Scientific Computing WS 2019/2020
Lecture 11

Jirgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Recap

Regular splittings

» A= M — N is a regular splitting if

» M is nonsingular
> M~ N are nonnegative, i.e. have nonnegative entries

> Regard the iteration w1 = M~ Nu, + M~ 1h.

> B=/— M"'A= M"1Nis a nonnegative matrix.

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A~1 >0,and A=M — N isa
regular splitting. Then p(M~1N) < 1.

Proof: Let B= M~!N. Then A= M(I/ — B), therefore | — B is
nonsingular.

In addition
ATIN = (M(I = M7TN)IN= (I - MIN)*M~IN = (- B)"'B

By Perron-Frobenius (for general matrices), p(B) is an eigenvalue with a
nonnegative eigenvector x. Thus,

B)
0< A lNx = Lx
1-p(B)

Then there exists x # 0 such that Bx = x.

Therefore 0 < p(B) <
) =
— B) = 0, contradicting the nonsingularity of / — B.
1.

Assume that p(B
Consequently, (/

Therefore, p(B) < O

M-Matrix definition

Definition Let A be an n X n real matrix. A is called M-Matrix if
(i) aj <O0fori##j

(i) A is nonsingular

(i) A71 >0

Corollary: If A is an M-Matrix, then A~1 > 0 < A is irreducible.

Proof: See Varga.

Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that a;; > 0 and a;; < 0 for i # j.
Then A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show A~! > 0.
> Let B=1/— D7'A Then p(B) < 1, therefore | — B is nonsingular.
» We have for k > 0:

|—-B'=(1-B)(I+B+B*>+---+ B
(I-B)YI-B*"Y)Y=(+B+B*+---+ B

The left hand side for kK — oo converges to (I — B)™?, therefore

-B)! ZB"

As B >0, we have (I — B)™1 = A='D > 0. As D > 0 we must have
At >0. O

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

» fix a predefined zero pattern

» apply the standard LU factorization method, but calculate only those
elements, which do not correspond to the given zero pattern

» Result: incomplete LU factors L, U, remainder R:

A=LU-R

» Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?

Intermediate Summary

» Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

» Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

» Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

» Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.

» These critera do not depend on the symmetry of the matrix!

Example: 1D finite difference matrix:

a+% % up avy
3 a r b
-1 2 1 u hf-
h h h 3 3
Au = : =f= :
102 1
~h B Th un-2 hfn_2
102 1
~h h,h un-1 hfn_1
-5 §Ta un QVp
> idd

» positive main diagonal entries, nonpositive off-diagonal entries

= A is nonsingular, has the M-property, and we can e.g. apply the Jacobi
and Gauss-Seidel iterative method to solve it (ok, in 1D we already know
this is a bad idea ...).

= for f > 0 and v > 0 it follows that v > 0.
= heating and positive environment temperatures cannot lead to negative
temperatures in the interior.

Iterative solver complexity |

> Solve linear system iteratively until ||ex|| = ||(/ — M7 A)*eo|| < ¢

pkeoge
kinp <Ine—Ine

Inegflne—‘

kap:’V Inp

»> = we need at least k,, iteration steps to reach accuracy ¢
» Optimal iterative solver complexity - assume:

> p < po < 1 independent of h resp. N

> A sparse (A - u has complexity O(N))

> Solution of Mv = r has complexity O(N).

= Number of iteration steps k, independent of N
= Overall complexity O(N)

Iterative solver complexity Il

> Assume
> p=1—h = Inpx—h® = k, = O(h~9%)
» d: space dimension = h ~ N"d = kp = O(N%)

> O(N) complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)

= Overall complexity O(NH%):O(N#)
» Jacobi: § =2
> Hypothetical “Improved iterative solver” with § =1 ?

» Overview on complexity estimates

dm p=1-0(r) p=1-0(h) LU fact. LU solve

1 o(\?) o(\?) o(N) o(N)
2 O(N?) O(N?) O(N%) O(NlogN)
3 O(N%) O(N?) O(N?) O(N%)

Solver complexity scaling for 1D problems

dim p=1-0(h) p=1-0(h)

LU fact.

