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Recap: Galerkin method and finite elements



The Galerkin method I

@ Let V be a Hilbert space. Let a: V x V — R be a self-adjoint
bilinear form, and f a linear functional on V. Assume a is coercive
with coercivity constant «, and continuity constant ~.

@ Continuous problem: search u € V such that
a(u,v)=f(v)Vv eV

o Let V), C V be a finite dimensional subspace of V

@ “Discrete” problem = Galerkin approximation:
Search up € V), such that

a(uh, Vh) = f(vh) Vv, € Vh

By Lax-Milgram, this problem has a unique solution as well.




Céa's lemma

@ What is the connection between u and uj ?

o Let v, € V), be arbitrary. Then

IN

allu— up|? < a(u — up, u— up)  (Coercivity)

(

a(u— up,u—vp)+ a(u — up, vy — up)
(v — up,u—vy) (Galerkin Orthogonality)
|

a
<7

|u— up|| - ||lu—va|]| (Boundedness)

@ As a result

o,
— < — inf -
lu=upll < T inf, Jlu =

@ Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace V.




From the Galerkin method to the matrix eqation

o Let ¢1...¢, be a set of basis functions of V.
@ Then, we have the representation up = Zle ujp;
@ In order to search u, € V), such that

a(uh, Vh) = f(vh) Yvp € Vy
it is actually sufficient to require

a(up, i) = f(¢i) (i=1...n)

a (Z Uj¢ja¢i> =f(¢:)(i=1...n)

n

>y d)u = F(¢7) (i=1...n)

j=1
AU=F

with A = (a,-j), ajj = a(¢,-,¢j), F = (f;), f; = F(¢,‘), U
@ Matrix dimension is n x n. Matrix sparsity ?

= (U,‘).




Obtaining a finite dimensional subspace

o Let Q= (a,b) CR!
o Let a(u,v) = [Y §VuVvdX + au(a)v(a) + au(b)v(b)

@ Calculus 101 provides a finite dimensional subspace: the space of
sin/cos functions up to a certain frequency = spectral method

@ Ansatz functions have global support = full n x n matrix
@ OTOH: rather fast convergence for smooth data
@ Generalization to higher dimensions possible

@ Big problem in irregular domains: we need the eigenfunction basis of
some operator...

@ Spectral methods are successful in cases where one has regular
geometry structures and smooth/constant coefficients — e.g.
“Spectral Einstein Code”




The finite element idea |

@ Choose basis functions with local support. = only integrals of basis
function pairs with overlapping support contribute to matrix.

o Linear finite elements in Q = (a, b) C RL:
@ Partitiona=x1 <x <.---<x,=5b

@ Basis functions (for i =1...n)

s 1> 1x € (xim1, %)
oi(x) = ﬁ7 i< nx€ (Xi,Xit1)
0, else

.
.
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x1=a X2 X3 X4 Xp-1 Xp=b




FE matrix elements for 1D heat equation |

o Any function up € V), = span{¢s ... ¢,} is piecewise linear, and the
coefficients in the representation up = 27:1 uj¢; are the values
Uh(X,‘).

@ Fortunately, we are working with a weak formulation, and weak
derivatives are well defined (and coincide with the classical derivatives
where the basis functions are smooth)

o Let ¢;, ¢; be two basis functions, regard

b
S,'j = / ﬁgb, . 6¢Jd X

o We have supp¢; Nsuppgp; =B unless i =j, i+1=jori—1=j.
@ Therefore sy =0 unless i = j, i+ 1=jori—1=j.




FE matrix elements for 1D heat equation Il

Let j =i+ 1. Then supp ¢; Nsupp ¢; = (X, Xi41), ¢} = _%’
¢; = fraclh where h = xi11 — x

b_, = . Xi+1 L e Xit1 ] . 1
/avas,w,-dx:/x ¢i¢jdx:—/x i =

g i

Similarly, for j =i —1: fab ﬁgf),ﬁgbjdz =-1
For1<i<N:

b . _ N Xi+1 N o Xi+1 1 . 2
/a VoiVeidx = /X 1 (67) dx:/x ﬁdX: n

i— i—1

Fori=1ori=N: fab ViVeidx = 1
For the right hand side, calculate vector elements f; = fab f(x)pidx
using a quadrature rule.




