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Recap: Weak formulation



Weak formulation of homogeneous Dirichlet problem

Find u € H}() such that

/Wuﬁvdzz/fvdzweklg(m
Q Q

@ Then,
a(u,v) = / AVu-Vvdx
Q

is a self-adjoint bilinear form defined on the Hilbert space H3(<2).

@ It is bounded due to Cauchy-Schwarz:

atus ) = 2| [ Fu-Fvds] < Alullygey - IVl

o f(v) = [, fvdXis a linear functional on H}(). For Hilbert spaces V
the dual space V'’ (the space of linear functionals) can be identified
with the space itself.




The Lax-Milgram lemma

Theorem: Let V be a Hilbert space. Let a: V x V — R be a self-adjoint
bilinear form, and f a linear functional on V. Assume a is coercive, i.e.

o> 0:Vue V,a(u,u) > allu}.
Then the problem: find u € V such that
a(u,v)=f(v)Vv eV

admits one and only one solution with an a priori estimate

1
lullv < =[Iflv-
(e




Coercivity of weak formulation

Theorem: Assume A > 0. Then the weak formulation of the heat
conduction problem: search u € H}(Q) such that

/Wuﬁvdz:/fvdzwe%(n)
Q Q

has an unique solution.

Proof: a(u, v) is cocercive:

a(u,u) = /Q/\§u VudX = /\HUH%'I(}(Q)




Weak formulation of inhomogeneous Dirichlet problem

~V-AVu="finQ
u=gondQ

If g is smooth enough, there exists a lifting u; € H*(Q) such that
uglon = g. Then, we can re-formulate:

fV-)\§(ufug):f+V-)\ﬁuginQ
u— ug =00n0Q

Find u € HY(R) such that
Uu=ug+¢

/A%ﬁvdz:/fvdwr/wugvv Vv e Hi(Q)
Q Q Q

Here, necessarily, ¢ € H&(Q) and we can apply the theory for the
homogeneous Dirichlet problem.




Weak formulation of Robin problem Il

Let

a(u,v) = / AVu-Vv d)?—i—/ auv ds
Q ol

fR(v) ::/fvd)?—i—/ gvds
Q o9
Find u € HY() such that

a(u,v) = fR(v) Vv € H}(Q)

If A > 0 and a > 0 then a®(u, v) is cocercive, and by Lax-Milgram we
establish the existence of a weak solution




The Galerkin method |

@ Weak formulations “live” in Hilbert spaces which essentially are
infinite dimensional

@ For computer representations we need finite dimensional
approximations

@ The Galerkin method and its modifications provide a general scheme
for the derivation of finite dimensional appoximations

@ Finite dimensional subspaces of Hilbert spaces are the spans of a set
of basis functions, and are Hilbert spaces as well = e.g. the
Lax-Milgram lemma is valid there as well



The Galerkin method I

o Let V be a Hilbert space. Let a: V x V — R be a self-adjoint
bilinear form, and f a linear functional on V. Assume a is coercive
with coercivity constant «, and continuity constant ~.

@ Continuous problem: search u € V such that
a(u,v)=~f(v)VveV

o Let V), C V be a finite dimensional subspace of V

@ "Discrete” problem = Galerkin approximation:
Search uy, € V), such that

a(uh, Vh) = f(Vh) Vv, € Vy

By Lax-Milgram, this problem has a unique solution as well.



Céa’'s lemma

@ What is the connection between u and u, ?

@ Let vy € V, be arbitrary. Then

al|lu—up|)? < a(u — up, u— uy)  (Coercivity)
= a(u— up,u—vy)+ a(u— up, vy — up)
= a(u — up,u—vp) (Galerkin Orthogonality)
< ||lu— up|| - ||Ju = va|| (Boundedness)

@ As a result

7o
— < = f —
o= il < L inf Jlu v

@ Up to a constant, the error of the Galerkin approximation is the error
of the best approximation of the solution in the subspace V.



From the Galerkin method to the matrix egation

o Let ¢ ...¢, be a set of basis functions of V.
@ Then, we have the representation uj, = >, u;¢;
@ In order to search u, € V), such that

a(uh, Vh) = f(Vh) Vv, € V
it is actually sufficient to require

a(up, ;) ="f(o;) (i=1...n)

a (_Z uj¢j,¢;) = f(¢) (i=1...n)

n

> a(ey, di)y = () (i=1...n)

Jj=1

AU=F

with A = (aj), aj = a(¢;, ¢;), F = (), fi = F(¢), U= (u;).
@ Matrix dimension is n x n. Matrix sparsity ?



