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Recap: PDEs and Sobolev spaces
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Basic Differential operators

Gradient of scalar function u : Ω → R:

grad = ~∇ =

∂1
...

∂d

 : u 7→ ~∇u =

∂1u
...

∂du


Divergence of vector function ~v = Ω → Rd :

div = ∇· : ~v =

v1
...

vd

 7→ ∇ · ~v = ∂1v1 + · · · + ∂dvd

Laplace operator of scalar function u : Ω → R

div · grad = ∇ · ~∇
= ∆ : u 7→ ∆u = ∂11u + · · · + ∂ddu
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Lipschitz domains

Definition: A connected open subset Ω ⊂ Rd is called domain. If Ω is a
bounded set, the domain is called bounded.

Definition:

Let D ⊂ Rn. A function f : D → Rm is called Lipschitz continuous if
there exists c > 0 such that ‖f (x) − f (y)‖ ≤ c‖x − y‖ for any
x , y ∈ D

A hypersurface in Rn is a graph if for some k it can be represented as

xk = f (x1, . . . , xk−1, xk+1, . . . , xn)

defined on some domain D ⊂ Rn−1

A domain Ω ⊂ Rn is a Lipschitz domain if for all x ∈ ∂Ω, there exists
a neigborhood of x on ∂Ω which can be represented as the graph of a
Lipschitz continuous function.
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Lipschitz domains II

Standard PDE calculus happens in Lipschitz domains

Boundaries of Lipschitz domains are continuous

Polygonal domains are Lipschitz

Boundaries of Lipschitz domains have no cusps
(e.g. the graph of y =

√
|x | has a cusp at x = 0)
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Divergence theorem (Gauss’ theorem)

Theorem: Let Ω be a bounded Lipschitz domain and ~v : Ω → Rd be a
continuously differentiable vector function. Let ~n be the outward normal to
Ω. Then, ∫

Ω
∇ · ~v d~x =

∫
∂Ω

~v · ~n ds

�

This is a generalization of the Newton-Leibniz rule of calculus:
Let d = 1, Ω = (a, b). Then na = (−1), nb = (1), ∇ · v = v ′.

∫ b

a
v ′(x) dx = v(a)na + v(b)nb = v(b) − v(a)
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Species flux through boundary of an REV

u(~x , t) : Ω × [0, T ] → R: time dependent local amount of species

f (~x , t) : Ω × [0, T ] → R: species sources/sinks
~j(~x , t): vector field of the species flux

REV 

u
n

j n

ω ⊂ Ω: representative elementary volume (REV)
(t0, t1) ⊂ (0, T ): subset of the time interval

J(t) =
∫

∂ω
~j(~x , t) · ~n ds: flux of species trough ∂ω at moment t

U(t) =
∫

ω
u(~x , t) d~x : amount of species in ω at moment t

F (t) =
∫

ω
f (~x , t) d~x : rate of creation/destruction at moment t
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Continuity equation
Change of amount of species in ω during (t0, t1) proportional to the
sum of the amount transported through the boundary and the
amount created/destroyed

U(t1) − U(t0) =
∫ t1

t0

J(t) dt +
∫ t1

t0

F (t) dt∫
ω

(u(~x , t1) − u(~x , t0)) d~x =
∫ t1

t0

∫
∂ω

~j · ~n ds dt =
∫ t1

t0

∫
ω

f (~x , t) ds

Using Gauss’ theorem, rewrite this as

0 =
∫ t1

t0

∫
ω

∂tu(~x , t) d~x dt −
∫ t1

t0

∫
ω

∇ ·~j d~x dt −
∫ t1

t0

∫
ω

f (~x , t) ds

True for all ω ⊂ Ω, (t0, t1) ⊂ (0, T ) ⇒
Continuity equation in differential form

∂tu(~x , t) − ∇ ·~j(~x , t) = f (~x , t)
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Flux expressions

In many cases: species flux ~j is proportional to −~∇u

Assumption: ~j = −δ~∇u, where δ > 0 can be constant, space
dependent or even depend on u. For simplicity, we assume δ to be
constant, unless stated otherwise.

