Scientific Computing WS 2019/2020

Lecture 17

Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Recap: Galerkin method and finite elements

The Galerkin method II

- Let V be a Hilbert space. Let $a: V \times V \to \mathbb{R}$ be a self-adjoint bilinear form, and f a linear functional on V. Assume a is coercive with coercivity constant α , and continuity constant γ .
- Continuous problem: search $u \in V$ such that

$$a(u, v) = f(v) \forall v \in V$$

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

By Lax-Milgram, this problem has a unique solution as well.

Céa's lemma

- What is the connection between u and u_h ?
- Let $v_h \in V_h$ be arbitrary. Then

$$\begin{split} \alpha||u-u_h||^2 &\leq a(u-u_h,u-u_h) \quad \text{(Coercivity)} \\ &= a(u-u_h,u-v_h) + a(u-u_h,v_h-u_h) \\ &= a(u-u_h,u-v_h) \quad \text{(Galerkin Orthogonality)} \\ &\leq \gamma||u-u_h||\cdot||u-v_h|| \quad \text{(Boundedness)} \end{split}$$

As a result

$$||u-u_h|| \leq \frac{\gamma}{\alpha} \inf_{v_h \in V_h} ||u-v_h||$$

• Up to a constant, the error of the Galerkin approximation is the error of the best approximation of the solution in the subspace V_h .

From the Galerkin method to the matrix egation

- Let $\phi_1 \dots \phi_n$ be a set of basis functions of V_h .
- Then, we have the representation $u_h = \sum_{i=1}^n u_i \phi_i$
- In order to search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

it is actually sufficient to require

$$a(u_n, \phi_i) = f(\phi_i) \ (i = 1 \dots n)$$

$$a\left(\sum_{j=1}^n u_j \phi_j, \phi_i\right) = f(\phi_i) \ (i = 1 \dots n)$$

$$\sum_{j=1}^n a(\phi_j, \phi_i) u_j = f(\phi_i) \ (i = 1 \dots n)$$

$$AU = F$$

with
$$A = (a_{ii}), a_{ii} = a(\phi_i, \phi_i), F = (f_i), f_i = F(\phi_i), U = (u_i).$$

• Matrix dimension is $n \times n$. Matrix sparsity?

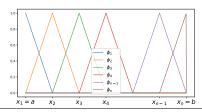
Obtaining a finite dimensional subspace

- Let $\Omega = (a, b) \subset \mathbb{R}^1$
- Let $a(u, v) = \int_a^b \delta \vec{\nabla} u \vec{\nabla} v d\vec{x} + \alpha u(a) v(a) + \alpha u(b) v(b)$
- Calculus 101 provides a finite dimensional subspace: the space of sin/cos functions up to a certain frequency ⇒ spectral method
- Ansatz functions have global support \Rightarrow full $n \times n$ matrix
- OTOH: rather fast convergence for smooth data
- Generalization to higher dimensions possible
- Big problem in irregular domains: we need the eigenfunction basis of some operator...
- Spectral methods are successful in cases where one has regular geometry structures and smooth/constant coefficients – e.g. "Spectral Einstein Code"

The finite element idea I

- Choose basis functions with local support. ⇒ only integrals of basis function pairs with overlapping support contribute to matrix.
- Linear finite elements in $\Omega = (a, b) \subset \mathbb{R}^1$:
- Partition $a = x_1 < x_2 < \cdots < x_n = b$
- Basis functions (for $i = 1 \dots n$)

$$\phi_i(x) = \begin{cases} \frac{x - x_{i-1}}{x_i - x_{i-1}}, & i > 1, x \in (x_{i-1}, x_i) \\ \frac{x_{i+1} - x}{x_{i+1} - x_i}, & i < n, x \in (x_i, x_{i+1}) \\ 0, & \text{else} \end{cases}$$



FE matrix elements for 1D heat equation I

- Any function $u_h \in V_h = \operatorname{span}\{\phi_1 \dots \phi_n\}$ is piecewise linear, and the coefficients in the representation $u_h = \sum_{i=1}^n u_i \phi_i$ are the values $u_h(x_i)$.
- Fortunately, we are working with a weak formulation, and weak derivatives are well defined (and coincide with the classical derivatives where the basis functions are smooth)
- Let ϕ_i , ϕ_i be two basis functions, regard

$$s_{ij} = \int_a^b \vec{\nabla} \phi_i \cdot \vec{\nabla} \phi_j dx$$

- We have supp $\phi_i \cap \text{supp } \phi_i = \emptyset$ unless i = j, i + 1 = j or i 1 = j.
- Therefore $s_{ij} = 0$ unless i = j, i + 1 = j or i 1 = j.

