{01}$$

$$y_1 - y_2 = V_{10} - V_{11}$$

and

$$2|\mathcal{K}| \ \vec{\nabla}\lambda_0 = \begin{pmatrix} y_1 - y_2 \\ x_2 - x_1 \end{pmatrix} = \begin{pmatrix} V_{10} - V_{11} \\ V_{01} - V_{00} \end{pmatrix}$$
$$2|\mathcal{K}| \ \vec{\nabla}\lambda_1 = \begin{pmatrix} y_2 - y_0 \\ x_0 - x_2 \end{pmatrix} = \begin{pmatrix} V_{11} \\ -V_{01} \end{pmatrix}$$
$$2|\mathcal{K}| \ \vec{\nabla}\lambda_2 = \begin{pmatrix} y_0 - y_1 \\ x_1 - x_0 \end{pmatrix} = \begin{pmatrix} -V_{10} \\ V_{00} \end{pmatrix}$$

Lecture 17 Slide 37

Degree of freedom map representation for P1 finite elements

- List of global nodes $a_0 \dots a_N$: two dimensional array of coordinate values with N rows and d columns
- Local-global degree of freedom map: two-dimensional array C of index values with N_{el} rows and d + 1 columns such that C(i, m) = j_{dof}(K_i, m).
- The mesh generator triangle generates this information directly

Practical realization of boundary conditions

• Robin boundary value problem

$$-\nabla \cdot \delta \vec{\nabla} u = f \quad \text{in } \Omega$$
$$\delta \vec{\nabla} u + \alpha (u - g) = 0 \quad \text{on } \partial \Omega$$

• Weak formulation: search $u \in H^1(\Omega)$ such that

$$\int_{\Omega} \delta \vec{\nabla} u \vec{\nabla} v \, d\vec{x} + \int_{\partial \Omega} \alpha u v \, ds = \int_{\Omega} f v \, d\vec{x} + \int_{\partial \Omega} \alpha g v \, ds \, \forall v \in H^1(\Omega)$$

- In 2D, for *P*¹ FEM, boundary integrals can be calculated by trapezoidal rule without sacrificing approximation order
- Use Dirichlet penalty method to handle Dirichlet boundary conditions

More complicated integrals

- Assume non-constant right hand side f, space dependent heat conduction coefficient δ .
- Right hand side integrals

$$f_i = \int_K f(x)\lambda_i(x) \ d\vec{x}$$

• P¹ stiffness matrix elements

$$a_{ij} = \int_{\mathcal{K}} \delta(x) \ ec{
abla} \lambda_i \ ec{
abla} \lambda_j \ dec{x}$$

• *P^k* stiffness matrix elements created from higher order ansatz functions

Quadrature rules

• Quadrature rule:

$$\int_{\mathcal{K}} g(x) \, d\vec{x} \approx |\mathcal{K}| \sum_{l=1}^{l_q} \omega_l g(\xi_l)$$

- ξ_I : nodes, Gauss points
- ω_l : weights
- The largest number k such that the quadrature is exact for polynomials of order k is called *order* k_q of the quadrature rule, i.e.

$$\forall k \leq k_q, \forall p \in \mathbb{P}^k \int_{K} p(x) \ d\vec{x} = |K| \sum_{l=1}^{l_q} \omega_l p(\xi_l)$$

Error estimate:

$$orall \phi \in \mathcal{C}^{k_q+1}(\mathcal{K}), \left| rac{1}{|\mathcal{K}|} \int_{\mathcal{K}} \phi(x) \ d\vec{x} - \sum_{l=1}^{l_q} \omega_l g(\xi_l)
ight| \leq ch_{\mathcal{K}}^{k_q+1} \sup_{x \in \mathcal{K}, |\alpha| = k_q+1} |\partial^{lpha} \phi(x)|$$

