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Partial differential equations
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Differential operators: notations

Given: domain Ω ⊂ Rd (d = 1, 2, 3 . . . )

Dot product: for ~x , ~y ∈ Rd , ~x · ~y =
∑d

i=1 xi yi

Bounded domain Ω ⊂ Rd , with piecewise smooth boundary

Scalar function u : Ω→ R

Vector function ~v =

v1
...

vd

 : Ω→ Rd

Partial derivative ∂i u = ∂u
∂xi

For a multiindex α = (α1 . . . αd ), let
|α| = α1 + · · ·+ αd

∂αu = ∂|α|

∂xα1
1 ·····∂xαd

d
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Basic Differential operators

Gradient of scalar function u : Ω→ R:

grad = ~∇ =

∂1
...
∂d

 : u 7→ ~∇u =

∂1u
...

∂d u


Divergence of vector function ~v = Ω→ Rd :

div = ∇· : ~v =

v1
...

vd

 7→ ∇ · ~v = ∂1v1 + · · ·+ ∂d vd

Laplace operator of scalar function u : Ω→ R

div · grad = ∇ · ~∇
= ∆ : u 7→ ∆u = ∂11u + · · ·+ ∂dd u
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Lipschitz domains

Definition: A connected open subset Ω ⊂ Rd is called domain. If Ω is a
bounded set, the domain is called bounded.

Definition:

Let D ⊂ Rn. A function f : D → Rm is called Lipschitz continuous if
there exists c > 0 such that ‖f (x)− f (y)‖ ≤ c‖x − y‖ for any
x , y ∈ D

A hypersurface in Rn is a graph if for some k it can be represented as

xk = f (x1, . . . , xk−1, xk+1, . . . , xn)

defined on some domain D ⊂ Rn−1

A domain Ω ⊂ Rn is a Lipschitz domain if for all x ∈ ∂Ω, there exists
a neigborhood of x on ∂Ω which can be represented as the graph of a
Lipschitz continuous function.
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Lipschitz domains II

Standard PDE calculus happens in Lipschitz domains

Boundaries of Lipschitz domains are continuous

Polygonal domains are Lipschitz

Boundaries of Lipschitz domains have no cusps
(e.g. the graph of y =

√
|x | has a cusp at x = 0)
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Divergence theorem (Gauss’ theorem)

Theorem: Let Ω be a bounded Lipschitz domain and ~v : Ω→ Rd be a
continuously differentiable vector function. Let ~n be the outward normal to
Ω. Then, ∫

Ω
∇ · ~v d~x =

∫
∂Ω
~v · ~n ds

�

This is a generalization of the Newton-Leibniz rule of calculus:
Let d = 1, Ω = (a, b). Then na = (−1), nb = (1), ∇ · v = v ′.

∫ b

a
v ′(x) dx = v(a)na + v(b)nb = v(b)− v(a)
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Species flux through boundary of an REV

u(~x , t) : Ω× [0,T ]→ R: time dependent local amount of species

f (~x , t) : Ω× [0,T ]→ R: species sources/sinks
~j(~x , t): vector field of the species flux

REV 

u
n

j n

ω ⊂ Ω: representative elementary volume (REV)
(t0, t1) ⊂ (0,T ): subset of the time interval

J(t) =
∫
∂ω
~j(~x , t) · ~n ds: flux of species trough ∂ω at moment t

U(t) =
∫
ω

u(~x , t) d~x : amount of species in ω at moment t

F (t) =
∫
ω

f (~x , t) d~x : rate of creation/destruction at moment t
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Continuity equation
Change of amount of species in ω during (t0, t1) proportional to the
sum of the amount transported through the boundary and the
amount created/destroyed

U(t1)− U(t0) =
∫ t1

t0

J(t) dt +
∫ t1

t0

F (t) dt∫
ω

(u(~x , t1)− u(~x , t0)) d~x =
∫ t1

t0

∫
∂ω

~j · ~n ds dt =
∫ t1

t0

∫
ω

f (~x , t) ds

Using Gauss’ theorem, rewrite this as

0 =
∫ t1

t0

∫
ω

∂tu(~x , t) d~x dt −
∫ t1

t0

∫
ω

∇ ·~j d~x dt −
∫ t1

t0

∫
ω

f (~x , t) ds

True for all ω ⊂ Ω, (t0, t1) ⊂ (0,T ) ⇒
Continuity equation in differential form

∂tu(~x , t)−∇ ·~j(~x , t) = f (~x , t)
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Flux expressions

In many cases: species flux ~j is proportional to −~∇u

Assumption: ~j = −δ~∇u, where δ > 0 can be constant, space
dependent or even depend on u. For simplicity, we assume δ to be
constant, unless stated otherwise.

