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Recap: the finite Volume method



Finite volumes: motivation

Regard stationary second order PDE with Robin boundary conditions as a
system of two first order equations in a Lipschitz domain Q:

v ~_7= f continuity equation in Q
7: —6Vu flux law in Q
ji=au—g onT

@ Derivation of the continuity equation was based on the consideration
of species balances of an representative elementary volume (REV)

@ Why not just subdivide the computational domain into a finite
number of REV's ?

o Assign a value of u to each REV
o Approximate Vu by finite differece of u values in neigboring REVs

o ... call REVs “control volumes” or “finite volumes”




Constructing control volumes |

Assume Q C RY is a polygonal domain such that 9Q = | m, where

I are planar such that i|r, = 7.

meg
Subdivide € into into a finite number of control volumes Q = Uke/\/ WOk
such that

@ wy are open convex domains such that wy Nw; = 0 if wy # w;

@ oy = Wy N &y are either empty, points or straight lines.
If |ok| > 0 we say that wg, w) are neighbours.

@ Uy L ok normal of Qw at oy

o Ni={l €N :|ow| > 0}: set of neighbours of wy

® Ykm = Owi N T p: domain boundary part of dwy

@ Gy ={m € G : |ykm| > 0}: set of non-empty boundary parts of w.

= 0wk = (Uren,ou) U (Umeg, Vkm)




Constructing control volumes Il

To each control volume wy assign a collocation point: X, € &, such that

o Admissibility condition:
if | € N then the line X% is orthogonal to o

o For a given function u: Q — R this will allow to associate its value
uk = u(X«) as the value of an unknown at Xi.

o For two neigboring control volumes wy, wy , this will allow to
approximate Vu - Uy ~ %

o Placement of boundary unknowns at the boundary:
if wg is situated at the boundary, i.e. for |Ow, N OQ| > 0, then
X € 0

o This will allow to apply boundary conditions in a direct manner




Constructing Control Volumes in 1D

Let Q = (a, b) be subdivided into intervals by
X1=a<Xx<x3<- < Xp_1<X,=b. Then we set

X1+Xx: _
(x, %52) k=1
Xk—1+Xk  Xk+Xkq1
Wk = 5 #) , 1<k<n
Xn—1-+X, _
%7)(") , k=n
W1 w2 w3 Wn
p——o—f— : . o4
X1 X2 X3 X4 Xp—1  Xn




Control Volumes for a 2D tensor product mesh

o Let Q = (a,b) x (c,d) C R2.

@ Assume subdivisions x; = a < x <x3 < -+ < Xxp,_1 < X, = b and
NnN=c<yr<ys<- - <yp1<y,=d

e = 1D control volumes w} and wy,

o _ _ y
@ Set Xig = (xk, y1) and wy = wf X wy.

o Gray: original grid lines and points
@ Green: boundaries of control volumes




Control volumes on boundary conforming Delaunay mesh

o Obtain a boundary conforming Delaunay triangulation with vertices X
@ Construct restricted Voronoi cells wy with Xx € wy

o Corners of Voronoi cells are either cell circumcenters of midpoints of

boundary edges

o Admissibility condition XxX; L oy = ik N @, fulfilled in a natural way
@ Triangulation edges: connected neigborhood graph of Voronoi cells
@ Boundary placement of collocation points of boundary control

volumes




Discretization of continuity equation

e Stationary continuity equation: V -j = f

@ Integrate over control volume wy:

V-fdwf/ f dw
Wk Wk

:/ J ., ds— f dw
Owi Wk

_Z/Jyk,ds+2/ i nmds—/ fdw

1ENK megy




Approximation of flux between control volumes

Utilize flux law: j = —6Vu
o Admissibility condition = XX || v
o Let ux = u(X), ur = u(x)
® hy = |Xx — X|: distance between neigboring collocation points
o Finite difference approximation of normal derivative:

up — ug
hi

VU'ﬁk/ ~

= flux between neigboring control volumes:

. Okl
/ J " Vki d ~ |/17|5(Uk — U/)
oK ki

|lowl
= ——g(ug, u
et g(ux, uy)

where g(-, ) is called flux function




Approximation of Robin boundary conditions

Utilize boundary condition -7 = au — g
@ Assume a|r, = am

@ Approximation of j - ii,, at the boundary of wy:

.7' ﬁm N oamUup — &
o Approximation of flux from wy through I ,:

/ jﬁm ds ~ |7km|(amuk7g)
Ykm




Discrete system of equations

o Let fr = (%) (or fix = fwk f(%) dw)

@ The discrete system of equations then writes for k € N/

g,
Z | k"é(ukf up) + Z [Vkm|muie = wi|fic + Z [Yim|&

1
||

IeNK ha meGy meGx
Okl Okl
( 53 s S m|> 53 By~ ottt Y Pumle
1eNK megGy 1ENK meG

akk Uk + g aguy = by
I=1...|N |, Ik

with by = |wi|fi + Y neg, |7kmlg and

o] .
Doren OB + Xomeg, Vkmlatm, 1=k
e __ SOk
akl 6th le N,
0, else




Discretization matrix properties

N = | V]| equations (one for each control volume wy)

N = |N| unknowns (one for each collocation point x, € wy)

@ Matrix is sparse: nonzero entries only for neighboring control volumes

Matrix graph is connected: nonzero entries correspond to edges in
Delaunay triangulation = irreducible

e A is irreducibly diagonally dominant if at least for one i, |7; «|a; > 0

Main diagonal entries are positive, off diagonal entries are non-positive
@ = A has the M-property.

@ Ais symmetric = A is positive definite




Matrix assembly algorithm

@ Due to the connection between Voronoi diagram and Delaunay
triangulation, one can assemble the discrete system based on the

triangulation
o Necessary information:
o List of point coordinates Xk

o List of triangles which for each triangle describes indices of points
belonging to triangle

@ This induces a mapping of local node numbers of a triangle T to the
global ones: {1,2,3} — {k71,kT2, kT 3}

o List of (boundary) segments which for each segment describes indices
of points belonging to segment

@ Assembly in two loops:
o Loop over all triangles, calculate triangle contribution to matrix entries

o Loop over all boundary segments, calculate contribution to matrix
entries




Matrix assembly — main part

@ Loop over all triangles T € T, add up edge contributions
for k,/=1...N do
| set ay=0
end
for TeT do
fori,j=1...3,i#jdo
O = Oky jkr; N T

lo|

hkT,j,kT,i
Akr jkr ;T = dop
Akr j kr;— = 00
Akr i kr ;= = 00

Akr i kr o+ = 00h

end
end




Matrix assembly — boundary part

@ Keep list of global node numbers per boundary element v mapping
local node element to the global node numbers: {1,2} — {ky 1, k,2}

o Keep list of boundary part numbers m., per boundary element

@ Loop over all boundary elements v € G of the discretization, add up
contributions

for y € G do
fori=1,2 do
‘ akwkw,-+ = Qm, h/ n awkw'
end
end




RHS assembly: calculate control volumes

@ Denote wy = |w|

@ Loop over triangles, add up contributions
for k... N do
| set wy=0
end
for 7 € T do
for n=...3do
‘ Wi+ = |wkw. N T‘
end
end




Matrix assembly: summary

o Sufficient to keep list of triangles, boundary segments — they typically
come out of the mesh generator

@ Be able to calculate triangular contributions to form factors: |wx N 7|,
|ok N 7| — we need only the numbers, and not the construction of the
geometrical objects

@ O(N) operation, one loop over triangles, one loop over boundary
elements




Finite volume local stiffness matrix calculation |

Pg

Need to calculate s,, sp, sc

(]

Triangle edge lengths: a, b, ¢

@ Semiperimeter: s = 5 + g +5

Square area (from Heron's formula):
16A% = 165(s — a)(s — b)(s — ¢) =
(—a+b+c)(a—b+c)(a+b—c)(a+b+c)

a2b%c? _ a2 ?
—atb+c)(a—b+c)(atb—c)(at+b+c) — 16A?