Nodes are characterized by the barycentric coordinates

d	k _q	lq	Nodes	Weights
1	1	1	$(\frac{1}{2}, \frac{1}{2})$	1
	1	2	(1, 0), (0, 1)	$\frac{1}{2}, \frac{1}{2}$
	3	2	$(\frac{1}{2}+\frac{\sqrt{3}}{6},\frac{1}{2}-\frac{\sqrt{3}}{6}),(\frac{1}{2}-\frac{\sqrt{3}}{6},\frac{1}{2}+\frac{\sqrt{3}}{6})$	$\frac{1}{2}, \frac{1}{2}$
	5	3	$(rac{1}{2},), (rac{1}{2}+\sqrt{rac{3}{20}}, rac{1}{2}-\sqrt{rac{3}{20}}), (rac{1}{2}-\sqrt{rac{3}{20}}, rac{1}{2}+\sqrt{rac{3}{20}})$	$\frac{8}{18}, \frac{5}{18}, \frac{5}{18}$
2	1	1	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$	1
	1	3	(1, 0, 0), (0, 1, 0), (0, 0, 1)	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	2	3	$(\frac{1}{2}, \frac{1}{2}, 0), (\frac{1}{2}, 0, \frac{1}{2}), (0, \frac{1}{2}, \frac{1}{2})$	$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
	3	4	$(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), (\frac{1}{5}, \frac{1}{5}, \frac{3}{5}), (\frac{1}{5}, \frac{3}{5}, \frac{1}{5}), (\frac{3}{5}, \frac{1}{5}, \frac{1}{5}), (\frac{3}{5}, \frac{1}{5}, \frac{1}{5}),$	$-\frac{9}{16}, \frac{25}{48}, \frac{25}{48}, \frac{25}{48}$
3	1	1	$(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$	1
	1	4	(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
	2	4	$\left(\frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5-\sqrt{5}}{20}, \frac{5+3\sqrt{5}}{20}\right)\dots$	$\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

• "Variational crime": instead of

$$a(u_h, v_h) = f(v_h) \; \forall v_h \in V_h$$

we solve

$$a_h(u_h,v_h)=f_h(v_h) \; \forall v_h \in V_h$$

where a_h , f_h are derived from their exact counterparts by quadrature

- For *P*¹ finite elements, zero order quadrature for volume integrals and first order quadrature for surface intergals is sufficient to keep the convergence order estimates stated before
- The rule of thumb for the volume quadrature is that the highest order terms must be evaluated exactly if the coefficients of the PDE are constant.

Practical realization of integrals

• Integral over barycentric coordinate function

$$\int_{\mathcal{K}} \lambda_i(x) \, d\vec{x} = \frac{1}{3} |\mathcal{K}|$$

• Right hand side integrals. Assume f(x) is given as a piecewise linear function with given values in the nodes of the triangulation

$$f_i = \int_K f(x)\lambda_i(x) \ d\vec{x} \approx \frac{1}{3}|K|(f(a_0) + f(a_1) + f(a_2))$$

Integral over space dependent heat conduction coefficient: Assume δ(x) is given as a piecewise linear function with given values in the nodes of the triangulation

$$a_{ij} = \int_{K} \delta(x) \, \vec{\nabla} \lambda_{i} \, \vec{\nabla} \lambda_{j} \, d\vec{x} = \frac{1}{3} (\delta(a_{0}) + \delta(a_{1}) + \delta(a_{2})) \int_{K} \vec{\nabla} \lambda_{i} \, \vec{\nabla} \lambda_{j} \, d\vec{x}$$

P1 FEM stiffness matrix condition number

• Homogeneous dirichlet boundary value problem

$$\begin{aligned} -\nabla \cdot \delta \vec{\nabla} u &= f \quad \text{in } \Omega \\ u|_{\partial \Omega} &= 0 \end{aligned}$$

- Lagrange degrees of freedom $a_1 \dots a_N$ corresponding to global basis functions $\phi_1 \dots \phi_N$ such that $\phi_i|_{\partial\Omega} = 0$ aka $\phi_i \in V_h \subset H_0^1(\Omega)$
- Stiffness matrix $A = (a_{ij})$:

$$a_{ij} = a(\phi_i, \phi_j) = \int_\Omega \delta ec
abla \phi_i ec
abla \phi_j \; dec x$$