FE matrix elements for 1D heat equation II

• Let j=i+1. Then supp $\phi_i\cap \operatorname{supp}\phi_j=(x_i,x_{i+1})$, $\phi_i'=-\frac{1}{h}$, $\phi_i'=\operatorname{frac} 1h$ where $h=x_{i+1}-x_i$

$$\int_{a}^{b}\vec{\nabla}\phi_{i}\vec{\nabla}\phi_{j}d\vec{x}=\int_{x_{i}}^{x_{i+1}}\phi_{i}'\phi_{j}'d\vec{x}=-\int_{x_{i}}^{x_{i+1}}\frac{1}{h^{2}}d\vec{x}=-\frac{1}{h}$$

- Similarly, for j=i-1: $\int_a^b \vec{\nabla} \phi_i \vec{\nabla} \phi_j d\vec{x} = -\frac{1}{h}$
- For 1 < i < N:

$$\int_{a}^{b} \vec{\nabla} \phi_{i} \vec{\nabla} \phi_{i} d\vec{x} = \int_{x_{i-1}}^{x_{i+1}} (\phi'_{i})^{2} d\vec{x} = \int_{x_{i-1}}^{x_{i+1}} \frac{1}{h^{2}} d\vec{x} = \frac{2}{h}$$

- For i=1 or i=N: $\int_a^b \vec{\nabla} \phi_i \vec{\nabla} \phi_i d\vec{x} = \frac{1}{b}$
- For the right hand side, calculate vector elements $f_i = \int_a^b f(x)\phi_i dx$ using a quadrature rule.

FE matrix elements for 1D heat equation III

Adding the boundary integrals yields

$$A = \begin{pmatrix} \alpha + \frac{1}{h} & -\frac{1}{h} \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & \ddots & \ddots & \ddots & \ddots \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{1}{h} + \alpha \end{pmatrix}$$

... the same matrix as for the finite difference and finite volume methods

Simplices

- Let $\{\vec{a}_1\dots\vec{a}_{d+1}\}\subset\mathbb{R}^d$ such that the d vectors $\vec{a}_2-\vec{a}_1\dots\vec{a}_{d+1}-\vec{a}_1$ are linearly independent. Then the convex hull K of $\vec{a}_1\dots\vec{a}_{d+1}$ is called simplex, and $\vec{a}_1\dots\vec{a}_{d+1}$ are called vertices of the simplex.
- Unit simplex: $\vec{a}_1 = (0...0), \vec{a}_1 = (0, 1...0) ... \vec{a}_{d+1} = (0...0, 1).$

$$\mathcal{K} = \left\{ ec{x} \in \mathbb{R}^d : x_i \geq 0 \; (i = 1 \dots d) \; ext{and} \; \sum_{i=1}^d x_i \leq 1
ight\}$$

- A general simplex can be defined as an image of the unit simplex under some affine transformation
- F_i : face of K opposite to \vec{a}_i
- \vec{n}_i : outward normal to F_i

Simplex characteristics

- Diameter of K: $h_K = \max_{\vec{x}_1, \vec{x}_2 \in K} ||\vec{x}_1 \vec{x}_2||$ \equiv length of longest edge if K
- \bullet ρ_K diameter of largest ball that can be inscribed into K
- $\sigma_K = \frac{h_K}{\rho_K}$: local shape regularity measure
 - $\sigma_K = 2\sqrt{3}$ for equilateral triangle
 - $\sigma_K \to \infty$ if largest angle approaches π .