Obtaining a finite dimensional subspace

o Let Q= (a,b) CR!
o Let a(u,v) = [* 6VuVvdx + au(a)v(a) + au(b)v(b)

@ Calculus 101 provides a finite dimensional subspace: the space of
sin/cos functions up to a certain frequency = spectral method

@ Ansatz functions have global support = full n x n matrix
@ OTOH: rather fast convergence for smooth data
@ Generalization to higher dimensions possible

@ Big problem in irregular domains: we need the eigenfunction basis of
some operator...

@ Spectral methods are successful in cases where one has regular
geometry structures and smooth/constant coefficients — e.g.
“Spectral Einstein Code”



The finite element idea |

@ Choose basis functions with local support. = only integrals of basis
function pairs with overlapping support contribute to matrix.

e Linear finite elements in Q = (a, b) C R™:
@ Partitiona=x1 < x<---<x,=b
e Basis functions (for i =1...n)

x=xi—1 = ;
o i>1xe€ (Xi—1, %)

Xj+1—X H
¢i(x) = s 1< nx € (xi; Xiy1)
else
0, |
—
04 $2
— ¢
. —
— $n-1
0.0 )

Xx1=a X2 X3 Xa Xn-1 Xp=b



FE matrix elements for 1D heat equation |

e Any function up € Vj, = span{¢; ... ¢,} is piecewise linear, and the
coefficients in the representation up = ZLI u;j¢; are the values
up(x;).

o Fortunately, we are working with a weak formulation, and weak
derivatives are well defined (and coincide with the classical derivatives
where the basis functions are smooth)

o Let ¢;, ¢; be two basis functions, regard

b
Sjj :/ ﬁ(b,ﬁ(ﬁjdx

e We have supp ¢ Nsuppgp; =P unless i =j, i+1=jori—1=j.
@ Therefore sj =0 unlessi=j, i+1=jori—1=j.



FE matrix elements for 1D heat equation I

@ Let j =i+ 1. Then supp¢; Nsupp ¢; = (X, Xi+1), ¢ = _%'
qSJ’. = fraclh where h = x;11 — x;

b X; X:
. . . i+1 . i+l . 1
/a V¢,V¢de = g ¢:¢jdx = — /Xi ﬁdx = _E

Similarly, for j =i — 1: fab VoiVds = —1
@ Forl <i<N:

b L. Xi+1 Xit1 2
| Vodoas= [ o= [ pax—1

a Xi—1 i—1

. . b, S, o

Fori=1lori=N: []V¢;Vg;dx =}

For the right hand side, calculate vector elements f; = fab f(x)¢idx
using a quadrature rule.



FE matrix elements for 1D heat equation Il

Adding the boundary integrals yields

o+

=
>

N
>

Sl

>
>IN,
Sl

Fi= -
>IN

>

... the same matrix as for the finite difference and finite volume methods



Simplices

o Let {31...34:1} C R? such that the d vectors 3, — 31 ... 3441 — a1
are linearly independent. Then the convex hull K of 3;...34.1 is
called simplex, and 3; ...34.1 are called vertices of the simplex.

e Unit simplex: 3; = (0...0),3; = (0,1...0)...3441 =(0...0,1).

d
K_{S(eRd:x,-ZO(i_l...d)and Zx,-g1}
i=1

@ A general simplex can be defined as an image of the unit simplex
under some affine transformation

@ F;: face of K opposite to 3;

@ r;: outward normal to F;



Simplex characteristics

o Diameter of K: hx = maxg, ek ||X1 — X2||
= length of longest edge if K
@ pk diameter of largest ball that can be inscribed into K

e o = Z—i: local shape regularity measure

o ok = 2+/3 for equilateral triangle

o ok — oo if largest angle approaches 7.



Barycentric coordinates

Definition: Let K C RY be a d-simplex given by the points 3; ...34,1.
Let A(x) = (AL(X) ... Ag+1(X)) be a vector such that for all X € R?

d+1

d+1
danE) =% D NE =1
j=1 j=1

This vector is called the vector of barycentric coordinates of X with
respect to K.



