
Lecture 15 Slide 1

Scientific Computing WS 2019/2020

Lecture 15

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Lecture 15 Slide 2

Recap: the finite Volume method

Lecture 14 Slide 37

Finite volumes: motivation

Regard stationary second order PDE with Robin boundary conditions as a
system of two first order equations in a Lipschitz domain Ω:

∇ ·~j = f continuity equation in Ω
~j = −δ~∇u flux law in Ω

~j · ~n = αu − g on Γ

Derivation of the continuity equation was based on the consideration
of species balances of an representative elementary volume (REV)
Why not just subdivide the computational domain into a finite
number of REV’s ?

Assign a value of u to each REV

Approximate ~∇u by finite differece of u values in neigboring REVs

... call REVs “control volumes” or “finite volumes”

Lecture 15 Slide 3

Lecture 14 Slide 38

Constructing control volumes I

Assume Ω ⊂ Rd is a polygonal domain such that ∂Ω =
⋃

m∈G Γm, where
Γm are planar such that ~n|Γm = ~nm.

Subdivide Ω into into a finite number of control volumes Ω̄ =
⋃

k∈N ω̄k
such that

ωk are open convex domains such that ωk ∩ ωl = ∅ if ωk 6= ωl

σkl = ω̄k ∩ ω̄l are either empty, points or straight lines.
If |σkl | > 0 we say that ωk , ωl are neighbours.

~νkl ⊥ σkl : normal of ∂ω at σkl

Nk = {l ∈ N : |σkl | > 0}: set of neighbours of ωk

γkm = ∂ωk ∩ Γm: domain boundary part of ∂ωk

Gk = {m ∈ G : |γkm| > 0}: set of non-empty boundary parts of ωk .

⇒ ∂ωk = (∪l∈Nk σkl)
⋃

(∪m∈Gk γkm)

Lecture 15 Slide 4

Lecture 14 Slide 39

Constructing control volumes II

To each control volume ωk assign a collocation point: ~xk ∈ ω̄k such that

Admissibility condition:
if l ∈ Nk then the line ~xk~xl is orthogonal to σkl

For a given function u : Ω → R this will allow to associate its value
uk = u(~xk) as the value of an unknown at ~xk .

For two neigboring control volumes ωk , ωl , this will allow to
approximate ~∇u · ~νkl ≈ ul −uk

h

Placement of boundary unknowns at the boundary:
if ωk is situated at the boundary, i.e. for |∂ωk ∩ ∂Ω| > 0, then
~xk ∈ ∂Ω

This will allow to apply boundary conditions in a direct manner

Lecture 15 Slide 5

Lecture 14 Slide 40

Constructing Control Volumes in 1D

Let Ω = (a, b) be subdivided into intervals by
x1 = a < x2 < x3 < · · · < xn−1 < xn = b. Then we set

ωk =

(
x1, x1+x2

2
)

, k = 1(
xk−1+xk

2 , xk +xk+1
2

)
, 1 < k < n(

xn−1+xn
2 , xn

)
, k = n

• • • • • •
x1 x2 x3 x4 . . . xn−1 xn

ω1 ω2 ω3 . . . ωn

Lecture 15 Slide 6

Lecture 14 Slide 41

Control Volumes for a 2D tensor product mesh

Let Ω = (a, b) × (c, d) ⊂ R2.

Assume subdivisions x1 = a < x2 < x3 < · · · < xn−1 < xn = b and
y1 = c < y2 < y3 < · · · < yn−1 < yn = d

⇒ 1D control volumes ωx
k and ωy

k

Set ~xkl = (xk , yl) and ωkl = ωx
k × ωy

l .

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Gray: original grid lines and points
Green: boundaries of control volumes

Lecture 15 Slide 7

Lecture 14 Slide 42

Control volumes on boundary conforming Delaunay mesh

• •

•

~xk

~xk′

~xl

σklωk

ωl

ωk′

Γm′γk′m′

γk′m

Γm

~νkl

Obtain a boundary conforming Delaunay triangulation with vertices ~xk
Construct restricted Voronoi cells ωk with ~xk ∈ ωk

Corners of Voronoi cells are either cell circumcenters of midpoints of
boundary edges
Admissibility condition ~xk~xl ⊥ σkl = ω̄k ∩ ω̄l fulfilled in a natural way

Triangulation edges: connected neigborhood graph of Voronoi cells
Boundary placement of collocation points of boundary control
volumes

Lecture 15 Slide 8

Lecture 14 Slide 43

Discretization of continuity equation

Stationary continuity equation: ∇ ·~j = f

Integrate over control volume ωk :

0 =
∫

ωk

∇ ·~j dω −
∫

ωk

f dω

=
∫

∂ωk

~j · ~nω ds −
∫

ωk

f dω

=
∑
l∈Nk

∫
σkl

~j · ~νkl ds +
∑

m∈Gk

∫
γkm

~j · ~nm ds −
∫

ωk

fdω

Lecture 15 Slide 9

Lecture 14 Slide 44

Approximation of flux between control volumes
Utilize flux law: ~j = −δ~∇u

Admissibility condition ⇒ ~xk~xl ‖ νkl

Let uk = u(~xk), ul = u(~xl)

hkl = |~xk − ~xl |: distance between neigboring collocation points

Finite difference approximation of normal derivative:

~∇u · ~νkl ≈ ul − uk
hkl

⇒ flux between neigboring control volumes:∫
σkl

~j · ~νkl ds ≈ |σkl |
hkl

δ(uk − ul)

=: |σkl |
hkl

g(uk , ul)

where g(·, ·) is called flux function

Lecture 15 Slide 10

Lecture 14 Slide 45

Approximation of Robin boundary conditions

Utilize boundary condition ~j · ~n = αu − g

Assume α|Γm = αm

Approximation of ~j · ~nm at the boundary of ωk :

~j · ~nm ≈ αmuk − g

Approximation of flux from ωk through Γm:∫
γkm

~j · ~nm ds ≈ |γkm|(αmuk − g)

Lecture 15 Slide 11

Lecture 14 Slide 46

Discrete system of equations
Let fk = f (~xk) (or fk = 1

|ωk |
∫

ωk
f (~xk) dω)

The discrete system of equations then writes for k ∈ N :∑
l∈Nk

|σkl |
hkl

δ(uk − ul) +
∑

m∈Gk

|γkm|αmuk = |ωk |fk +
∑

m∈Gk

|γkm|g

uk

(
δ
∑
l∈Nk

|σkl |
hkl

+ αm
∑

m∈Gk

|γkm|

)
− δ

∑
l∈Nk

|σkl |
hkl

ul = |ωk |fk +
∑

m∈Gk

|γkm|g

akkuk +
∑

l=1...|N |,l 6=k

aklul = bk

with bk = |ωk |fk +
∑

m∈Gk
|γkm|g and

akl =

∑

l′∈Nk
δ |σkl′ |

hkl′
+
∑

m∈Gk
|γkm|αm, l = k

−δ σkl
hkl

, l ∈ Nk

0, else

Lecture 15 Slide 12

Lecture 14 Slide 47

Discretization matrix properties

N = |N | equations (one for each control volume ωk)

N = |N | unknowns (one for each collocation point xk ∈ ωk)

Matrix is sparse: nonzero entries only for neighboring control volumes

Matrix graph is connected: nonzero entries correspond to edges in
Delaunay triangulation ⇒ irreducible

A is irreducibly diagonally dominant if at least for one i , |γi,k |αi > 0

Main diagonal entries are positive, off diagonal entries are non-positive

⇒ A has the M-property.

A is symmetric ⇒ A is positive definite

Lecture 15 Slide 13

Lecture 14 Slide 48

Matrix assembly algorithm

Due to the connection between Voronoi diagram and Delaunay
triangulation, one can assemble the discrete system based on the
triangulation
Necessary information:

List of point coordinates ~xK

List of triangles which for each triangle describes indices of points
belonging to triangle

This induces a mapping of local node numbers of a triangle T to the
global ones: {1, 2, 3} → {kT ,1, kT ,2, kT ,3}

List of (boundary) segments which for each segment describes indices
of points belonging to segment

Assembly in two loops:
Loop over all triangles, calculate triangle contribution to matrix entries

Loop over all boundary segments, calculate contribution to matrix
entries

Lecture 15 Slide 14

Lecture 14 Slide 49

Matrix assembly – main part

Loop over all triangles T ∈ T , add up edge contributions
for k, l = 1 . . . N do

set akl = 0
end
for T ∈ T do

for i , j = 1 . . . 3, i 6= j do
σ = σkT,j ,kT,i ∩ T

s = |σ|
hkT,j ,kT,i

akT,j ,kT,j + = δσh

akT,j ,kT,i − = δσh

akT,i ,kT,j − = δσh

akT,i ,kT,n + = δσh

end
end

Lecture 15 Slide 15

Lecture 14 Slide 50

Matrix assembly – boundary part

Keep list of global node numbers per boundary element γ mapping
local node element to the global node numbers: {1, 2} → {kγ,1, kγ,2}

Keep list of boundary part numbers mγ per boundary element

Loop over all boundary elements γ ∈ G of the discretization, add up
contributions

for γ ∈ G do
for i = 1, 2 do

akγi ,kγi
+ = αmγ

|γ ∩ ∂ωkγi
|

end
end

Lecture 15 Slide 16

Lecture 14 Slide 51

RHS assembly: calculate control volumes

Denote wk = |ωk |

Loop over triangles, add up contributions
for k . . . N do

set wk = 0
end
for τ ∈ T do

for n = . . . 3 do
wk+ = |ωkτ,j ∩ τ |

end
end

Lecture 15 Slide 17

Lecture 14 Slide 52

Matrix assembly: summary

Sufficient to keep list of triangles, boundary segments – they typically
come out of the mesh generator

Be able to calculate triangular contributions to form factors: |ωk ∩ τ |,
|σkl ∩ τ | – we need only the numbers, and not the construction of the
geometrical objects