Barycentric coordinates

Definition: Let $K \subset \mathbb{R}^d$ be a d-simplex given by the points $\vec{a}_1 \dots \vec{a}_{d+1}$. Let $\Lambda(x) = (\lambda_1(\vec{x}) \dots \lambda_{d+1}(\vec{x}))$ be a vector such that for all $\vec{x} \in \mathbb{R}^d$

$$\sum_{j=1}^{d+1} ec{a}_j \lambda_j(ec{x}) = ec{x}, \qquad \sum_{j=1}^{d+1} \lambda_j(ec{x}) = 1$$

This vector is called the vector of *barycentric coordinates* of \vec{x} with respect to K.

Barycentric coordinates II

Lemma The barycentric coordinates of a given point is well defined and unique. Moreover, for the simplex edges \vec{a}_i , one has

$$\lambda_j(\vec{a}_i) = \delta_{ij}$$

Proof: The definition of Λ given by a $d+1 \times d+1$ system of equations with the matrix

$$M = egin{pmatrix} a_{1,1} & a_{2,1} & \dots & a_{d+1,1} \ a_{1,2} & a_{2,2} & \dots & a_{d+1,2} \ dots & dots & dots \ a_{1,d} & a_{2,d} & \dots & a_{d+1,d} \ 1 & 1 & \dots & 1 \end{pmatrix}$$

Subtracting the first column from the others gives

$$M' = \begin{pmatrix} a_{1,1} & a_{2,1} - a_{1,1} & \dots & a_{d+1,1} - a_{1,1} \\ a_{1,2} & a_{2,2} - a_{1,2} & \dots & a_{d+1,2} - a_{1,2} \\ \vdots & \vdots & & \vdots \\ a_{1,d} & a_{2,d} - a_{1,d} & \dots & a_{d+1,d} - a_{1,d} \\ 1 & 0 & \dots & 0 \end{pmatrix}$$

Barycentric coordinates III

 $\det M = \det M'$ is the determinant of the matrix whose columns are the edge vectors of K which are linearly independent.

For the simplex edges one has

$$\sum_{i=1}^{d+1} ec{a}_j \lambda_j(ec{a}_i) = ec{a}_i$$

which is fulfilled if $\lambda_j(\vec{a}_i) = 1$ for i = j and $\lambda_j(\vec{a}_i) = 0$ for $i \neq j$. And we have uniqueness. \square

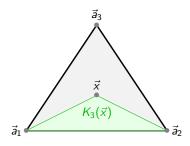
At the same time, the measure (area) is calculated as $|K| = \frac{1}{d!} |\det M'|$.

Barycentric coordinates IV

- Let $K_j(\vec{x})$ be the subsimplex of K made of \vec{x} and $\vec{a}_1 \dots \vec{a}_{d+1}$ with \vec{a}_j omitted.
- Its measure $|K_j(\vec{x})|$ is established from its determinant and a linear function of the coordiates for \vec{x} .
- One has $\frac{|K_j(\vec{a}_i)|}{|K|} = \delta_{ij}$ and therefore,

$$\lambda_j(\vec{x}) = \frac{|\mathcal{K}_j(\vec{x})|}{|\mathcal{K}|}$$

is the ratio of the measures of $K_j(\vec{x})$ and K



Conformal triangulations II

- d=1 : Each intersection $F=K_m\cap K_n$ is either empty or a common vertex
- d=2 : Each intersection $F=K_m\cap K_n$ is either empty or a common vertex or a common edge

- d=3: Each intersection $F=K_m\cap K_n$ is either empty or a common vertex or a common edge or a common face
- Delaunay triangulations are conformal

Shape regularity

- Now we discuss a family of meshes \mathcal{T}_h for $h \to 0$.
- For given \mathcal{T}_h , assume that $h = \max_{K \in \mathcal{T}_h} h_K$
- A family of meshes is called shape regular if

$$\forall h, \forall K \in \mathcal{T}_h, \sigma_K = \frac{h_K}{\rho_K} \leq \sigma_0$$

- In 1D, $\sigma_K = 1$
- In 2D, $\sigma_K \leq \frac{2}{\sin \theta_K}$ where θ_K is the smallest angle