@ Square circumradius: R? = 0



Finite volume local stiffness matrix calculation |l

Square of the Voronoi surface contribution via Pythagoras:

2R (la) = # (s —t=ct)’

“ 4(a—b—c)(a—b+c)(atb—c)(atbtc)
@ Square of edge contribution in the finite volume method:

5 2 (327b2762)2 (PP —2)
e = =2 = — =
a a2 4(a—b—c)(a—b+c)(a+b—c)(a+b+c) 64A2
I 2 2 2
o Edge contribution. e, = = = Etc=2

The sign chosen implies a positive value if the angle a < %, and a
negative value if it is obtuse. In the latter case, this corresponds to
the negative length of the line between edge midpoint and
circumcenter, which is exactly the value which needs to be added to
the corresponding amount from the opposite triangle in order to
obtain the measure of the Voronoi face.



Finite volume local stiffness matrix calculation |l

ao = (X0, ¥0) - - - g = (X2, ¥»): vertices of the simplex K Calculate the

contribution from triangle to Z—:I’ in the finite volume discretization

az

wo w1
S2

ao hy a;

Let h; = |ai1 — aiy2| (7 counting modulo 2) be the lengths of the
discretization edges. Let A be the area of the triangle. Then for the
contribution from the triangle to the form factor one has

lsif 1

|wil = (Isi+1lhit1 + [Si+2lhit2) /4



Variations of the discretization ansatz

3D: tetrahedron based
6 =0(x) = 0(x)Vu ~ o5

@ Non-constant o, g

@ Nonlinear dependencies ...



Interpretation of results

@ One solution value per control volume wy allocated to the collocation
point x, = piecewise constant function on collection of control
volumes

@ But: xx are at the same time nodes of the corresponding Delaunay
mesh = representation as piecewise linear function on triangles



The problem with Dirichlet boundary conditions

@ Eliminate Dirichlet BC algebraically after building of the matrix, i.e.
fix “known unknowns” at the Dirichlet boundary = highly technical

@ Modifiy matrix such that equations at boundary exactly result in
Dirichlet values = loss of symmetry of the matrix

@ Penalty method



Dirichlet BC: Algebraic manipulation

@ Assume 1D situation with BC u; = g
@ From handling of control volumes without regard of boundary values:

1 1
b, 1 u1 i
~h h  h 2 fa
AU = _1 2 _1 u = | f
h h h 3 3

@ Fix u; and eliminate:

%1 —2% u fz-l-%g
AU=|"n & —

>
.S
W
|
&h

o A’ becomes idd and stays symmetric
@ operation is quite technical



Dirichlet BC: Modify boundary equations

@ From handling of control volumes without regard of boundary values:

1 1
b Tk t f
-1 2 _1 u £
AU ho h o Th L 2 2
- ~h R Th us | = |

@ Modify equation at boundary to exactly represent Dirichlet values

7 0 uy ig
M2 ;
uz 2
A/U . h hl 2h 1 .
- “h h Th us | = [ A

e A’ becomes idd
@ loses symmetry = problem e.g. with CG method



Dirichlet BC: Discrete penalty trick

@ From handling of control volumes without regard of boundary values:

1 1
El _2z 1 t fl
~h h  h u2 fa
AU = 1 = f
— -7 u3 3

o Add penalty terms
1,1 1
cth h th fi+Zg
_1 20 1 £
h h h 2 2
AU = 102 1 = ‘
“h h  Th ts 3

o A’ becomes idd, keeps symmetry, and the realization is technically
easy.

If € is small enough, u; = g will be satisfied exactly within floating
point accuracy.

Iterative methods should be initialized with Dirichlet values.
Works for nonlinear problems, finite volume methods



Dirichlet penalty trick, general formulation

@ Dirichlet boundary value problem
-V -6Vu=f inQ
U|Fm = 8m

@ Approximate Dirichlet boundary condition by

. 1 1
OVu-fm+ —ulr,, = —8m
€ €