Heat conduction:
u = T : temperature
δ = λ: heat conduction coefficient
f : heat source
~j = −λ~∇T : “Fourier law”

Diffusion of molecules in a given medium (for low concentrations)
u = c: concentration
δ = D: diffusion coefficient
f : species source (e.g due to reactions)
~j = −D~∇c: “Fick’s law”
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More flux expressions

Flow in a saturated porous medium:
u = p: pressure
δ = k: permeability
~j = −k ~∇p: “Darcy’s law”

Electrical conduction:
u = ϕ: electric potential
δ = σ: electric conductivity
~j = −σ~∇ϕ ≡ current density: “Ohms’s law”

Electrostatics in a constant magnetic field:
u = ϕ: electric potential
δ = ε: dielectric permittivity
~E = ~∇φ: electric field
~j = ~D = ε~E = ε~∇ϕ: electric displacement field: “Gauss’s Law”
f = ρ: charge density
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Second order partial differential equaions (PDEs)
Combine continuity equation with flux expression:

Transient problem:

Parabolic PDE:

∂tu(~x , t)−∇ · (δ~∇u(~x , t)) = f (~x , t)

Stationary case: ∂tu = 0 ⇒

Elliptic PDE

−∇ · (δ~∇u(~x)) = f (~x)

For solvability we need additional conditions:
Initial condition in the time dependent case: u(~x , 0) = u0(~x)

Boundary conditions: behavior of solution on ∂Ω
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Second order PDEs: boundary conditions

Assume ∂Ω = ∪NΓ
i=1Γi is the union of a finite number of

non-intersecting subsets Γi which are locally Lipschitz.
On each Γi , specify one of

Fixed solution at boundary ⇒ Dirichlet (“first kind”) BC:
let gi : Γi → R (homogeneous for gi = 0)

u(~x , t) = gi (~x , t) for ~x ∈ Γi

Fixed boundary flux ⇒ Neumann (“second kind”) BC:
Let gi : Γi → R (homogeneus for gi = 0)

δ~∇u(~x , t) · ~n = gi (~x , t) for ~x ∈ Γi

Boundary flux proportional to solution ⇒ Robin (“third kind”) BC:
let αi > 0, gi : Γi → R

δ~∇u(~x , t) · ~n + αi (~x , t)u(~x , t) = gi (~x , t) for ~x ∈ Γi
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PDEs: generalizations

δ may depend on ~x , u, |~∇u| . . . ⇒ equations become nonlinear
Coefficients can depend on other processes

temperature can influence conductvity

source terms can describe chemical reactions between different species

chemical reactions can generate/consume heat

Electric current generates heat (“Joule heating”)

. . .

⇒ coupled PDEs

Convective terms: ~j = −δ~∇u + u~v where ~v is a convective velocity
PDEs for vector unknowns

Momentum balance ⇒ Navier-Stokes equations for fluid dynamics

Elasticity

Maxwell’s electromagnetic field equations
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Problems with “strong formulation”

Writing the PDE with divergence and gradient assumes smoothness of
coefficients and at least second derivatives for the solution.

δ may not be continuous (e.g. for heat conduction in a piece
consisting of different materials) – what is then ~∇ · (δ~∇u)?