Polynomial space \mathbb{P}_k

• Space of polynomials in $x_1 \dots x_d$ of total degree $\leq k$ with real coefficients $\alpha_{i_1 \dots i_d}$:

$$\mathbb{P}_k = \left\{ p(x) = \sum_{\substack{0 \le i_1 \dots i_d \le k \\ i_1 + \dots + i_d \le k}} \alpha_{i_1 \dots i_d} x_1^{i_1} \dots x_d^{i_d} \right\}$$

Dimension:

$$\dim \mathbb{P}_k = \binom{d+k}{k} = \begin{cases} k+1, & d=1\\ \frac{1}{2}(k+1)(k+2), & d=2\\ \frac{1}{6}(k+1)(k+2)(k+3), & d=3 \end{cases}$$

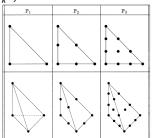
$$\dim \mathbb{P}_1 = d+1$$

$$\dim \mathbb{P}_2 = \begin{cases} 3, & d=1\\ 6, & d=2\\ 10, & d=3 \end{cases}$$

Lecture 16 Slide 26

\mathbb{P}_k simplex finite elements

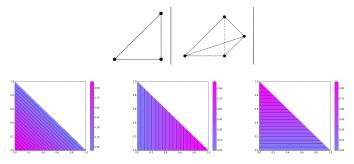
- K: simplex spanned by $\vec{a}_1 \dots \vec{a}_{d+1}$ in \mathbb{R}^d
- For $0 \le i_1 \dots i_{d+1} \le k$, $i_1 + \dots + i_{d+1} = k$, let the set of nodes $\Sigma = \{\vec{\sigma}_1 \dots \vec{\sigma}_s\}$ be defined by the points $\vec{a}_{i_1 \dots i_d; k}$ with barycentric coordinates $(\frac{i_1}{k} \dots \frac{i_{d+1}}{k})$.



• $s = \operatorname{card} \Sigma = \dim \mathbb{P}_K \Rightarrow \text{ there exists a basis } \theta_1 \dots \theta_s \text{ of } \mathbb{P}_k \text{ such that } \theta_i(\vec{\sigma}_i) = \delta_{ii}$

\mathbb{P}_1 simplex finite elements

- K: simplex spanned by $a_1 \dots a_{d+1}$ in \mathbb{R}^d
- s = d + 1
- Nodes ≡ vertices
- Basis functions $\theta_1 \dots \theta_{d+1} \equiv$ barycentric coordinates $\lambda_1 \dots \lambda_{d+1}$



Global degrees of freedom

- Given a triangulation \mathcal{T}_h
- Let $\{\vec{a}_1 \dots \vec{a}_N\} = \bigcup_{K \in \mathcal{T}_h} \{\vec{\sigma}_{K,1} \dots \vec{\sigma}_{K,s}\}$ be the set of global degrees of freedom.
- Degree of freedom map

$$j:\mathcal{T}_h imes\{1\dots s\} o\{1\dots N\}$$

$$(K,m)\mapsto j(K,m) ext{ the global degree of freedom number}$$

Lagrange finite element space

• Given a triangulation \mathcal{T}_h of Ω , define the spaces

$$P_h^k = \{ v_h \in \mathbb{C}^0(\Omega) : v_h|_K \in \mathbb{P}_K \ \forall K \in \mathcal{T}_j \} \subset H^1(\Omega)$$

$$P_{0,h}^k = \{ v_h \in P_h^k : v_h|_{\partial\Omega} = 0 \} \subset H_0^1(\Omega)$$

• Global shape functions $\theta_1, \dots, \theta_N \in P_h^k$ defined by

$$\phi_i|_{\mathcal{K}}(\vec{a}_{\mathcal{K},m}) = \begin{cases} \delta_{mn} & \text{if } \exists n \in \{1 \dots s\} : j(\mathcal{K},n) = i \\ 0 & \text{otherwise} \end{cases}$$

- $\{\phi_1, \ldots, \phi_N\}$ is a basis of P_h , and $\gamma_1 \ldots \gamma_N$ is a basis of $\mathcal{L}(P_h, \mathbb{R})$:
 - $\{\phi_1, \dots, \phi_N\}$ are linearly independent: if $\sum_{j=1}^N \alpha_j \phi_j = 0$ then evaluation at $\vec{a}_1 \dots \vec{a}_N$ yields that $\alpha_1 \dots \alpha_N = 0$.
 - Let $v_h \in P_h$. Let $w_h = \sum_{j=1}^N v_h(\vec{a}_j)\phi_j$. Then for all $K \in \mathcal{T}_h$, $v_h|_K$ and $w_h|_K$ coincide in the local nodes $\vec{a}_{K,1} \dots \vec{a}_{K,2}$, $\Rightarrow v_h|_K = w_h|_K$.