- bilinear form $a(\cdot, \cdot)$ is self-adjoint, therefore A is symmetric, positive definite
- Condition number estimate for *P*¹ finite elements on quasi-uniform triangulation:

$$\kappa(A) \leq ch^{-2}$$

The problem with Dirichlet boundary conditions

- \bullet Homogeneous Dirichlet $\mathsf{BC} \Rightarrow$ include boundary condition into set of basis functions
- Inhomogeneous Dirichlet, may be only at a part of the boundary
 - Use exact approach from as in continous formulation (with lifting u_g etc) \Rightarrow highly technical
 - Eliminate Dirichlet BC algebraically after building of the matrix, i.e. fix "known unknowns" at the Dirichlet boundary \Rightarrow highly technical
 - Modifiy matrix such that equations at boundary exactly result in Dirichlet values \Rightarrow loss of symmetry of the matrix
 - Penalty method

Dirichlet BC: Algebraic manipulation

- Assume 1D situation with BC $u_1 = g$
- From integration in H^1 regardless of boundary values:

$$AU = \begin{pmatrix} \frac{1}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{pmatrix}$$

• Fix *u*₁ and eliminate:

$$A'U = \begin{pmatrix} \frac{2}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} u_2 \\ u_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} f_2 + \frac{1}{h}g \\ f_3 \\ \vdots \end{pmatrix}$$

- A' becomes idd and stays symmetric
- operation is quite technical

Dirichlet BC: Modify boundary equations

• From integration in H^1 regardless of boundary values:

$$AU = \begin{pmatrix} \frac{1}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{pmatrix}$$

Modify equation at boundary to exactly represent Dirichlet values

$$A'U = \begin{pmatrix} \frac{1}{h} & 0 & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & \ddots & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} \frac{1}{h}g \\ f_2 \\ f_3 \\ \vdots \end{pmatrix}$$

- A' becomes idd
- \bullet loses symmetry \Rightarrow problem e.g. with CG method

Dirichlet BC: Discrete penalty trick

• From integration in H^1 regardless of boundary values:

$$AU = \begin{pmatrix} \frac{1}{h} & -\frac{1}{h} & & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ \vdots \end{pmatrix}$$

Add penalty terms

$$A'U = \begin{pmatrix} \frac{1}{\varepsilon} + \frac{1}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & \ddots & \ddots & \ddots \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \end{pmatrix} = \begin{pmatrix} f_1 + \frac{1}{\varepsilon}g \\ f_2 \\ f_3 \\ \vdots \end{pmatrix}$$

- A' becomes idd, keeps symmetry, and the realization is technically easy.
- If ε is small enough, u₁ = g will be satisfied exactly within floating point accuracy.
- Iterative methods should be initialized with Dirichlet values.
- Works for nonlinear problems, finite volume methods

Dirichlet penalty trick, general formulation

• Dirichlet boundary value problem

$$\begin{aligned} -\nabla \cdot \delta \vec{\nabla} u &= f \quad \text{in } \Omega \\ u|_{\partial \Omega} &= g \end{aligned}$$

- We discussed approximation of Dirichlet problem by Robin problem
- Practical realization uses discrete approach for Lagrange degrees of freedom a₁... a_N corresponding to global basis functions φ₁... φ_N:
- freedom $a_1 \dots a_N$ corresponding to global basis functions $\phi_1 \dots \phi_N$: • Search $u_h = \sum_{i=1}^N u_i \phi_i \in V_h = \operatorname{span} \{\phi_1 \dots \phi_N\}$ such that

$$AU + \Pi U = F + \Pi G$$

where

•
$$U = (u_1 \dots u_N)$$

• $A = (a_{ij})$: stiffness matrix with $a_{ij} = \int_{\Omega} \delta \vec{\nabla} \phi_i \vec{\nabla} \phi_j d\vec{x}$
• $F = \int_{\Omega} f \vec{\nabla} \phi_i d\vec{x}$
• $G = (g_i)$ with $g_i = \begin{cases} g(a_i), & a_i \in \partial \Omega \\ 0, & \text{else} \end{cases}$
• $\Pi = (\pi_{ij})$ is a diagonal matrix with $\pi_{ij} = \begin{cases} \frac{1}{\varepsilon}, & i = j, a_i \in \partial \Omega \\ 0, & \text{else} \end{cases}$