Approximation of solution u e.g. by piecewise linear functions what
does ~∇u mean ?
Solution spaces of twice, and even once continuously differentiable
functions is not well suited:

Favorable approximation functions (e.g. piecewise linear ones) are not
contained

Though they can be equipped with norms (⇒ Banach spaces) they
have no scalar product ⇒ no Hilbert spaces

Not complete: Cauchy sequences of functions may not converge to
elements in these spaces
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Cauchy sequences of functions

Let Ω be a Lipschitz domain, let V be a metric space of functions
f : Ω→ R

Regard sequences of functions fn = {fn}∞n=1 ⊂ V

A Cauchy sequence is a sequence fn of functions where the norm of
the difference between two elements can be made arbitrarily small by
increasing the element indices:

∀ε > 0 ∃n0 ∈ N : ∀m, n > n0, ||fn − fm|| < ε

All convergent sequences of functions are Cauchy sequences

A metric space V is complete if all Cauchy sequences fn of its
elements have a limit f = lim

n→∞
fn ∈ V within this space
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Completion of a metric space

Let V be a metric space. Its completion is the space V̄ consisting of
all elements of V and all possible limits of Cauchy sequences of
elements of V .

This procedure allows to carry over definitions which are applicable
only to elements of V to more general ones

This process depends on the norm which is part of the definition of
the metric space

Example: construction of real numbers V̄ = R from rational numbers
V = Q via Cauchy sequences: every real number is an equivalence class of
Cauchy sequences with the same limit.
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Completion in function spaces
Example: step function

θε(~x) =


1, ~x ≥ ε
−(~x−εε )2 + 1, 0 ≤ ~x < ε

(~x+ε
ε )2 − 1, −ε ≤ ~x < 0

−1, ~x < −ε

ε→0−→ θ(~x) =
{

1, ~x ≥ 0
−1, else

The discontinuous function θ(x) is the limit of a sequence of
continuously differentiable functions θε.
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Riemann integral → Lebesgue integral

Let Ω be a Lipschitz domain, let Cc(Ω) be the set of continuous
functions f : Ω→ R with compact support. (⇒ they vanish on ∂Ω)

For these functions, the Riemann integral
∫

Ω f (~x) d~x is well defined,
and ‖f ‖L1 :=

∫
Ω |f (~x)|d~x provides a norm, and induces a metric.

Let L1(Ω) be the completion of Cc(Ω) with respect to the metric
defined by the norm ‖·‖L1 . That means that L1(Ω) consists of all
elements of Cc(Ω), and of all limits of Cauchy sequences of elements
of Cc(Ω). Such functions are called measurable.

For any measurable f = lim
n→∞

fn ∈ L1(Ω) with fn ∈ Cc(Ω), define the
Lebesque integral ∫

Ω
f (~x) d~x := lim

n→∞

∫
Ω

fn(~x) d~x

as the limit of a sequence of Riemann integrals of continuous
functions
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Lebesgue integrable (measurable) functions

Examples:
Step functions

Bounded functions which are continuous except in a finite number of
points

As the product of the completion process, measurable functions are
equivalence classes, and saying f , g belong to the same equivalence
class amounts to saying that ‖f − g‖ = 0. In this we say that f , g are
equal almost everywhere.

In particular, L1 functions whose values differ in a finite number of
points are equal almost everywhere.
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Space of square integrable functions

Let L2(Ω) be the space of measureable functions such that∫
Ω
|f (~x)|2 d~x <∞

equipped with the norm

‖f ‖L2 =
(∫

Ω
|f (~x)|2 d~x

) 1
2

The space L2(Ω) is a Hilbert space, i.e. a Banach space equipped
with a scalar product (·, ·) whose norm is induced by that scalar
product, i.e. ||u|| =

√
(u, u). The scalar product in L2 is

(f , g)L2 =
∫

Ω
f (~x)g(~x) d~x .

Similar definitions for Lp, 0 < p ≤ ∞
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Derivatives of measurable functions

Derivatives of functions f ∈ L2(Ω) are not a priori defined

Due to the fact that they even may be not continuous, the usual way
to define derivatives as the limit of difference quotients fails.

⇒ introduce derivatives in an indirect, weak way
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Green’s theorem for smooth functions

Theorem Let Ω ⊂ Rd be a Lipschitz domain and u, v ∈ C 1(Ω)
(continuously differentiable). Let ~n = (n1 . . . nd ) being the outward normal
∂Ω. Then Ω, ∫

Ω
u∂i v d~x =

∫
∂Ω

uvni ds −
∫

Ω
v∂i u d~x

�

This is a generalization of the integration by parts rule of calculus:
Let d = 1, Ω = (a, b). Then na = (−1), nb = 1, ∂i (·) = (·)′.