Heat conduction:
u = T : temperature
δ = λ: heat conduction coefficient
f : heat source
~j = −λ~∇T : “Fourier law”

Diffusion of molecules in a given medium (for low concentrations)
u = c: concentration
δ = D: diffusion coefficient
f : species source (e.g due to reactions)
~j = −D ~∇c: “Fick’s law”
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More flux expressions

Flow in a saturated porous medium:
u = p: pressure
δ = k: permeability
~j = −k ~∇p: “Darcy’s law”

Electrical conduction:
u = ϕ: electric potential
δ = σ: electric conductivity
~j = −σ~∇ϕ ≡ current density: “Ohms’s law”

Electrostatics in a constant magnetic field:
u = ϕ: electric potential
δ = ε: dielectric permittivity
~E = ~∇φ: electric field
~j = ~D = ε~E = ε~∇ϕ: electric displacement field: “Gauss’s Law”
f = ρ: charge density
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Second order partial differential equaions (PDEs)
Combine continuity equation with flux expression:

Transient problem:

Parabolic PDE:

∂tu(~x , t) − ∇ · (δ~∇u(~x , t)) = f (~x , t)

Stationary case: ∂tu = 0 ⇒

Elliptic PDE

−∇ · (δ~∇u(~x)) = f (~x)

For solvability we need additional conditions:
Initial condition in the time dependent case: u(~x , 0) = u0(~x)

Boundary conditions: behavior of solution on ∂Ω
Lecture 14 Slide 11
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Second order PDEs: boundary conditions

Assume ∂Ω = ∪NΓ
i=1Γi is the union of a finite number of

non-intersecting subsets Γi which are locally Lipschitz.
On each Γi , specify one of

Fixed solution at boundary ⇒ Dirichlet (“first kind”) BC:
let gi : Γi → R (homogeneous for gi = 0)

u(~x , t) = gi(~x , t) for ~x ∈ Γi

Fixed boundary flux ⇒ Neumann (“second kind”) BC:
Let gi : Γi → R (homogeneus for gi = 0)

δ~∇u(~x , t) · ~n = gi(~x , t) for ~x ∈ Γi

Boundary flux proportional to solution ⇒ Robin (“third kind”) BC:
let αi > 0, gi : Γi → R

δ~∇u(~x , t) · ~n + αi(~x , t)u(~x , t) = gi(~x , t) for ~x ∈ Γi
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Problems with “strong formulation”

Writing the PDE with divergence and gradient assumes smoothness of
coefficients and at least second derivatives for the solution.

δ may not be continuous (e.g. for heat conduction in a piece
consisting of different materials) – what is then ~∇ · (δ~∇u)?

Approximation of solution u e.g. by piecewise linear functions what
does ~∇u mean ?
Solution spaces of twice, and even once continuously differentiable
functions is not well suited:

Favorable approximation functions (e.g. piecewise linear ones) are not
contained

Though they can be equipped with norms (⇒ Banach spaces) they
have no scalar product ⇒ no Hilbert spaces

Not complete: Cauchy sequences of functions may not converge to
elements in these spaces
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Cauchy sequences of functions

Let Ω be a Lipschitz domain, let V be a metric space of functions
f : Ω → R

Regard sequences of functions fn = {fn}∞
n=1 ⊂ V

A Cauchy sequence is a sequence fn of functions where the norm of
the difference between two elements can be made arbitrarily small by
increasing the element indices:

∀ε > 0 ∃n0 ∈ N : ∀m, n > n0, ||fn − fm|| < ε

All convergent sequences of functions are Cauchy sequences

A metric space V is complete if all Cauchy sequences fn of its
elements have a limit f = lim

n→∞
fn ∈ V within this space
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Completion of a metric space

Let V be a metric space. Its completion is the space V̄ consisting of
all elements of V and all possible limits of Cauchy sequences of
elements of V .

This procedure allows to carry over definitions which are applicable
only to elements of V to more general ones

This process depends on the norm which is part of the definition of
the metric space

Example: construction of real numbers V̄ = R from rational numbers
V = Q via Cauchy sequences: every real number is an equivalence class of
Cauchy sequences with the same limit.
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Completion in function spaces
Example: step function

θε(~x) =


1, ~x ≥ ε

−(~x−ε
ε )2 + 1, 0 ≤ ~x < ε

(~x+ε
ε )2 − 1, −ε ≤ ~x < 0

−1, ~x < −ε

ε→0−→ θ(~x) =
{

1, ~x ≥ 0
−1, else

The discontinuous function θ(x) is the limit of a sequence of
continuously differentiable functions θε.
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Riemann integral → Lebesgue integral

Let Ω be a Lipschitz domain, let Cc(Ω) be the set of continuous
functions f : Ω → R with compact support. (⇒ they vanish on ∂Ω)

For these functions, the Riemann integral
∫

Ω f (~x) d~x is well defined,
and ‖f ‖L1 :=

∫
Ω |f (~x)|d~x provides a norm, and induces a metric.