Barycentric coordinates I

Lemma The barycentric coordinates of a given point is well defined and
unique. Moreover, for the simplex edges 3;, one has

Aj(@) = 65

Proof: The definition of A given by a d + 1 X d + 1 system of equations
with the matrix

ai ari ce.dd+1,1
ai2 a2 ... Aad+1.2
M =
ald d2d --- ad+1ld
1 1 1
Subtracting the first column from the others gives
41,1 d21 — 411 ... dd+1,1 — 41,1
a12 d22—4ad12 ... dd+12 — 412
MI — . .

al,d d2d —d1,d --- Add+1,d — a1,d

1 0 0



Barycentric coordinates Il

det M = det M’ is the determinant of the matrix whose columns are the
edge vectors of K which are linearly independent.

For the simplex edges one has

d+1

Y aNE) =3
j=1

which is fulfilled if X\;(3;) =1 for i = j and \;(3;) = 0 for i # j. And we
have uniqueness. []

At the same time, the measure (area) is calculated as |K| = | det M'|.



Barycentric coordinates IV

o Let K;(X) be the subsimplex of K
made of X and & ... dg41 with &;
omitted.

o Its measure |Kj(X)| is established
from its determinant and a linear
function of the coordiates for X.

@ One has % = 0; and therefore,

o KK 2
Ai(X) = K] ) K3(X) )

is the ratio of the measures of Kj(X)
and K.



Conformal triangulations

o Let 7}, be a subdivision of the polygonal domain Q C R into
non-intersecting compact simplices K,,, m=1...n,

@ Each simplex can be seen as the image of a affine transformation of a
reference (e.g. unit) simplex K:

Km = Tm(K)

@ We assume that it is conformal, i.e. if K,,, K, havea d —1

dimensional intersection F = K,, N K,,, then there is a face F of K
and renumberings of the vertices of K, Kp, such that
F=Tn(F)= T,(F) and Tm|? = T,,|?



Conformal triangulations Il

@ d =1 : Each intersection F = K, N K}, is either empty or a common
vertex

o d =2 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge

e d = 3 : Each intersection F = K, N K}, is either empty or a common
vertex or a common edge or a common face

@ Delaunay triangulations are conformal



Shape

regularity

Now we discuss a family of meshes 7, for h — 0.
For given 7Tp,, assume that h = maxxe7, hk

A family of meshes is called shape regular if

h
VhVK € Th,ox = — < a9
PK

In lD, O'KZ].

In 2D, ok < ﬁ where 0 is the smallest angle



Polynomial space P

@ Space of polynomials in xj ... xy of total degree < k with real
coefficients «,..i,:

i i

Py =< p(x) = E Qi igXg o Xy
0<ir...ig<k
gk

@ Dimension:

k+1,
dimP, — (dtk> =Lk +1)(k+2),
F(k+1)(k+2)(k+3),
dimP; =d+1
3, d
dmP, =<6, d
10, d

Q Q Q
Il
w N =

1
2
3



Py simplex finite elements

e K: simplex spanned by 3; ... 3441 in RY

@ For0<iy...igp1 <k, i +---+igy1 = k, let the set of nodes
Y = {51...0,} be defined by the points ;. j,;x with barycentric
coordinates (1 ... %42).

Py Py Py

BN

@ s = card X = dimPx = there exists a basis 0y ...0; of P, such that
0:i(d) = 05



P; simplex finite elements

K: simplex spanned by aj ...aq4.1 in RY

s=d+1

Nodes = vertices

Basis functions 6 ...60441 = barycentric coordinates A1 ... Ag41

075 o7 075
000 o6 60 as| os0
o1 02 02|
000

o8l 290 oa oe gg g o ot %o 2 oaoe g o 0%




P, simplex finite elements

o K: simplex spanned by a; ...ag41 in RY
@ Nodes = vertices + edge midpoints

@ Basis functions:
Ai(2Ai—1),(0<i<d); 44X, (0<i<j<d) ("edge bubbles”)




Finite elements

e Finite element: triplet {K, P, X} where

o K C R? compact, connected Lipschitz domain with non-empty
interior

o P: finite dimensional space of functions p: K — R

o ¥ ={o1...0s} C L(P,R): set of linear forms defined on P called
local degrees of freedom such that the mapping

As : P — R®
p = (o1(p)---os(p))
is bijective, i.e. X is a basis of L(P,R).