∫ b

a
uv ′(x) dx = nau(a)v(a) + nbu(b)v(b)−

∫ b

a
u′v dx

= uv
∣∣∣b
a
−
∫ b

a
u′v dx
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Corollaries of Green’s theorem

Let ~u = (u1 . . . ud ) : Ω→ Rd and v : Ω→ R. Then∫
Ω

( d∑
i=1

ui∂i v
)

d~x =
∫
∂Ω

v
d∑

i=1
(ui ni ) ds −

∫
Ω

v
d∑

i=1
(∂i ui ) d~x∫

Ω
~u · ~∇v d~x =

∫
∂Ω

v~u · ~n ds −
∫

Ω
v∇ · ~u d~x

If v = 0 on ∂Ω: ∫
Ω

u∂i v d~x = −
∫

Ω
v∂i u d~x∫

Ω
~u · ~∇v d~x = −

∫
Ω

v ~∇ · ~u d~x
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Weak derivative

Let L1
loc(Ω) be the set of functions which are Lebesgue integrable on

every compact subset K ⊂ Ω. Let C∞0 (Ω) be the set of functions
infinitely differentiable with zero values on the boundary.
For u ∈ L1

loc(Ω) we define ∂i u by

∫
Ω

v∂i u d~x = −
∫

Ω
u∂i v d~x ∀v ∈ C∞0 (Ω)

and ∂αu by

∫
Ω

v∂αu d~x = (−1)|α|
∫

Ω
u∂i v d~x ∀v ∈ C∞0 (Ω)

if these integrals exist.
For smooth functions, weak derivatives coincide with with the usual
derivative
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Sobolev spaces of square integrable functios

For k ≥ 0 the Sobolev space Hk(Ω) is the space functions where all
up to the k-th derivatives are in L2:

Hk(Ω) = {u ∈ L2(Ω) : ∂αu ∈ L2(Ω) ∀|α| ≤ k}

with then norm

||u||Hk (Ω) =

∑
|α|≤k

||∂αu||2L2(Ω)

 1
2

Alternatively, Hk is the completion of C∞ in the norm ||u||Hk (Ω)

Hk
0 (Ω) is the completion of C∞0 in the norm ||u||Hk (Ω)

These Sobolev spaces are Banach spaces.

Similar definitions exist for p 6= 2
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Important function spaces

Hk(Ω) is a Hilbert space with the scalar product

(u, v)Hk (Ω) =
∑
|α|≤k

∫
Ω
∂αu∂αv d~x

Hk
0 (Ω) is a Hilbert space with the scalar product

(u, v)Hk
0 (Ω) =

∑
|α|=k

∫
Ω
∂αu∂αv d~x
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Hilbert space structure

For this course the most important:
L2(Ω), scalar product (u, v)L2(Ω) = (u, v)0,Ω =

∫
Ω uv d~x

H1(Ω), scalar product (u, v)H1(Ω) = (u, v)1,Ω =
∫

Ω(uv + ~∇u · ~∇v) d~x

H1
0 (Ω), scalar product (u, v)H1

0 (Ω) =
∫

Ω(~∇u · ~∇v) d~x

All of them are metric spaces with a scalar product and we have in
each of them

|(u, v)|2 ≤ (u, u)(v , v) Cauchy-Schwarz
||u + v || ≤ ||u||+ ||v || Triangle inequality
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A trace theorem

The notion of function values on the boundary initially is only well defined
for continouos functions. So we need an extension of this notion to
functions from Sobolev spaces.

Theorem: Let Ω be a bounded Lipschitz domain. Then there exists a
bounded linear mapping

tr : H1(Ω)→ L2(∂Ω)

such that
(i) ∃c > 0 such that ‖tr u‖0,∂Ω ≤ c‖u‖1,Ω
(ii) ∀u ∈ C 1(Ω̄), tr u = u|∂Ω

�

Corollary: If u ∈ H1
0 (Ω) then tr u = 0.
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Derivation of weak formulation
Sobolev space theory provides a convenient framework to formulate
existence, uniqueness and approximations of solutions of PDEs.