Finite element approximation space

We have

d	k	$N = \dim P_h^k$
1	1	N_{ν}
1	2	$N_v + N_{el}$
1	3	$N_v + 2N_{el}$
2	1	N_{ν}
2	2	$N_v + N_{ed}$
2	3	$N_v + 2N_{ed} + N_{el}$
3	1	N_{ν}
3	2	$N_v + N_{ed}$
3	3	$N_v + 2N_{ed} + N_f$
_		

Local Lagrange interpolation operator

- Let $\{K, P, \Sigma\}$ be a finite element with shape function bases $\{\theta_1 \dots \theta_s\}$. Let $V(K) = \mathbb{C}^0(K)$ and $P \subset V(K)$
- local interpolation operator

$$\mathcal{I}_{K}: V(K) \to P$$

$$v \mapsto \sum_{i=1}^{s} v(\vec{\sigma_{i}})\theta_{i}$$

- P is invariant under the action of \mathcal{I}_K , i.e. $\forall p \in P, \mathcal{I}_K(p) = p$:
 - Let $p = \sum_{j=1}^{s} \alpha_j \theta_j$ Then,

$$\mathcal{I}_{K}(p) = \sum_{i=1}^{s} p(\vec{\sigma}_{i})\theta_{i} = \sum_{i=1}^{s} \sum_{j=1}^{s} \alpha_{j}\theta_{j}(\vec{\sigma}_{i})\theta_{i}$$
$$= \sum_{i=1}^{s} \sum_{j=1}^{s} \alpha_{j}\delta_{ij}\theta_{i} = \sum_{i=1}^{s} \alpha_{j}\theta_{j}$$

Global Lagrange interpolation operator

Let
$$V_h = P_h^k$$

$$\mathcal{I}_h : \mathcal{C}^0(\bar{\Omega}_h) \to V_h$$

$$v(\vec{x}) \mapsto v_h(\vec{x}) = \sum_{i=1}^N v(\vec{a}_i)\phi_i(\vec{x})$$

Local interpolation error estimate I

Theorem: Let $\{\widehat{K}, \widehat{P}, \widehat{\Sigma}\}$ be a finite element with associated normed vector space $V(\widehat{K})$. Assume that

$$\mathbb{P}_k \subset \widehat{P} \subset H^2(\widehat{K}) \subset V(\widehat{K})$$

Then there exists c > 0 such that for all m = 0...2, $K \in \mathcal{T}_h$, $v \in H^2(K)$:

$$|v - \mathcal{I}_K^1 v|_{m,K} \le c h_K^{2-m} \sigma_K^m |v|_{2,K}.$$

I.e. the the local interpolation error can be estimated through h_K , σ_K and the norm of a higher derivative.

Local interpolation: special cases

•
$$m = 0$$
: $|v - \mathcal{I}_{K}^{1}v|_{0,K} \le ch_{K}^{2}|v|_{2,K}$

•
$$m = 1$$
: $|v - \mathcal{I}_{K}^{1}v|_{1,K} \le ch_{K}\sigma_{K}|v|_{2,K}$

Global interpolation error estimate for Lagrangian finite elements, k=1

• Assume $v \in H^2(\Omega)$, e.g. if problem coefficients are smooth and the domain is convex

$$\begin{split} ||v - \mathcal{I}_h^1 v||_{0,\Omega} + h|v - \mathcal{I}_h^1 v|_{1,\Omega} &\leq ch^2 |v|_{2,\Omega} \\ |v - \mathcal{I}_h^1 v|_{1,\Omega} &\leq ch|v|_{2,\Omega} \\ \lim_{h \to 0} \left(\inf_{v_h \in V_h^1} |v - v_h|_{1,\Omega} \right) &= 0 \end{split}$$

- If $v \in H^2(\Omega)$ cannot be guaranteed, estimates become worse. Example: L-shaped domain.
- These results immediately can be applied in Cea's lemma.