O(N) operation, one loop over triangles, one loop over boundary
elements

Lecture 15 Slide 18

Lecture 15 Slide 19

Finite volume local stiffness matrix calculation I

PB

PA

PC

PCC
sa

sbsc

a

c b

Need to calculate sa, sb , sc

Triangle edge lengths: a, b, c

Semiperimeter: s = a
2 + b

2 + c
2

Square area (from Heron’s formula):
16A2 = 16s(s − a)(s − b)(s − c) =
(−a + b + c) (a − b + c) (a + b − c) (a + b + c)

Square circumradius: R2 = a2b2c2

(−a+b+c)(a−b+c)(a+b−c)(a+b+c) = a2b2c2

16A2

Lecture 15 Slide 20

Finite volume local stiffness matrix calculation II

Square of the Voronoi surface contribution via Pythagoras:

s2
a = R2 −

(1
2 a

)2 = −
a2

(
a2−b2−c2

)2

4(a−b−c)(a−b+c)(a+b−c)(a+b+c)

Square of edge contribution in the finite volume method:

e2
a = s2

a
a2 = −

(
a2−b2−c2

)2

4(a−b−c)(a−b+c)(a+b−c)(a+b+c) = (b2+c2−a2)2

64A2

Edge contribution. ea = sa
a = b2+c2−a2

8A

The sign chosen implies a positive value if the angle α < π
2 , and a

negative value if it is obtuse. In the latter case, this corresponds to
the negative length of the line between edge midpoint and
circumcenter, which is exactly the value which needs to be added to
the corresponding amount from the opposite triangle in order to
obtain the measure of the Voronoi face.

Lecture 15 Slide 21

Finite volume local stiffness matrix calculation III
a0 = (x0, y0) . . . ad = (x2, y2): vertices of the simplex K Calculate the
contribution from triangle to σkl

hkl
in the finite volume discretization

a0

a2

a1
s2

s0s1

ω2

ω0 ω1

h2

h1 h0

Let hi = |ai+1 − ai+2| (i counting modulo 2) be the lengths of the
discretization edges. Let A be the area of the triangle. Then for the
contribution from the triangle to the form factor one has

|si |
hi

= 1
8A (h2

i+1 + h2
i+2 − h2

i)

|ωi | = (|si+1|hi+1 + |si+2|hi+2)/4

Lecture 15 Slide 22

Variations of the discretization ansatz

3D: tetrahedron based

δ = δ(x) ⇒ δ(x)∇u ≈ δkl
ul −uk

hkl

Non-constant αi , g

Nonlinear dependencies . . .

Lecture 15 Slide 23

Interpretation of results

One solution value per control volume ωk allocated to the collocation
point xk ⇒ piecewise constant function on collection of control
volumes

But: xk are at the same time nodes of the corresponding Delaunay
mesh ⇒ representation as piecewise linear function on triangles

Lecture 15 Slide 24

The problem with Dirichlet boundary conditions

Eliminate Dirichlet BC algebraically after building of the matrix, i.e.
fix “known unknowns” at the Dirichlet boundary ⇒ highly technical

Modifiy matrix such that equations at boundary exactly result in
Dirichlet values ⇒ loss of symmetry of the matrix

Penalty method

Lecture 15 Slide 25

Dirichlet BC: Algebraic manipulation

Assume 1D situation with BC u1 = g
From handling of control volumes without regard of boundary values:

AU =

1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

u1
u2
u3
...

 =

f1
f2
f3
...

Fix u1 and eliminate:

A′U =

2
h − 1

h
− 1

h
2
h − 1

h
.

u2

u3
...

 =

f2 + 1
h g

f3
...

A′ becomes idd and stays symmetric
operation is quite technical

Lecture 15 Slide 26

Dirichlet BC: Modify boundary equations

From handling of control volumes without regard of boundary values:

AU =

1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

u1
u2
u3
...

 =

f1
f2
f3
...

Modify equation at boundary to exactly represent Dirichlet values

A′U =

1
h 0

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
.

u1
u2
u3
...

 =

1
h g
f2
f3
...

A′ becomes idd
loses symmetry ⇒ problem e.g. with CG method

Lecture 15 Slide 27

Dirichlet BC: Discrete penalty trick
From handling of control volumes without regard of boundary values:

AU =

1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

u1
u2
u3
...

 =

f1
f2
f3
...

Add penalty terms

A′U =

1
ε + 1

h − 1
h

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
.

u1
u2
u3
...

 =

f1 + 1

ε g
f2
f3
...

A′ becomes idd, keeps symmetry, and the realization is technically
easy.
If ε is small enough, u1 = g will be satisfied exactly within floating
point accuracy.
Iterative methods should be initialized with Dirichlet values.
Works for nonlinear problems, finite volume methods

Lecture 15 Slide 28

Dirichlet penalty trick, general formulation

Dirichlet boundary value problem

−∇ · δ∇u = f in Ω
u|Γm = gm

Approximate Dirichlet boundary condition by

δ∇u · ~nm + 1
ε

u|Γm = 1
ε

gm