FE matrix elements for 1D heat equation Il

Adding the boundary integrals yields

=

>IN -
> -

1
1 h
T

=
>IN,
>

.. the same matrix as for the finite difference and finite volume methods




Simplices

o Let {31...34.1} C RY such that the d vectors 3, — 31 ...3q41 — a1
are linearly independent. Then the convex hull K of a;...3d4.1 is
called simplex, and 31 ... 34,1 are called vertices of the simplex.

e Unit simplex: 3 = (0...0),3; = (0,1...0)...34:1 =(0...0,1).

d
K—{?GRd:X;ZO(i—l...d)and Zx,-gl}
i=1

@ A general simplex can be defined as an image of the unit simplex
under some affine transformation

o F;: face of K opposite to 3;

e n;: outward normal to F;




Simplex characteristics

o Diameter of K: hx = maxz, gex ||X1 — %]
= length of longest edge if K

@ pk diameter of largest ball that can be inscribed into K
0 oK = Z—’;: local shape regularity measure
o oK =23 for equilateral triangle

e ok — oo if largest angle approaches .




Barycentric coordinates

Definition: Let K C RY be a d-simplex given by the points 3 ... 3g41.
Let A(x) = (M1(X) ... Ag11(X)) be a vector such that for all X ¢ RY

d+1 d+1

dManE) =% > NEF) =1
j=1 j=1

This vector is called the vector of barycentric coordinates of X with
respect to K.




Barycentric coordinates |l

Lemma The barycentric coordinates of a given point is well defined and
unique. Moreover, for the simplex edges &;, one has

Ai(3i) = 05

Proof: The definition of A given by a d + 1 x d + 1 system of equations
with the matrix

a1,1 d21 ... Aad+1,1
ai2 d22 ... dad+1.2
M=1 : : :
did d2d --- dd+l,d
1 1 - 1
Subtracting the first column from the others gives
ar1 421 — a1 ... ad+1,1 — a1
ai2 d22—a12 ... Add+1,2 — d1.2
M/ _ . .
a1d d2d—4d1d --- dd+1,d — dl,d

1 0 0




Barycentric coordinates Il

det M = det M’ is the determinant of the matrix whose columns are the
edge vectors of K which are linearly independent.

For the simplex edges one has

d+1

> FN(E) =3
j=1

which is fulfilled if A\;(3;) =1 for i = j and X;(§;) = 0 for i # j. And we
have uniqueness. [

At the same time, the measure (area) is calculated as |K| = | det M'|.




Barycentric coordinates 1V

o Let K;j(X) be the subsimplex of K
made of X and &; ... 3¢ with 3;
omitted.

o Its measure |Kj(X)| is established
from its determinant and a linear
function of the coordiates for X.

@ One has w = §j; and therefore,
o _ IKi(X)]
Ai(X) =
’ K|

is the ratio of the measures of Kj(X)
and K.




Conformal triangulations Il

o d =1: Each intersection F = K, N K, is either empty or a common
vertex

@ d =2 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge

o d =3 : Each intersection F = K, N K, is either empty or a common
vertex or a common edge or a common face

@ Delaunay triangulations are conformal




Shape regularity

@ Now we discuss a family of meshes 7}, for h — 0.

For given Tp, assume that h = maxkeT; hk

A family of meshes is called shape regular if

h
Vh,VYK € Th,ox = —~ < ag
PK

e InlD, ok =1

@ In2D, ok < ﬁ where 6 is the smallest angle




Polynomial space Py

@ Space of polynomials in x; ... xy of total degree < k with real
coefficients o,

p i

Py = ¢ p(x) = E Qg Xy Xy
0<iy...ig<k
it tig <k

@ Dimension:

k+1,
dim Py = (dtk) = { Lk +1)(k +2),
F(k+1)(k+2)(k+3),

Q o q
I
w N =

3, d=1
dimIF’2= 6, d=2
10, d=3




Py simplex finite elements

o K: simplex spanned by 3y ...3441 in RY

@ For0<ii...igy1 <k, i1 + -+ igy1 = k, let the set of nodes
Y = {01...0} be defined by the points &j..;,x with barycentric
coordinates (i ... %2,