Row sums:

$$\sum_{j=1}^{N} a_{ij} = \sum_{j=1}^{N} \int_{\Omega} \vec{\nabla} \phi_i \vec{\nabla} \phi_j \, dx = \int_{\Omega} \vec{\nabla} \phi_i \vec{\nabla} \left(\sum_{j=1}^{N} \phi_j \right) \, dx$$
$$= \int_{\Omega} \vec{\nabla} \phi_i \vec{\nabla} (1) \, dx$$
$$= 0$$

P1 FEM stiffness matrix entry signs

Local stiffness matrix S_K

$$s_{ij} = \int_{\mathcal{K}} \vec{\nabla} \lambda_i \vec{\nabla} \lambda_j \, dx = \frac{|\mathcal{K}|}{2|\mathcal{K}|^2} \left(y_{i+1} - y_{i+2}, x_{i+2} - x_{i+1} \right) \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}$$

- Main diagonal entries positive
- Local contributions from element stiffness matrices: Scalar products of vectors orthogonal to edges. These are nonpositive if the angle between the edges are $\leq 90^\circ$
- weakly acute triangulation: all triangle angles are less than $\leq 90^{\circ}$
- In fact, for constant coefficients, in 2D, Delaunay is sufficient, as contributions from opposite angles compensate each other
- All row sums are zero $\Rightarrow A$ is singular
- Matrix becomes irreducibly diagonally dominant if we add at least one positive value to the main diagonal, e.g. from Dirichlet BC

Stationary linear reaction-diffusion

• Assume additional process in each REV which produces or destroys species depending on the amount of species present with given rate *r*.

Search function $u: \Omega \to \mathbb{R}$ such that

$$-\nabla \cdot \delta \vec{\nabla} u + ru = f \quad \text{in}\Omega$$
$$\delta \vec{\nabla} u \cdot \vec{n} + \alpha (u - g) = 0 \quad \text{on}\partial\Omega$$

Coercivity guaranteed e.g. for α ≥ 0, r > 0 which means species destruction FEM formulation: search u_h ∈ V_h = span{φ₁...φ_N} such that

$$\underbrace{\int_{\Omega} \delta \vec{\nabla} u_h \vec{\nabla} v_h \, d\vec{x}}_{\text{"stiffness matrix"}} + \underbrace{\int_{\Omega} r u_h v_h d\vec{x}}_{\text{"mass matrix"}} + \underbrace{\int_{\partial \Omega} \alpha u_h v_h \, ds}_{\text{"boundary mass matrix"}} = \int_{\Omega} f v_h \, d\vec{x} + \int_{\partial \Omega} \alpha g v_h \, ds \, \forall v_h \in V_h$$

Coercivity + symmetry ⇒ positive definiteness

Mass matrix properties

• Mass matrix (for
$$r=1$$
): $M=(m_{ij})$: $m_{ij}=\int_\Omega \phi_i \phi_j \; dx$

- Self-adjoint, coercive bilinear form $\Rightarrow M$ is symmetric, positiv definite
- For a family of quasi-uniform, shape-regular triangulations, for every eigenvalue μ one has the estimate

$$c_1 h^d \leq \mu \leq c_2 h^d$$

T \Rightarrow condition number $\kappa(M)$ bounded by constant independent of *h*:

$$\kappa(M) \leq c$$

• How to see this ? Let $u_h = \sum_{i=1}^N U_i \phi_i$, and μ an eigenvalue (positive, real!) Then

$$||u_{h}||_{0}^{2} = (U, MU)_{\mathbb{R}^{N}} = \mu(U, U)_{\mathbb{R}^{N}} = \mu||U||_{\mathbb{R}^{N}}^{2}$$

From quasi-uniformity we obtain

$$c_1 h^d ||U||^2_{\mathbb{R}^N} \le ||u_h||^2_0 \le c_2 h^d ||U||^2_{\mathbb{R}^N}$$

Mass matrix M-Property (P1 FEM) ?

- For P^1 -finite elements, all integrals $m_{ij} = \int_{\Omega} \phi_i \phi_j dx$ are zero or positive, so we get positive off diagonal elements.
- No *M*-Property!