Error estimates for homogeneous Dirichlet problem

• Search $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \delta \vec{\nabla} u \vec{\nabla} v \, d\vec{x} = \int_{\Omega} \mathsf{f} v \, d\vec{x} \, \forall v \in H^1_0(\Omega) +$$

Then, $\lim_{h\to 0}||u-u_h||_{1,\Omega}=0$. If $u\in H^2(\Omega)$ (e.g. on convex domains) then

$$||u - u_h||_{1,\Omega} \le ch|u|_{2,\Omega}$$

$$||u - u_h||_{0,\Omega} \le ch^2|u|_{2,\Omega}$$

Under certain conditions (convex domain, smooth coefficients) one also has

$$||u-u_h||_{0,\Omega} \leq ch|u|_{1,\Omega}$$

("Aubin-Nitsche-Lemma")

H^2 -Regularity

- $u \in H^2(\Omega)$ may be *not* fulfilled e.g.
 - ullet if Ω has re-entrant corners
 - if on a smooth part of the domain, the boundary condition type changes
 - if problem coefficients (δ) are discontinuos
- Situations differ as well between two and three space dimensions
- Delicate theory, ongoing research in functional analysis
- Consequence for simuations
 - Deterioration of convergence rate
 - Remedy: local refinement of the discretization mesh
 - using a priori information
 - using a posteriori error estimators + automatic refinement of discretization mesh

Weak formulation of homogeneous Dirichlet problem

• Search $u \in V = H_0^1(\Omega)$ such that

$$\int_{\Omega} \delta \vec{\nabla} u \vec{\nabla} v \, d\vec{x} = \int_{\Omega} f v \, d\vec{x} \, \forall v \in H^1_0(\Omega)$$

Then,

$$a(u,v) := \int_{\Omega} \delta \vec{\nabla} u \vec{\nabla} v \, d\vec{x}$$

is a self-adjoint bilinear form defined on the Hilbert space $H_0^1(\Omega)$.

Galerkin ansatz

- Let $V_h \subset V$ be a finite dimensional subspace of V
- "Discrete" problem \equiv Galerkin approximation: Search $u_h \in V_h$ such that

$$a(u_h, v_h) = f(v_h) \ \forall v_h \in V_h$$

ullet E.g. V_h is the space of P1 Lagrange finite element approximations

Stiffness matrix for Laplace operator for P1 FEM

• Element-wise calculation:

$$\mathbf{a}_{ij} = \mathbf{a}(\phi_i, \phi_j) = \int_{\Omega} \vec{\nabla} \phi_i \vec{\nabla} \phi_j \ d\vec{x} = \int_{\Omega} \sum_{K \in \mathcal{T}_b} \vec{\nabla} \phi_i |_K \vec{\nabla} \phi_j |_K \ d\vec{x}$$

Standard assembly loop:

$$\begin{array}{l} \textbf{for } i,j=1\dots N \textbf{ do} \\ | \textbf{ set } a_{ij}=0 \\ \textbf{end} \\ \textbf{for } K \in \mathcal{T}_h \textbf{ do} \\ | \textbf{ for } m,n=0...d \textbf{ do} \\ | | s_{mn} = \int_K \vec{\nabla} \lambda_m \vec{\nabla} \lambda_n \ d\vec{x} \\ | | a_{j_{dof}(K,m),j_{dof}(K,n)} = a_{j_{dof}(K,m),j_{dof}(K,n)} + s_{mn} \\ | \textbf{end} \\ \textbf{end} \end{array}$$

Local stiffness matrix:

$$S_K = (s_{K;m,n}) = \int_K \vec{\nabla} \lambda_m \vec{\nabla} \lambda_n \ d\vec{x}$$