Let us first consider the stationary heat conduction equation with
homogeneous Dirichlet boundary conditions and constant heat
conduction coefficient λ > 0:

−∇ · λ~∇u(~x) = f (~x) in Ω
u = 0 on ∂Ω

Multiply and integrate with an arbitrary test function v ∈ C∞0 (Ω) and
apply Green’s theorem using v = 0 on ∂Ω

−
∫

Ω
(∇ · λ~∇u)v d~x =

∫
Ω

fv d~x

⇒
∫

Ω
λ~∇u · ~∇v d~x =

∫
Ω

fv d~x
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Weak formulation of homogeneous Dirichlet problem

Find u ∈ H1
0 (Ω) such that∫

Ω
λ~∇u · ~∇v d~x =

∫
Ω

fv d~x ∀v ∈ H1
0 (Ω)

Then,

a(u, v) :=
∫

Ω
λ~∇u · ~∇v d~x

is a self-adjoint bilinear form defined on the Hilbert space H1
0 (Ω).

It is bounded due to Cauchy-Schwarz:

|a(u, v)| = λ ·
∣∣∣ ∫

Ω
~∇u · ~∇v d~x

∣∣∣ ≤ λ||u||H1
0 (Ω) · ||v ||H1

0 (Ω)

f (v) =
∫

Ω fv d~x is a linear functional on H1
0 (Ω). For Hilbert spaces V

the dual space V ′ (the space of linear functionals) can be identified
with the space itself.
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The Lax-Milgram lemma

Theorem: Let V be a Hilbert space. Let a : V × V → R be a self-adjoint
bilinear form, and f a linear functional on V . Assume a is coercive, i.e.

∃α > 0 : ∀u ∈ V , a(u, u) ≥ α||u||2V .

Then the problem: find u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

admits one and only one solution with an a priori estimate

||u||V ≤
1
α
||f ||V ′

�
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Coercivity of weak formulation

Theorem: Assume λ > 0. Then the weak formulation of the heat
conduction problem: search u ∈ H1

0 (Ω) such that∫
Ω
λ~∇u · ~∇v d~x =

∫
Ω

fv d~x ∀v ∈ H1
0 (Ω)

has an unique solution.

Proof: a(u, v) is cocercive:

a(u, u) =
∫

Ω
λ~∇u · ~∇u d~x = λ||u||2H1

0 (Ω)

�
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Weak formulation of inhomogeneous Dirichlet problem

−∇ · λ~∇u = f in Ω
u = g on ∂Ω

If g is smooth enough, there exists a lifting ug ∈ H1(Ω) such that
ug |∂Ω = g . Then, we can re-formulate:

−∇ · λ~∇(u − ug ) = f +∇ · λ~∇ug in Ω
u − ug = 0 on ∂Ω

Find u ∈ H1(Ω) such that

u = ug + φ∫
Ω
λ~∇φ · ~∇v d~x =

∫
Ω

fv d~x +
∫

Ω
λ~∇ug · ~∇v ∀v ∈ H1

0 (Ω)

Here, necessarily, φ ∈ H1
0 (Ω) and we can apply the theory for the

homogeneous Dirichlet problem.
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Weak formulation of Robin problem

−∇ · λ~∇u = f in Ω
λ~∇u · ~n + αu = g on ∂Ω

Multiply and integrate with an arbitrary test function from C∞c (Ω):

−
∫

Ω
(∇ · λ~∇u)v d~x =

∫
Ω

fv d~x∫
Ω
λ~∇u · ~∇v d~x +

∫
∂Ω
λ~∇u · ~nvds =

∫
Ω

fv d~x∫
Ω
λ~∇u · ~∇v d~x +

∫
∂Ω
αuv ds =

∫
Ω

fv d~x +
∫
∂Ω

gv ds
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Weak formulation of Robin problem II

Let

aR(u, v) :=
∫

Ω
λ~∇u · ~∇v d~x +

∫
∂Ω
αuv ds

f R(v) :=
∫

Ω
fv d~x +

∫
∂Ω

gv ds

Find u ∈ H1(Ω) such that

aR(u, v) = f R(v) ∀v ∈ H1(Ω)

If λ > 0 and α > 0 then aR(u, v) is cocercive, and by Lax-Milgram we
establish the existence of a weak solution
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Neumann boundary conditions
Homogeneous Neumann:

λ~∇u · ~n = 0 on ∂Ω

Inhomogeneous Neumann:

λ~∇u · ~n = g on ∂Ω

Find u ∈ H1(Ω) such that

∫
Ω
~∇u · ~∇v d~x =

∫
∂Ω

gv ds ∀v ∈ H1(Ω)

Not coercive due to the fact that we can add an arbitrary constant to u
and a(u, u) stays the same!
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Further discussion on boundary conditions

Mixed boundary conditions:
One can have differerent boundary conditions on different parts of the
boundary. In particular, if Dirichlet or Robin boundary conditions are
applied on at least a part of the boundary of measure larger than zero,
the binlinear form becomes coercive.