Let L1(Ω) be the completion of Cc(Ω) with respect to the metric
defined by the norm ‖·‖L1 . That means that L1(Ω) consists of all
elements of Cc(Ω), and of all limits of Cauchy sequences of elements
of Cc(Ω). Such functions are called measurable.

For any measurable f = lim
n→∞

fn ∈ L1(Ω) with fn ∈ Cc(Ω), define the
Lebesque integral ∫

Ω
f (~x) d~x := lim

n→∞

∫
Ω

fn(~x) d~x

as the limit of a sequence of Riemann integrals of continuous
functions
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Lebesgue integrable (measurable) functions

Examples:
Step functions

Bounded functions which are continuous except in a finite number of
points

As the product of the completion process, measurable functions are
equivalence classes, and saying f , g belong to the same equivalence
class amounts to saying that ‖f − g‖ = 0. In this we say that f , g are
equal almost everywhere.

In particular, L1 functions whose values differ in a finite number of
points are equal almost everywhere.
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Space of square integrable functions

Let L2(Ω) be the space of measureable functions such that∫
Ω

|f (~x)|2 d~x < ∞

equipped with the norm

‖f ‖L2 =
(∫

Ω
|f (~x)|2 d~x

) 1
2

The space L2(Ω) is a Hilbert space, i.e. a Banach space equipped
with a scalar product (·, ·) whose norm is induced by that scalar
product, i.e. ||u|| =

√
(u, u). The scalar product in L2 is

(f , g)L2 =
∫

Ω
f (~x)g(~x) d~x .

Similar definitions for Lp , 0 < p ≤ ∞

Lecture 14 Slide 19



Lecture 12 Slide 23

Green’s theorem for smooth functions

Theorem Let Ω ⊂ Rd be a Lipschitz domain and u, v ∈ C1(Ω)
(continuously differentiable). Let ~n = (n1 . . . nd) being the outward normal
∂Ω. Then Ω, ∫

Ω
u∂iv d~x =

∫
∂Ω

uvni ds −
∫

Ω
v∂iu d~x

�

This is a generalization of the integration by parts rule of calculus:
Let d = 1, Ω = (a, b). Then na = (−1), nb = 1, ∂i(·) = (·)′.

∫ b

a
uv ′(x) dx = nau(a)v(a) + nbu(b)v(b) −

∫ b

a
u′v dx

= uv
∣∣∣b
a

−
∫ b

a
u′v dx
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Corollaries of Green’s theorem

Let ~u = (u1 . . . ud) : Ω → Rd and v : Ω → R. Then∫
Ω

( d∑
i=1

ui∂iv
)

d~x =
∫

∂Ω
v

d∑
i=1

(uini) ds −
∫

Ω
v

d∑
i=1

(∂iui) d~x∫
Ω

~u · ~∇v d~x =
∫

∂Ω
v~u · ~n ds −

∫
Ω

v∇ · ~u d~x

If v = 0 on ∂Ω: ∫
Ω

u∂iv d~x = −
∫

Ω
v∂iu d~x∫

Ω
~u · ~∇v d~x = −

∫
Ω

v ~∇ · ~u d~x
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Weak derivative

Let L1
loc(Ω) be the set of functions which are Lebesgue integrable on

every compact subset K ⊂ Ω. Let C∞
0 (Ω) be the set of functions

infinitely differentiable with zero values on the boundary.
For u ∈ L1

loc(Ω) we define ∂iu by

∫
Ω

v∂iu d~x = −
∫

Ω
u∂iv d~x ∀v ∈ C∞

0 (Ω)

and ∂αu by

∫
Ω

v∂αu d~x = (−1)|α|
∫

Ω
u∂iv d~x ∀v ∈ C∞

0 (Ω)

if these integrals exist.
For smooth functions, weak derivatives coincide with with the usual
derivative
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Sobolev spaces of square integrable functios

For k ≥ 0 the Sobolev space Hk(Ω) is the space functions where all
up to the k-th derivatives are in L2:

Hk(Ω) = {u ∈ L2(Ω) : ∂αu ∈ L2(Ω) ∀|α| ≤ k}

with then norm

||u||Hk (Ω) =

∑
|α|≤k

||∂αu||2L2(Ω)

 1
2

Alternatively, Hk is the completion of C∞ in the norm ||u||Hk (Ω)

Hk
0 (Ω) is the completion of C∞

0 in the norm ||u||Hk (Ω)

These Sobolev spaces are Banach spaces.