Local stiffness matrix calculation for P1 FEM

- $a_0 \dots a_d$: vertices of the simplex K, $a \in K$.
- Barycentric coordinates: $\lambda_j(a) = \frac{|K_j(a)|}{|K|}$
- For indexing modulo d+1 we can write

$$|K| = rac{1}{d!} \det \left(a_{j+1} - a_j, \dots a_{j+d} - a_j
ight)$$

 $|K_j(a)| = rac{1}{d!} \det \left(a_{j+1} - a, \dots a_{j+d} - a
ight)$

• From this information, we can calculate explicitely $\nabla \lambda_j(x)$ (which are constant vectors due to linearity) and the corresponding entries of the local stiffness

$$s_{ij} = \int_{K} \vec{\nabla} \lambda_{i} \vec{\nabla} \lambda_{j} \ d\vec{x}$$

Local stiffness matrix calculation for P1 FEM in 2D

- $a_0 = (x_0, y_0) \dots a_d = (x_2, y_2)$: vertices of the simplex K, $a = (x, y) \in K$.
- Barycentric coordinates: $\lambda_j(x,y) = \frac{|K_j(x,y)|}{|K|}$
- For indexing modulo d+1 we can write

$$|K| = \frac{1}{2} \det \begin{pmatrix} x_{j+1} - x_j & x_{j+2} - x_j \\ y_{j+1} - y_j & y_{j+2} - y_j \end{pmatrix}$$
$$|K_j(x, y)| = \frac{1}{2} \det \begin{pmatrix} x_{j+1} - x & x_{j+2} - x \\ y_{j+1} - y & y_{j+2} - y \end{pmatrix}$$

Therefore, we have

$$|K_{j}(x,y)| = \frac{1}{2} ((x_{j+1} - x)(y_{j+2} - y) - (x_{j+2} - x)(y_{j+1} - y))$$

$$\partial_{x}|K_{j}(x,y)| = \frac{1}{2} ((y_{j+1} - y) - (y_{j+2} - y)) = \frac{1}{2} (y_{j+1} - y_{j+2})$$

$$\partial_{y}|K_{j}(x,y)| = \frac{1}{2} ((x_{j+2} - x) - (x_{j+1} - x)) = \frac{1}{2} (x_{j+2} - x_{j+1})$$

Local stiffness matrix calculation for P1 FEM in 2D II

•

$$s_{ij} = \int_{K} \vec{\nabla} \lambda_{i} \vec{\nabla} \lambda_{j} \ d\vec{x} = \frac{|K|}{4|K|^{2}} \left(y_{i+1} - y_{i+2}, x_{i+2} - x_{i+1} \right) \begin{pmatrix} y_{j+1} - y_{j+2} \\ x_{j+2} - x_{j+1} \end{pmatrix}$$

• So, let
$$V = \begin{pmatrix} x_1 - x_0 & x_2 - x_0 \\ y_1 - y_0 & y_2 - y_0 \end{pmatrix}$$

Then

$$x_1 - x_2 = V_{00} - V_{01}$$
$$y_1 - y_2 = V_{10} - V_{11}$$

and

$$2|K| \vec{\nabla} \lambda_0 = \begin{pmatrix} y_1 - y_2 \\ x_2 - x_1 \end{pmatrix} = \begin{pmatrix} V_{10} - V_{11} \\ V_{01} - V_{00} \end{pmatrix}$$
$$2|K| \vec{\nabla} \lambda_1 = \begin{pmatrix} y_2 - y_0 \\ x_0 - x_2 \end{pmatrix} = \begin{pmatrix} V_{11} \\ -V_{01} \end{pmatrix}$$
$$2|K| \vec{\nabla} \lambda_2 = \begin{pmatrix} y_0 - y_1 \\ x_1 - x_0 \end{pmatrix} = \begin{pmatrix} -V_{10} \\ V_{00} \end{pmatrix}$$

Degree of freedom map representation for P1 finite elements

- List of global nodes $a_0 \dots a_N$: two dimensional array of coordinate values with N rows and d columns
- Local-global degree of freedom map: two-dimensional array C of index values with N_{el} rows and d+1 columns such that $C(i,m)=j_{dof}(K_i,m)$.
- The mesh generator triangle generates this information directly