LU solve

1 O(N®) O(N?) O(N)

O(N)

108 C caling for 1D problems 10t ¢ ity scaling for 1D problems
el — 2=t ot 102 p=1-0(h*)
— p=1-0(h) 102 — p=1-0(h)
10" p<l 101 — p<l
100 © LU fact 10% « LU fact
" LUsolve f—T 2 10 LU solve
£ 100 - 2
g 10° / :
S
10°
100
10?
10° 100 L -
200000 600000 800000 1000000 10 107 107 10

400000
N

» Direct solvers significantly better than iterative ones

Solver complexity scaling for 2D problems

dm p=1-0(h) p=1-0(h) LU fact.

LU solve

2 O(N?) O(N?) O(N?)

O(N log N)

10t c ity scaling for 2D problems 10 ¢ ity scaling for 2D problems
s || — o=t o) 102 — p=1-0(h*)
p=1-0(h) 100 — p=1-0(h)
10 p<l 18 — p<l
10
g ||+ LUfact 101 « LU fact
. LUsolve [+— . LU solve
§ 10 510
[/ B 107
g g
g 10 3 i
15 810 i
10° — 10°
.
10 10
10"
107) R
10°
o o
10 200000 400000 600000 800000 1000000 1010A 107 107 107 10°
N

Direct solvers better than simple iterative solvers (Jacobi etc.)

Direct solves on par with improved iterative solvers

Solver complexity scaling for 3D problems

dim p=1—0(h)

p=1-0(h)

LU fact.

LU solve

3

o(N

Y

O(N?)

10% < caling for 3D problems
woel| — =t o(n*)
— p=1-0(h)
W — pl
jou || ° LUfact
0 LU sOlve [amasmassssss® i
§ 10 = :
% . — £
B 108 | T £
& 10 P f
5
10° f»
10"
10*
10°
200000 400000 600000 800000 1000000

LU factorization is expensive

O(N?)

ity scalin

O(N?)

for 3D problems

— p=1-0(*)

— p=1-0(h)

— p<l

« LU fact

LU solve

LU solve on par with improved iterative solvers

What could be done ?

» Find optimal iterative solver with O(N) complexity
> Find “improved preconditioner” with K(M™'A) = O(h™') = 6 =1

»> Find “improved iterative scheme”: with p = \\/ﬁi:

For Jacobi, we had & = X* — 1 where X = 2(“2") =0(h™).

\/ﬁ—l
r= \/7+1
:1+\/ﬁ—l—m—1

VX2 -1+41

=1 1

VX2-1+1

x(1—%+§)
=1-0(h)

Krylov subspace methods

Generalization of iteration schemes

» So far we considered simple iterative schemes, perhaps with
preconditioners

» Here, we introduce Krylov subspace methods which indeed in many
cases yield faster convergence than simple iterative schemes

» Material after

» M. Gutknecht A Brief Introduction to Krylov Space Methods for
Solving Linear Systems

» J. Shewchuk: An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain“

» Extended reading: J.Liesen, Z. Strako$: Krylov Subspace Methods:
Principles and Analysis

» Extended coverage of the topic available at TU: Prof. Jorg Liesen,
Prof. Reinhard Nabben are active researchers in the field.

http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Simple iterative method |

Solve Au = b, assume exact solution ii.

Ugr1 = ux — a(Aug — b) (k=0,1...)

. Choose initial value ug, tolerance ¢, set k =0
. Calculate residuum r, = Au, — b

. Test convergence: if ||rk|| < € set u = u, finish

S~ W N =

. Update solution: wuyy1 = ux — arg, set k = k + 1, repeat with step 2.

Simple iterative method I

» From step 4:
Auk+1 = Auk — aArk

Augy1 — b= Aug — b — aAry

re+1 = rg — OzAI’k

» Therefore ry = px(A)ro € span{rg, A, ..., Akrg}
where p(¢) = (1 — a€)k is a polynomial of degre k

» For the iterate u,, we have
Ug = Ug—1 — Qg1 = Ug—2 — Qlk—2 — Qg1

=u—alrn+trn+-+rn1)
= uo + qk-1(A)ro

where gx_1 is a polynomial of degree n — 1.

» From re = Aug — b = Aug — b+ Aqk—1(A)ro = (I + Aqk—1(A))ro one
obtains pe(€) = 1+ £q(¢).

» Consequently, xx € xo + span{rg, Ar, ..., Ax"1r}

The Krylov subspace

Definition: Let A € RV*N be nonsingular, let 0 # y € R". The k-th
Krylov subspace generated from A by y is defined as

Ki(A,y) = span{y, Ay, ..., A*" 1y}

» For the simple iteration,

u = up + qr—1(A)ro € K (A, ro)
re = pr(A)ro € Kii1(A, ro)
pe(§) = 1+ &q(§)
pk(O) =1

with particular polynomials p, g.