Similar definitions exist for p 6= 2

Lecture 14 Slide 23



Lecture 12 Slide 27

Important function spaces

Hk(Ω) is a Hilbert space with the scalar product

(u, v)Hk (Ω) =
∑

|α|≤k

∫
Ω

∂αu∂αv d~x

Hk
0 (Ω) is a Hilbert space with the scalar product

(u, v)Hk
0 (Ω) =

∑
|α|=k

∫
Ω

∂αu∂αv d~x
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Hilbert space structure

For this course the most important:
L2(Ω), scalar product (u, v)L2(Ω) = (u, v)0,Ω =

∫
Ω uv d~x

H1(Ω), scalar product (u, v)H1(Ω) = (u, v)1,Ω =
∫

Ω(uv + ~∇u · ~∇v) d~x

H1
0 (Ω), scalar product (u, v)H1

0 (Ω) =
∫

Ω(~∇u · ~∇v) d~x

All of them are metric spaces with a scalar product and we have in
each of them

|(u, v)|2 ≤ (u, u)(v , v) Cauchy-Schwarz
||u + v || ≤ ||u|| + ||v || Triangle inequality
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A trace theorem

The notion of function values on the boundary initially is only well defined
for continouos functions. So we need an extension of this notion to
functions from Sobolev spaces.

Theorem: Let Ω be a bounded Lipschitz domain. Then there exists a
bounded linear mapping

tr : H1(Ω) → L2(∂Ω)

such that
(i) ∃c > 0 such that ‖tr u‖0,∂Ω ≤ c‖u‖1,Ω
(ii) ∀u ∈ C1(Ω̄), tr u = u|∂Ω

�

Corollary: If u ∈ H1
0 (Ω) then tr u = 0.
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Derivation of weak formulation
Sobolev space theory provides a convenient framework to formulate
existence, uniqueness and approximations of solutions of PDEs.

Let us first consider the stationary heat conduction equation with
homogeneous Dirichlet boundary conditions and constant heat
conduction coefficient λ > 0:

−∇ · λ~∇u(~x) = f (~x) in Ω
u = 0 on ∂Ω

Multiply and integrate with an arbitrary test function v ∈ C∞
0 (Ω) and

apply Green’s theorem using v = 0 on ∂Ω

−
∫

Ω
(∇ · λ~∇u)v d~x =

∫
Ω

fv d~x

⇒
∫

Ω
λ~∇u · ~∇v d~x =

∫
Ω

fv d~x
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Weak formulation of homogeneous Dirichlet problem

Find u ∈ H1
0 (Ω) such that∫

Ω
λ~∇u · ~∇v d~x =

∫
Ω

fv d~x ∀v ∈ H1
0 (Ω)

Then,

a(u, v) :=
∫

Ω
λ~∇u · ~∇v d~x

is a self-adjoint bilinear form defined on the Hilbert space H1
0 (Ω).

It is bounded due to Cauchy-Schwarz:

|a(u, v)| = λ ·
∣∣∣ ∫

Ω
~∇u · ~∇v d~x

∣∣∣ ≤ λ||u||H1
0 (Ω) · ||v ||H1

0 (Ω)

f (v) =
∫

Ω fv d~x is a linear functional on H1
0 (Ω). For Hilbert spaces V

the dual space V ′ (the space of linear functionals) can be identified
with the space itself.
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The Lax-Milgram lemma

Theorem: Let V be a Hilbert space. Let a : V × V → R be a self-adjoint
bilinear form, and f a linear functional on V . Assume a is coercive, i.e.

∃α > 0 : ∀u ∈ V , a(u, u) ≥ α||u||2V .