P, P2 Py

Y

@ s =cardX = dimPyx = there exists a basis 0 ...0s of P such that
0:(05) = 9




IP; simplex finite elements

@ K: simplex spanned by a; ...ag41 in RY
es=d+1
o Nodes = vertices

@ Basis functions 65 ...60,11 = barycentric coordinates A1 ... Ag+1

NN




Global degrees of freedom

@ Given a triangulation 7j
o Let {a1...dan} = U {Fk1...0ks} be the set of global degrees of
freedom. e
@ Degree of freedom map
JoTax{l...s} = {1...N}
(K, m) — j(K, m) the global degree of freedom number




Lagrange finite element space

@ Given a triangulation 7, of €2, define the spaces

Pk ={vy € C°(Q) : vialx € Px VK € Tj} C HY(Q)
P&h = {vh € Pf : vhloq = 0} C H3(Q)

@ Global shape functions 64, ...,0y € P,’,‘ defined by

Omn if3ne{l...s}:j(K,n)=i
0 otherwise

oilk(3k,m) = {

@ {¢1,...,0n} is a basis of Py, and 41 ...y is a basis of L(Pp, R):

o {¢1,...,¢n} are linearly independent: if z,N:1 aj¢; = 0 then
evaluation at 3 ... 3y yields that a1 ...ay = 0.

o Let v € Py. Let wy = > vi(3)¢y. Then for all K € T, vi|x and

whp|k coincide in the local nodes 3k 1 ... 3k2, = Vhlk = walk.




Finite element approximation space

We have

W WWNNNNNERF~RRF| A

WNFEF WNFE WN =X




Local Lagrange interpolation operator

o Let {K,P,X} be a finite element with shape function bases
{61...0:}. Let V(K) =C%K) and P C V(K)
@ local interpolation operator

I V(K) = P

@ P is invariant under the action of Zg, i.e. Vp € P,Zx(p) = p:
o Let p= Z;Zl a;f; Then,

Tk(p) = Zp(m)o — 3> b

i=1 j=1

—ZZ&,&,H 7204] i

i=1 j=1




Global Lagrange interpolation operator

Let V, = Pk

Ih . CO(Qh) — Vh
N

V(%) = vh(X) = Y v(3)i(X)

i=1




Local interpolation error estimate |

Theorem: Let {R, P, f} be a finite element with associated normed
vector space V(K). Assume that

P, C P C H*(K) c V(K)

Then there exists ¢ > 0 such that for all m=0...2, K € Tp,, v € H*(K):

|v — I,1<v|m,K < chf(_ma;’g\vb,;(.

l.e. the the local interpolation error can be estimated through hyk, ok and
the norm of a higher derivative.




Local interpolation: special cases

e m=0: |v—Tkv|ox < ch2|v]ak

e m=1: |v—Tkv|1k < chkok|v]ak




Global interpolation error estimate for Lagrangian finite

elements, k=1

e Assume v € H?(Q), e.g. if problem coefficients are smooth and the
domain is convex

[|v 7I},VH07Q + h|v fI,%v\LQ < ch2|v|279

lv—T}v
lim | inf [v—wvpl10] =0
0 \ vev:

e If v € H?(Q) cannot be guaranteed, estimates become worse.
Example: L-shaped domain.

1,0 < chlv|z,0

@ These results immediately can be applied in Cea's lemma.