@ Given a set of points {77 ...ds} C K, we use the symbols o7 ... 05 to
denote the evaluation of a function at the respective points. Elements
with this type of degree of freedom functionals are called Lagrangian.



General finite elements

@ Simplicial finite elements can be defined on triangulations of
polygonal domains. During the course we will stick to this case.

@ More general elements are possible: cuboids, but also prismatic
elements etc.

@ For vector PDEs, one can define finite elements for vector valued
functions

e Different types of degrees of freedom (e.g. derivatives) are possible

@ A curved domain Q may be approximated by a polygonal domain Q4
which is then triangulated. During the course, we will ignore this
difference.

@ Curved element geometries are possible. Isoparametric finite elements
use the polynomial space to define a mapping of some polyghedral
reference element to an element with curved boundary



Global degrees of freedom

@ Given a triangulation Tj
o Let {a1...an} = U {Fk,1...0k,s} be the set of global degrees of
freedom. e
@ Degree of freedom map
JiTax{l...s} = {1...N}
(K, m) — j(K, m) the global degree of freedom number



Lagrange finite element space

@ Given a triangulation T; of Q, define the spaces

Pk ={vn € C%(Q) : vi|k € Pk YK € Tj} C HX(Q)
P » = {vh € Pf : viloa = 0} C Hg(Q)

o Global shape functions 61, ...,0y € P} defined by

Omn if3ne{l...s}:j(K,n)=i
0 otherwise

bilk(3K,m) = {

o {¢1,...,¢n} is a basis of Py, and 71 ...y is a basis of L(Pp,R):
o {¢p1,...,¢n} are linearly independent: if Zszl ajop; = 0 then
evaluation at 3 ... 3y yields that a1 ...any = 0.

N -
o Let vy € Py. Let wy, = ZJ.ZI vh(3;)p;. Then for all K € Tp,, vi|k and
wh|k coincide in the local nodes dk.1...3k2, = Vhlk = Whlk.



Finite element approximation space

We have

W WWNNNNRFE =P
WNFREF WNFE WN - | X




P! global shape functions



P? global shape functions

Node based Edge based



Local Lagrange interpolation operator

o Let {K,P,X} be a finite element with shape function bases
{61...05}. Let V(K) =C°K) and P C V(K)
@ local interpolation operator

Ik : V(K) = P
Vi Y ()0
i=1

@ P is invariant under the action of Zx, i.e. Vp € P,Zx(p) = p:
o Let p= ijl a;jf; Then,

Ik(p) = ZpJ,GfZZaJ ai)

i=1 j=1

S fza,

i=1 j=1



Global Lagrange interpolation operator

Let V, = Pk



Reference finite element

Let {/3, K, f} be a fixed finite element

Let Tk be some affine transformation and K = Tx(K)

There is a linear bijective mapping ¢k between functions on K and
functions on K:

~

Y V(K) = V(K)
frfoTgk

o Let
o K =Tx(K)
o P ={yx'(p)ip € P},
o ZK = {O'Ky,‘, i=1...s: O'K’,'(p) = ?J'\,(’L/)K(p))}
Then {K, Pk, Xk} is a finite element.
@ This construction allows to develop theory for a reference element and
to lift it later to an arbitrary element.



Commutativity of interpolation and reference mapping

o Ty ok =k o Ik,
i.e. the following diagram is commutative:

V(K) —2 V(K)

B2 |7«

Pc —2 Py

@ = Interpolation and reference mapping are interchangeable



Affine transformation estimates |

Lemma T:
o |detJk| = %E%
he 11— h
o [[Jkll < . [t < 25
o = ||Jkll - [[9c ] < cgow
Proof:
o |det Jk| = %ﬁg: basic property of affine mappings
o Further:
Ik X 1 .
il = sup A Lk
w20 Xl K 11]1=pi

Set X = X1 — % with X1, % € K. Then JxX = TxX1 — TkX> and one
can estimate ||JkX|| < hk.

o For ||Ji!|| regard the inverse mapping OJ



Estimate of derivatives under affine transformation

o For w € H*(K) recall the H* seminorm |w|2 , = 2 18]=s ||a’BW||i2(K)