Then the problem: find u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

admits one and only one solution with an a priori estimate

||u||V ≤ 1
α

||f ||V ′

�
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Coercivity of weak formulation

Theorem: Assume λ > 0. Then the weak formulation of the heat
conduction problem: search u ∈ H1

0 (Ω) such that∫
Ω

λ~∇u · ~∇v d~x =
∫

Ω
fv d~x ∀v ∈ H1

0 (Ω)

has an unique solution.

Proof: a(u, v) is cocercive:

a(u, u) =
∫

Ω
λ~∇u · ~∇u d~x = λ||u||2H1

0 (Ω)

�
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Weak formulation of inhomogeneous Dirichlet problem

−∇ · λ~∇u = f in Ω
u = g on ∂Ω

If g is smooth enough, there exists a lifting ug ∈ H1(Ω) such that
ug |∂Ω = g . Then, we can re-formulate:

−∇ · λ~∇(u − ug) = f + ∇ · λ~∇ug in Ω
u − ug = 0 on ∂Ω

Find u ∈ H1(Ω) such that

u = ug + φ∫
Ω

λ~∇φ · ~∇v d~x =
∫

Ω
fv d~x +

∫
Ω

λ~∇ug · ~∇v ∀v ∈ H1
0 (Ω)

Here, necessarily, φ ∈ H1
0 (Ω) and we can apply the theory for the

homogeneous Dirichlet problem.
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Lecture 12 Slide 35

Weak formulation of Robin problem

−∇ · λ~∇u = f in Ω
λ~∇u · ~n + αu = g on ∂Ω

Multiply and integrate with an arbitrary test function from C∞
c (Ω):

−
∫

Ω
(∇ · λ~∇u)v d~x =

∫
Ω

fv d~x∫
Ω

λ~∇u · ~∇v d~x +
∫

∂Ω
λ~∇u · ~nvds =

∫
Ω

fv d~x∫
Ω

λ~∇u · ~∇v d~x +
∫

∂Ω
αuv ds =

∫
Ω

fv d~x +
∫

∂Ω
gv ds
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Weak formulation of Robin problem II

Let

aR(u, v) :=
∫

Ω
λ~∇u · ~∇v d~x +

∫
∂Ω

αuv ds

f R(v) :=
∫

Ω
fv d~x +

∫
∂Ω

gv ds

Find u ∈ H1(Ω) such that

aR(u, v) = f R(v) ∀v ∈ H1(Ω)

If λ > 0 and α > 0 then aR(u, v) is cocercive, and by Lax-Milgram we
establish the existence of a weak solution
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Inhomogeneous Dirichlet problem: minmax principle

Theorem: The weak solution of the inhomogeneous Dirichlet problem

−∇ · λ~∇u = f in Ω
u = g on ∂Ω

fulfills the global minimax principle: it attains its maximum at the
boundary if f ≤ 0 and attains its minimum at the boundary if f ≥ 0.

Corollary: If f = 0 then u attains both its minimum and its maximum at
the boundary.

Corollary: Local minimax principle:
This is true of any subdomain ω ⊂ Ω.

Corollary: Nonnegativity of the solution:
if g ≥ 0 and f ≥ 0 then u ≥ 0
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Interpretation of minimax principle

Positive right hand side ⇒ “production” of heat, matter . . .

No local minimum in the interior of domain if matter is produced.

Also, positivity/nonnegativity of solutions if boundary conditions are
positive/nonnegative

Negative right hand side ⇒ “consumption” of heat, matter . . .

No local maximum in the interior of domain if matter is consumed.

Basic physical principle !
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The Finite volume method
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Finite volumes: motivation

Regard stationary second order PDE with Robin boundary conditions as a
system of two first order equations in a Lipschitz domain Ω:

∇ ·~j = f continuity equation in Ω
~j = −δ~∇u flux law in Ω

~j · ~n = αu − g on Γ

Derivation of the continuity equation was based on the consideration
of species balances of an representative elementary volume (REV)
Why not just subdivide the computational domain into a finite
number of REV’s ?

Assign a value of u to each REV

Approximate ~∇u by finite differece of u values in neigboring REVs

... call REVs “control volumes” or “finite volumes”
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Constructing control volumes I

Assume Ω ⊂ Rd is a polygonal domain such that ∂Ω =
⋃

m∈G Γm, where
Γm are planar such that ~n|Γm = ~nm.