Error estimates for homogeneous Dirichlet problem

@ Search u € H}(Q) such that

/Wuﬁvd;’:/fvdzwe H3 (Q)+
Q Q

Then, limp_yo||u — up||1.0 = 0. If u € H?(Q) (e.g. on convex domains)
then

llu— unlli,a < chluzq

l|u— unllo,0 < ch?|ulr,0

Under certain conditions (convex domain, smooth coefficients) one also has

|lu = unllon < chlula

(“Aubin-Nitsche-Lemma™)




H?-Regularity

u € H?(Q) may be not fulfilled e.g.

e if Q has re-entrant corners

e if on a smooth part of the domain, the boundary condition type
changes

o if problem coefficients () are discontinuos

o Situations differ as well between two and three space dimensions
@ Delicate theory, ongoing research in functional analysis
@ Consequence for simuations

o Deterioration of convergence rate
o Remedy: local refinement of the discretization mesh
@ using a priori information
@ using a posteriori error estimators 4+ automatic refinement of
discretizatiom mesh




Weak formulation of homogeneous Dirichlet problem

e Search u € V = H}(Q) such that
/5ﬁuﬁv dxX = / fv dX Vv € H3(Q)
Q Q
@ Then,
a(u,v) = / §VuVv dx
Q

is a self-adjoint bilinear form defined on the Hilbert space H3(Q).



Galerkin ansatz

o Let V), C V be a finite dimensional subspace of V

@ "Discrete” problem = Galerkin approximation:
Search uj, € V), such that

a(u;,, Vh) = f(Vh) Vv, € Vy

o E.g. V} is the space of P1 Lagrange finite element approximations



Stiffness matrix for Laplace operator for P1 FEM

o Element-wise calculation:

aj = a(¢i, ¢;) = /Qﬁ(biﬁﬁbj dz:/ > VoilkVojlk d%

KEeTh

@ Standard assembly loop:
fori,j=1...Ndo
| seta;=0
end
for K € T, do
for m,n=0..d do

S = / VALV, dX
K

jgor (K,m) Jaor (K,1) = Fjaor (K, m).jaor (K ,n) + Smn

end
end

@ Local stiffness matrix:

SK = (SK;m,n) :/ ﬁAmﬁ)\n dx
K



Local stiffness matrix calculation for P1 FEM

@ 3p...ay: vertices of the simplex K, a € K.

@ Barycentric coordinates: A;(a) = ‘7’;&7”

@ For indexing modulo d+1 we can write
1
|K| = E det (aj+1 —3j,...3j+d — aj)

1
|Kj(a)| = 7 det (aj11 — a,...aj4q — a)

e From this information, we can calculate explicitelyﬁ)\j(x) (which are
constant vectors due to linearity) and the corresponding entries of the
local stiffness

Sjj = / ﬁ)\,ﬁ)\J dx
K



Local stiffness matrix calculation for P1 FEM in 2D

@ 3y = (x0,¥0)-.-34 = (X2, ¥2): vertices of the simplex K,
a=(x,y) € K.
@ Barycentric coordinates: Aj(x,y) = W

@ For indexing modulo d+1 we can write

K| zldet <Xj+1—xj Xj+2—Xj>
2 Yier =Y Yie2 7Y

1 Xitl — X Xipo — X
Ki(x = Zdet [ V! J+2 >
x| = et (5792
@ Therefore, we have

K503 = 3 (g = x) 02 = ) — G2 = X1 — )

0ulK () = 5 (U312 = Y) = ez = ) = 501 — v342)
0,1Ki(x,9)] = 5 (G52~ x) — G2~ X)) = 50542 — 501)



Local stiffness matrix calculation for P1 FEM in 2D ||

- - K =i
sij = /KVA;V)\,' dx = 4||K|2 (Vi1 = Yiva, Xip2 = Xit1) (y,+1 y,+2>

Xj+2 = Xj+1
@ So, let V= 7% X27X
Yyi— Y2—Y
@ Then

x; —xo = Voo — Vo1

yvi—y»=Vio—Via

= _ (Y1 —=Yy2\ _ Vio — Vi
21K1 VAo = (Xz Xl) B (Vo1 - Voo)
; _ V,
2K| VA = (f) _2) = <_\1/(1n>

. - —V
2|K| VA = (2 _2) - < v0;0>

and



Degree of freedom map representation for P1 finite

elements

@ List of global nodes ag...an: two dimensional array of coordinate
values with N rows and d columns

@ Local-global degree of freedom map: two-dimensional array C of
index values with N rows and d + 1 columns such that
C(I'7 m) :jdof(K,', m)

@ The mesh generator triangle generates this information directly