@ We have
VI Bagry = / v(x)dx = / (T (%) 2 det Jids

@ For the derivative

IVIi,l(K)=/K\|vv||2(x)dx:A|\J;Tﬁo(&)||2detJKd&



Estimate of derivatives under affine transformation |l

Lemma D: Let w € H°(K) and w = w o Tk. There exists a constant ¢
such that

A _1

W5 i < cll k| det Jx |2 |wls k
— 1.

wlsk < clldc 17| det Jx| 2], &

Proof: Let |a| = s. By affinity and chain rule one obtains

16% ]|,z < llll* 32 110%w o Tielliag
|B|=s

Changing variables in the right hand side yields

10 || 2 < cllJic||*| det Jic| =2 |w

s,K

Summation over « yields the first inequality. Regarding the inverse
mapping yields the second estimate. [



Local interpolation error estimate |

Theorem: Let {K, P, %} be a finite element with associated normed
vector space V/(K). Assume that

P, C P C H*(K) c V(K)

Then there exists ¢ > 0 such that for all m=0...2, K € Tp,, v € H*(K):

v = Zivlmk < chic "oR|v]2 k-

l.e. the the local interpolation error can be estimated through hk, ok and
the norm of a higher derivative.



Local interpolation error estimate |l

Draft of Proof

o Estimate on reference element K using deeper results from functional

analysis:

o — Tp] g < clWl i (*)

(From Poincare like inequality, e.g. for v € H}(),

c||vlliz < ||Vv||2: under certain circumstances, we can can estimate
the norms of lower derivatives by those of the higher ones)

e Derive estimate on K from estimate on K: Let v € H?(K) and set
¥ = vo Tk. We know that (Ziv)o Tk = I}<\7.

v — Tk v|mk

< cl[Jt||™| det Jk |20 — T 0], 4 (Lemma E)
_ 1A

< |l det Jic |2 [0, 4 (*)

< [k PV, (Lemma E)

= (19l - 1 D™ kP~ v ]2,6

< chi MoR|v]ak (Lemma T)




Local interpolation: special cases

e m=0: |v—Zkvlok < ch%|v|ak

e m=1: |V —I}(V|17K S ChKO'K‘V|2,K



Global interpolation error estimate

Theorem Let Q be polyhedral, and let 7, be a shape regular family of
affine meshes. Then there exists ¢ such that for all h, v € H*(Q),

1
2 2
o= Tl + 3 A7 (z |v—z;v|%n,K) < Hlviaa

m=1 KeTh

and

AR



Global interpolation error estimate for Lagrangian finite

elements, kK =1

o Assume v € H?(Q), e.g. if problem coefficients are smooth and the
domain is convex

v = Zpvllog + hlv = Tivliae < ch’|vl2

v —Tpvlia < chlvlag
lim inf [v—vhli0] =0
h—0 v,,ev,}

e If v € H%(Q) cannot be guaranteed, estimates become worse.
Example: L-shaped domain.

@ These results immediately can be applied in Cea’s lemma.



Error estimates for homogeneous Dirichlet problem

e Search u € H}(Q) such that

/5ﬁuﬁvd)?:/fvd>?Vv€Hé(Q)+
Q Q

Then, limp_0 ||u — upll1.0 = 0. If u€ H?*(Q) (e.g. on convex domains)
then

l|u— unll1,0 < chlulz,0

|u— upllo.q < ch?|ulaa

Under certain conditions (convex domain, smooth coefficients) one also has

l|u— unllo.a < chlulia

(“Aubin-Nitsche-Lemma")



H?-Regularity

e u € H?(Q) may be not fulfilled e.g.
o if Q has re-entrant corners
e if on a smooth part of the domain, the boundary condition type
changes
o if problem coefficients (§) are discontinuos
o Situations differ as well between two and three space dimensions
@ Delicate theory, ongoing research in functional analysis

@ Consequence for simuations

o Deterioration of convergence rate
o Remedy: local refinement of the discretization mesh
@ using a priori information
@ using a posteriori error estimators + automatic refinement of
discretizatiom mesh



Higher regularity

o If ue H*(Q) for s > 2, convergence order estimates become even
better for P¥ finite elements of order k > 1.

@ Depending on the regularity of the solution the combination of grid
adaptation and higher oder ansatz functions may be successful