Subdivide Ω into into a finite number of control volumes Ω̄ =
⋃

k∈N ω̄k
such that

ωk are open convex domains such that ωk ∩ ωl = ∅ if ωk 6= ωl

σkl = ω̄k ∩ ω̄l are either empty, points or straight lines.
If |σkl | > 0 we say that ωk , ωl are neighbours.

~νkl ⊥ σkl : normal of ∂ω at σkl

Nk = {l ∈ N : |σkl | > 0}: set of neighbours of ωk

γkm = ∂ωk ∩ Γm: domain boundary part of ∂ωk

Gk = {m ∈ G : |γkm| > 0}: set of non-empty boundary parts of ωk .

⇒ ∂ωk = (∪l∈Nk σkl)
⋃

(∪m∈Gk γkm)
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Constructing control volumes II

To each control volume ωk assign a collocation point: ~xk ∈ ω̄k such that

Admissibility condition:
if l ∈ Nk then the line ~xk~xl is orthogonal to σkl

For a given function u : Ω → R this will allow to associate its value
uk = u(~xk) as the value of an unknown at ~xk .

For two neigboring control volumes ωk , ωl , this will allow to
approximate ~∇u · ~νkl ≈ ul −uk

h

Placement of boundary unknowns at the boundary:
if ωk is situated at the boundary, i.e. for |∂ωk ∩ ∂Ω| > 0, then
~xk ∈ ∂Ω

This will allow to apply boundary conditions in a direct manner
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Constructing Control Volumes in 1D

Let Ω = (a, b) be subdivided into intervals by
x1 = a < x2 < x3 < · · · < xn−1 < xn = b. Then we set

ωk =


(
x1, x1+x2

2
)

, k = 1(
xk−1+xk

2 , xk +xk+1
2

)
, 1 < k < n(

xn−1+xn
2 , xn

)
, k = n

• • • • • •
x1 x2 x3 x4 . . . xn−1 xn

ω1 ω2 ω3 . . . ωn
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Control Volumes for a 2D tensor product mesh

Let Ω = (a, b) × (c, d) ⊂ R2.

Assume subdivisions x1 = a < x2 < x3 < · · · < xn−1 < xn = b and
y1 = c < y2 < y3 < · · · < yn−1 < yn = d

⇒ 1D control volumes ωx
k and ωy

k

Set ~xkl = (xk , yl) and ωkl = ωx
k × ωy

l .

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Gray: original grid lines and points
Green: boundaries of control volumes
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Control volumes on boundary conforming Delaunay mesh

• •

•

~xk

~xk′

~xl

σklωk

ωl

ωk′

Γm′γk′m′

γk′m

Γm

~νkl

Obtain a boundary conforming Delaunay triangulation with vertices ~xk
Construct restricted Voronoi cells ωk with ~xk ∈ ωk

Corners of Voronoi cells are either cell circumcenters of midpoints of
boundary edges
Admissibility condition ~xk~xl ⊥ σkl = ω̄k ∩ ω̄l fulfilled in a natural way

Triangulation edges: connected neigborhood graph of Voronoi cells
Boundary placement of collocation points of boundary control
volumes
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Discretization of continuity equation

Stationary continuity equation: ∇ ·~j = f

Integrate over control volume ωk :

0 =
∫

ωk

∇ ·~j dω −
∫

ωk

f dω

=
∫

∂ωk

~j · ~nω ds −
∫

ωk

f dω

=
∑
l∈Nk

∫
σkl

~j · ~νkl ds +
∑

m∈Gk

∫
γkm

~j · ~nm ds −
∫

ωk

fdω
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Approximation of flux between control volumes
Utilize flux law: ~j = −δ~∇u

Admissibility condition ⇒ ~xk~xl ‖ νkl

Let uk = u(~xk), ul = u(~xl)

hkl = |~xk − ~xl |: distance between neigboring collocation points

Finite difference approximation of normal derivative:

~∇u · ~νkl ≈ ul − uk
hkl

⇒ flux between neigboring control volumes:∫
σkl

~j · ~νkl ds ≈ |σkl |
hkl

δ(uk − ul)

=: |σkl |
hkl

g(uk , ul)

where g(·, ·) is called flux function



Lecture 14 Slide 45

Approximation of Robin boundary conditions

Utilize boundary condition ~j · ~n = αu − g

Assume α|Γm = αm

Approximation of ~j · ~nm at the boundary of ωk :