» Are these the best ones ?

Krylov subspace

> K1 CKy S C Ky
> dmK;, <dmK_;+1
When does the exact solution lie in KC,?
Definition: The grade of y is a positive integer v = v(y, A) such that

k ifk<v
v itk>v

dim Kk(A,y) = {
» KC,(A,y) is the smallest A-invariant subspace which contains y.
> y =min{k|A"ly € Ki(A,y)}

» For any inital iterate ug and intial residual ro = Aug — b, the exact
solution &I € KCpy(p,4)(A, ro) lies in the Krylov subspace corresponding
to the grade of ry.

Krylov subspace methods

Definition: Let A € RV*N be nonsingular, let 0 # y € RV, An interative
method such that

u = up + qr—1(A)ro € K (A, ro)

where qx_1 is a polynomial of degree k is called Krylov subspace method.

» For the residuals of the method, we have r, = pr(A)ro € Kii1(A, ro)
with pi(€) =1+ &qu(§)

» Preconditioned form: use the same ansatz for M—1Ax = M~1b and
define Krylov subspace for M~1A

The case of symmetric positive definite matrices

Assume A is spd (symmetric, positive definite)

a(u,v) = (Au,v) = v Au = ZZ ajjviu;

i=1 j=1

As A is SPD, for all u # 0 we have (Au, u) > 0.

For a given vector b, regard the function
1 T
f(u) = E.si(u7 u)—b'u

What is the minimizer of f ?

f'luy=Au—b=0

» Solution of SPD system = minimization of f.

Method of steepest descent

» Given some vector u;, look for a new iterate uj;1.
» The direction of steepest descend is given by —f’(u;).

> So look for ujy1 in the direction of —f'(u;) = r; = b — Au; such that
it minimizes f in this direction, i.e. set uj11 = u; + ar; with o choosen
from

0= %f(u; + CU’,') = fI(U,' + O[f,') e

=(b—A(ui +an),r)
= (b — Auj, ;) — a(Ar;, 1)
= (i, ;) — a(Ar,)

(i, i)

(Ar,-,r,-)

Method of steepest descent: iteration scheme

rr=>b— Au;
o (riari)
o = (AI’,',I’,‘)

Uil = Uj + it

Let & the exact solution. Define ¢; = u; — @I, then r; = —Aeg;
Let [|u||a = (Au,u)? be the energy norm wrt. A.

Theorem The convergence rate of the method is

H || < = - l|| ||
(A €

A P 1 0lA
where Kk = Amax(A)

e (A) is the spectral condition number.

Method of steepest descent: advantages

> Simple Richardson iteration w1 = ux — a(Aug — f) needs good
eigenvalue estimate to be optimal with o = 2

Amax+Amin
> In thi i is p=~t=l
n this case, asymptotic convergence rate is p = =+

> Steepest descent has the same rate without need for spectral estimate

Conjugate directions

For steepest descent, there is no guarantee that a search direction
d; = r; = —Ae; is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let dy, d; ...d,_1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Ad;,d;) =0, i #j.

» Look for w1 in the direction of d; such that it minimizes f in this
direction, i.e. set uj+1 = u; + «;d; with o choosen from

0= %f(u; + O[d,') = f/(U,' + Oéd,') . d,'

= (b — A(U,' + Oéd,‘)7 d,)
= (b — Auj, d;) — a(Ad;, d;)
(rn) (Adl? d’)
= rid)
" (Ad;, d)

» uiy1 €span{dy...d;}

Conjugate gradients

vV v. vy

v

Choose dy ... d; such that span{dy ... d;} = K;(A, ro).
Orthogonalize by Gram-Schmidt
Result: short recursions!

u; € ug + Ki(A, rp) minimizes the energy norm of the error e;:
|leilla = (Aei, e).

riv1 L Ki(A, o)

» There are at most N directions, so the method yields the exact

solution after at most N iteration steps.

Conjugate gradients - the algorithm

Given initial value up, spd matrix A, right hand side b.
do = = b— AUO
(ri7 ri)

o= ————

(Ad;, d;)

Uiyl = Ui + oid;

r,-+1 =1 — CV,'Ad,'

Bis = (Fit1, ri+1)
: (rivri)

dit1 = rig1 + Bip1d;

At the i-th step, the algorithm yields the element from ey + K; with the
minimum energy error.