Mass matrix lumping (P1 FEM)

 Local mass matrix for P1 FEM on element K (calculated by 2nd order exact edge midpoint quadrature rule):

$$M_{K} = |K| \begin{pmatrix} \frac{1}{6} & \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{6} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} & \frac{1}{6} \end{pmatrix}$$

 Lumping: sum up off diagonal elements to main diagonal, set off diagonal entries to zero

$$ilde{M}_{K} = |K| egin{pmatrix} rac{1}{3} & 0 & 0 \ 0 & rac{1}{3} & 0 \ 0 & 0 & rac{1}{3} \end{pmatrix}$$

- Interpretation as change of quadrature rule to first order exact vertex based quadrature rule
- Loss of accuracy, gain of stability

Effect of mass matrix lumping

- For P1 FEM on weakly acute or Delaunay triangulations, mass matrix lumping can guarantee M-Property of system matrix
- Adding a mass matrix which is not lumped yields a positive definite matrix (due to coercivity) and thus nonsingularity, but *destroys M*-property unless the absolute values of its off diagonal entries are less than those of *A*, i.e. for small *r*.
- Same situation with Robin boundary conditions and boundary mass matrix
- Introducing the Dirichlet Penalty trick at continuous level without mass lumping would be disastrous.

The values of a piecewise linear function $u = u(\mathbf{x})$ can be defined in dependence of the values $u_i = u(\mathbf{p}_i)$ at the vertices of the simplex by the expression

$$u(\mathbf{x}) = \sum_{k=0}^{n} u_k \lambda_k(\mathbf{x})$$

The gradient of this function is given by

(7)
$$\nabla u(\mathbf{x}) = \sum_{k=0}^{n} u_k \nabla \lambda_k(\mathbf{x})$$

where the $\nabla \lambda_k$ can be determinated from the equations

$$\delta_{ij} = \frac{\partial x_i}{\partial x_j} = \sum_{k=0}^n p_{ki} \frac{\partial \lambda_k}{\partial x_j}, \quad 0 = \sum_{k=0}^n \frac{\partial \lambda_k}{\partial x_j} \quad (i, j = 1, \dots, n)$$

(cf. (3)), i.e. we have to solve the linear systems

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ \boldsymbol{p}_0 & \boldsymbol{p}_1 & \dots & \boldsymbol{p}_n \end{pmatrix} \begin{pmatrix} \lambda_0(\mathbf{0}) & \frac{\partial \lambda_0}{\partial x_1} & \dots & \frac{\partial \lambda_0}{\partial x_n} \\ \lambda_1(\mathbf{0}) & \frac{\partial \lambda_1}{\partial x_1} & \dots & \frac{\partial \lambda_1}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_n(\mathbf{0}) & \frac{\partial \lambda_n}{\partial x_1} & \dots & \frac{\partial \lambda_n}{\partial x_n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \vdots \\ \vdots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

So we get

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ p_0 & p_1 & \dots & p_n \end{pmatrix} \begin{pmatrix} \partial_i \lambda_0 \\ \partial_i \lambda_1 \\ \vdots \\ \partial_i \lambda_n \end{pmatrix} = e_i = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

$$\partial_i \lambda_0 + \partial_i \lambda_1 + \dots + \partial_i \lambda_n = e_{i,0}$$
$$p_0 \partial_i \lambda_0 + p_1 \partial_i \lambda_1 + \dots + p_n \partial_i \lambda_n = e_{i,(1...n)}$$

Comparing this with the determination of the normals of the faces (cf_{teture 18 Slide 56}

(2)) we get the identities

$$abla \lambda_i = \boldsymbol{g}_i, \quad \lambda_i(\boldsymbol{0}) = d_i \quad (i = 0, \dots, n).$$

and therefore

$$\nabla u(\mathbf{x}) = \sum_{i=0}^{n} \mathbf{g}_{i} u_{i} = \begin{pmatrix} \mathbf{g}_{0} & \mathbf{g}_{1} & \cdots & \mathbf{g}_{n} \end{pmatrix} \begin{pmatrix} u_{0} \\ u_{1} \\ \vdots \\ u_{n} \end{pmatrix}$$

holds. That means that

$$\sum_{i=0}^{n} \boldsymbol{g}_{i} u(\boldsymbol{p}_{i}) = \sum_{i=0}^{n} \frac{1}{h_{i}} \boldsymbol{a}_{i} u(\boldsymbol{p}_{i})$$

can be considered as a discrete gradient of a function u.