~j · ~nm ≈ αmuk − g

Approximation of flux from ωk through Γm:∫
γkm

~j · ~nm ds ≈ |γkm|(αmuk − g)
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Discrete system of equations
Let fk = f (~xk) (or fk = 1

|ωk |
∫

ωk
f (~xk) dω)

The discrete system of equations then writes for k ∈ N :∑
l∈Nk

|σkl |
hkl

δ(uk − ul) +
∑

m∈Gk

|γkm|αmuk = |ωk |fk +
∑

m∈Gk

|γkm|g

uk

(
δ
∑
l∈Nk

|σkl |
hkl

+ αm
∑

m∈Gk

|γkm|

)
− δ

∑
l∈Nk

|σkl |
hkl

ul = |ωk |fk +
∑

m∈Gk

|γkm|g

akkuk +
∑

l=1...|N |,l 6=k

aklul = bk

with bk = |ωk |fk +
∑

m∈Gk
|γkm|g and

akl =


∑

l′∈Nk
δ |σkl′ |

hkl′
+
∑

m∈Gk
|γkm|αm, l = k

−δ σkl
hkl

, l ∈ Nk

0, else
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Discretization matrix properties

N = |N | equations (one for each control volume ωk)

N = |N | unknowns (one for each collocation point xk ∈ ωk)

Matrix is sparse: nonzero entries only for neighboring control volumes

Matrix graph is connected: nonzero entries correspond to edges in
Delaunay triangulation ⇒ irreducible

A is irreducibly diagonally dominant if at least for one i , |γi,k |αi > 0

Main diagonal entries are positive, off diagonal entries are non-positive

⇒ A has the M-property.

A is symmetric ⇒ A is positive definite
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Matrix assembly algorithm

Due to the connection between Voronoi diagram and Delaunay
triangulation, one can assemble the discrete system based on the
triangulation
Necessary information:

List of point coordinates ~xK

List of triangles which for each triangle describes indices of points
belonging to triangle

This induces a mapping of local node numbers of a triangle T to the
global ones: {1, 2, 3} → {kT ,1, kT ,2, kT ,3}

List of (boundary) segments which for each segment describes indices
of points belonging to segment

Assembly in two loops:
Loop over all triangles, calculate triangle contribution to matrix entries

Loop over all boundary segments, calculate contribution to matrix
entries
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Matrix assembly – main part

Loop over all triangles T ∈ T , add up edge contributions
for k, l = 1 . . . N do

set akl = 0
end
for T ∈ T do

for i , j = 1 . . . 3, i 6= j do
σ = σkT,j ,kT,i ∩ T

s = |σ|
hkT,j ,kT,i

akT,j ,kT,j + = δσh

akT,j ,kT,i − = δσh

akT,i ,kT,j − = δσh

akT,i ,kT,n + = δσh

end
end
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Matrix assembly – boundary part

Keep list of global node numbers per boundary element γ mapping
local node element to the global node numbers: {1, 2} → {kγ,1, kγ,2}

Keep list of boundary part numbers mγ per boundary element

Loop over all boundary elements γ ∈ G of the discretization, add up
contributions

for γ ∈ G do
for i = 1, 2 do

akγi ,kγi
+ = αmγ

|γ ∩ ∂ωkγi
|

end
end
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RHS assembly: calculate control volumes

Denote wk = |ωk |

Loop over triangles, add up contributions
for k . . . N do

set wk = 0
end
for τ ∈ T do

for n = . . . 3 do
wk+ = |ωkτ,j ∩ τ |

end
end
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Matrix assembly: summary

Sufficient to keep list of triangles, boundary segments – they typically
come out of the mesh generator

Be able to calculate triangular contributions to form factors: |ωk ∩ τ |,
|σkl ∩ τ | – we need only the numbers, and not the construction of the
geometrical objects

O(N) operation, one loop over triangles, one loop over boundary
elements
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Finite volume local stiffness matrix calculation I

PB

PA

PC

PCC
sa

sbsc

a

c b

Need to calculate sa, sb , sc

Triangle edge lengths: a, b, c

Semiperimeter: s = a
2 + b

2 + c
2

Square area (from Heron’s formula):
16A2 = 16s(s − a)(s − b)(s − c) =
(−a + b + c) (a − b + c) (a + b − c) (a + b + c)