Natural boundary conditions: Robin, Neumann
These are imposed in a “natural” way in the weak formulation

Essential boundary conditions: Dirichlet
explicitely imposed on the function space

Coefficients λ, α . . . can be functions from Sobolev spaces as long as
they do not change integrability of terms in the bilinear forms
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Inhomogeneous Dirichlet problem: solution extrema

−∇ · λ~∇u = f in Ω
u = g on ∂Ω

What can we say about minimum and maximum of the solution ?
u has local local extremum in ~x0 ∈ Ω if

~x0 is a critical point: ~∇u|~x0 = 0

The matrix of second derivatives in ~x0 is definite

This is linked to the sign of the right hand side: if f = 0 the main
diagonal entries have different signs (as their sum is zero), so perhaps
we would get a saddle point
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Solution extrema: weak formulation

Search u ∈ H1(Ω) such that

u = ug + φ∫
Ω
λ~∇φ · ~∇v d~x =

∫
Ω

fv d~x −
∫

Ω
λ~∇ug · ~∇v ∀v ∈ H1

0 (Ω)

Here, necessarily, φ ∈ H1
0 (Ω) and we can apply the theory for the

homogeneous Dirichlet problem.
if u is a solution, we also have∫

Ω
λ~∇u · ~∇v d~x =

∫
Ω

fv d~x ∀v ∈ H1
0 (Ω)

as we can add
∫

Ω λ
~∇ · ug ~∇v on left and right side
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Inhomogeneous Dirichlet problem: minimum principle

Let u be a solution

Let f ≥ 0 almost everywhere

Let g [ = inf∂Ω g

Let w = (u − g [)− = min{u − g [, 0} ∈ H1
0 (Ω)

Consequently, w ≤ 0 almost everywhere

As ~∇u = ~∇(u − g [) and ~∇w = 0 where w 6= u − g [, one has

0 ≥
∫

Ω
fw d~x =

∫
Ω
λ~∇u · ~∇w d~x

=
∫

Ω
λ~∇w · ~∇w d~x ≥ 0

Therefore: (u − g [)− = 0 and u ≥ g [ almost everywhere
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Inhomogeneous Dirichlet problem: maximum principle

Let u be a solution

Let f ≤ 0 almost everywhere

Let g ] = sup∂Ω g

Let w = (u − g ])+ = max{u − g ], 0} ∈ H1
0 (Ω)

Consequently, w ≥ 0 almost everywhere

As ~∇u = ~∇(u − g ]) and ~∇w = 0 where w 6= u − g ], one has

0 ≥
∫

Ω
fw d~x =

∫
Ω
λ~∇u · ~∇w d~x

=
∫

Ω
λ~∇w · ~∇w d~x ≥ 0

Therefore: (u − g ])− = 0 and u ≤ g ] almost everywhere
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Inhomogeneous Dirichlet problem: minmax principle

Theorem: The weak solution of the inhomogeneous Dirichlet problem

−∇ · λ~∇u = f in Ω
u = g on ∂Ω

fulfills the global minimax principle: it attains its maximum at the
boundary if f ≤ 0 and attains its minimum at the boundary if f ≥ 0.

Corollary: If f = 0 then u attains both its minimum and its maximum at
the boundary.

Corollary: Local minimax principle:
This is true of any subdomain ω ⊂ Ω.

Corollary: Nonnegativity of the solution:
if g ≥ 0 and f ≥ 0 then u ≥ 0
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Interpretation of minimax principle

Positive right hand side ⇒ “production” of heat, matter . . .

No local minimum in the interior of domain if matter is produced.

Also, positivity/nonnegativity of solutions if boundary conditions are
positive/nonnegative

Negative right hand side ⇒ “consumption” of heat, matter . . .

No local maximum in the interior of domain if matter is consumed.

Basic physical principle !