Theorem The convergence rate of the method is

VE-1Y
14 <2
ledla < (ﬁ+1 leol
Am.ax(A)

Py) is the spectral condition number of A.

where Kk =

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
k(M™LA) << K(A).

Let E be such that M = EET, e.g. its Cholesky factorization. Then,
o(M7tA) = o(EAE™T):

Assume M~1Au = Au. We have

(EYAE""WE"u)=(ETETT)E 'Au=E"M*Au=XETu

& ETuis an eigenvector of ETYAE~T with eigenvalue .

Preconditioned CG |

Now we can use the CG algorithm for the preconditioned system
ET'AE"Tx=E"'b
with i = ETu

do=F=E *b— ETAE"T
o — (Fi, 7;) N
(E-1AE-Td;, d;)
Uir1 =0 + d

Fiy1 =F — a;ETTAETT 4

(+1af:+1)
B
TR)

diy1 = Fiy1 + Bisads

Not very practical as we need E

Preconditioned CG Il

Assume ¥, = E~1r;, 8,- = E"d;, we get the equivalent algorithm

= b—ALlo
dy = M71r0
=1, ..
o — (M~tr, r)
(Ad,',d,')

Uit1 = Ui + o;d

riy1 = r — Ck,'Ad,'

Bipy = (M™rit1, rigt)
i+1 — (ri7 ri)

diy1 = Mgy + Biad;

It relies on the solution of the preconditioning system, the calculation of
the matrix vector product and the calculation of the scalar product.

The convergence rate of the method is

k—1 i
||ef||E—1AE—TS2(£ 1) lleolle-1a6-7

where r = 122 comes from Ypmin(Mu, u) < (Au, u) < Ymax(Mu, u).

Issues and consequences

» Usually we stop the iteration when the residual r becomes small.
However during the iteration, floating point errors occur which distort
the calculations and lead to the fact that the accumulated residuals

riy1 = ri — ojAd;

give a much more optimistic picture on the state of the iteration than
the real residual

fis1 = b —Auips

» The convergence rate estimate in terms of \\/fg: indeed provides a

qualitatively better complexity estimate for the solution algorithm

» Always consider CG when solving symmetric positive definite linear
systems iteratively

Unsymmetric problems
» By definition, CG is only applicable to symmetric problems.
> The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess xg, perform

rn=>b—Axg Fo#0
Po="ro Po = To
o = 7£;i’ r1)
(Pi, Api)
Xiy1 = X; + Q;p; Xip1 = X + a;p;
riv1 = ri — ajAp; Fior = F — aipiAT
B = (71+~1, Fit1)
(7, r7)
pis1 = riv1 + Bipi Pit1 = Fiy1 + Bibi

» The two sequences produced by the algorithm are biorthogonal, i.e.,
(Pi, Apj) = (Fi, r;) = 0 for i # j.
> We have r; € Ki(A, n) and ¥ € K(AT, F)

Unsymmetric problems [l

>

>

>

BiCG is very unstable and additionally needs the transposed matrix
vector product, it is seldomly used in practice

There is as well a preconditioned variant of BiCG which also needs
the transposed preconditioner.

Main practical approaches to fix the situation:

» “Conjugate gradients squared” (CGS, Sonneveld, 1989): Replace
multiplication by AT in BICG with multiplication by A, residual
polynomial pces = Ppce-

> “Stabilize” BiCG — BiCGstab (H. Van der Vorst, 1992), BiCGstab(l)
(Sleijpen/Fokkema 1993)

» Error minimization in Krylov subspace — “Generalized Minimum
Residual” (GMRES, Saad/Schulz, 1986)

Both CGS and BiCGstab can show erratic convergence behavior =
always try to stop iteration after residual check

For GMRES one has to keep the full Krylov subspace, which is not
possible in practice = restart strategy.

As in the case of CG, always combine preconditioners with Krylov
subspace methods

From my experience, BiCGstab is a good first guess

Krylov subspace methods in Julia

» Several packages available
» Seemingly most well maintained: IterativeSolvers jl
» CG, GMRES, BiCGStab and others.

P> We will explore these later when we go to 2D examples.

https://github.com/JuliaMath/IterativeSolvers.jl