Square circumradius: R2 = a2b2c2

(−a+b+c)(a−b+c)(a+b−c)(a+b+c) = a2b2c2

16A2
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Finite volume local stiffness matrix calculation II

Square of the Voronoi surface contribution via Pythagoras:

s2
a = R2 −

( 1
2 a
)2 = −

a2
(

a2−b2−c2
)2

4(a−b−c)(a−b+c)(a+b−c)(a+b+c)

Square of edge contribution in the finite volume method:

e2
a = s2

a
a2 = −

(
a2−b2−c2

)2

4(a−b−c)(a−b+c)(a+b−c)(a+b+c) = (b2+c2−a2)2

64A2

Edge contribution. ea = sa
a = b2+c2−a2

8A

The sign chosen implies a positive value if the angle α < π
2 , and a

negative value if it is obtuse. In the latter case, this corresponds to
the negative length of the line between edge midpoint and
circumcenter, which is exactly the value which needs to be added to
the corresponding amount from the opposite triangle in order to
obtain the measure of the Voronoi face.
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Finite volume local stiffness matrix calculation III
a0 = (x0, y0) . . . ad = (x2, y2): vertices of the simplex K Calculate the
contribution from triangle to σkl

hkl
in the finite volume discretization

a0

a2

a1
s2

s0s1

ω2

ω0 ω1

h2

h1 h0

Let hi = |ai+1 − ai+2| (i counting modulo 2) be the lengths of the
discretization edges. Let A be the area of the triangle. Then for the
contribution from the triangle to the form factor one has

|si |
hi

= 1
8A (h2

i+1 + h2
i+2 − h2

i )

|ωi | = (|si+1|hi+1 + |si+2|hi+2)/4
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Variations of the discretization ansatz

3D: tetrahedron based

δ = δ(x) ⇒ δ(x)∇u ≈ δkl
ul −uk

hkl

Non-constant αi , g

Nonlinear dependencies . . .
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Interpretation of results

One solution value per control volume ωk allocated to the collocation
point xk ⇒ piecewise constant function on collection of control
volumes

But: xk are at the same time nodes of the corresponding Delaunay
mesh ⇒ representation as piecewise linear function on triangles
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The problem with Dirichlet boundary conditions

Eliminate Dirichlet BC algebraically after building of the matrix, i.e.
fix “known unknowns” at the Dirichlet boundary ⇒ highly technical

Modifiy matrix such that equations at boundary exactly result in
Dirichlet values ⇒ loss of symmetry of the matrix

Penalty method
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Dirichlet BC: Algebraic manipulation

Assume 1D situation with BC u1 = g
From handling of control volumes without regard of boundary values:

AU =


1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .




u1
u2
u3
...

 =


f1
f2
f3
...


Fix u1 and eliminate:

A′U =


2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .


u2

u3
...

 =

f2 + 1
h g

f3
...


A′ becomes idd and stays symmetric
operation is quite technical



Lecture 14 Slide 60

Dirichlet BC: Modify boundary equations

From handling of control volumes without regard of boundary values:

AU =


1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .




u1
u2
u3
...

 =


f1
f2
f3
...


Modify equation at boundary to exactly represent Dirichlet values

A′U =


1
h 0

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .




u1
u2
u3
...

 =


1
h g
f2
f3
...


A′ becomes idd
loses symmetry ⇒ problem e.g. with CG method
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Dirichlet BC: Discrete penalty trick
From handling of control volumes without regard of boundary values:

AU =


1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .




u1
u2
u3
...

 =


f1
f2
f3
...


Add penalty terms

A′U =


1
ε + 1

h − 1
h

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . .




u1
u2
u3
...

 =


f1 + 1

ε g
f2
f3
...


A′ becomes idd, keeps symmetry, and the realization is technically
easy.
If ε is small enough, u1 = g will be satisfied exactly within floating
point accuracy.
Iterative methods should be initialized with Dirichlet values.
Works for nonlinear problems, finite volume methods
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Dirichlet penalty trick, general formulation

Dirichlet boundary value problem

−∇ · δ∇u = f in Ω
u|Γm = gm

Approximate Dirichlet boundary condition by

δ∇u · ~nm + 1
ε

u|Γm = 1
ε

gm


