
Lecture 11 Slide 1

Scientific Computing WS 2019/2020

Lecture 11

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Lecture 11 Slide 2

Recap

Lecture 9 Slide 36

Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I B = I − M−1A = M−1N is a nonnegative matrix.

Lecture 11 Slide 3

Lecture 9 Slide 37

Convergence theorem for regular splitting
Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a
regular splitting. Then ρ(M−1N) < 1.

Proof: Let B = M−1N. Then A = M(I − B), therefore I − B is
nonsingular.

In addition

A−1N = (M(I − M−1N))−1N = (I − M−1N)−1M−1N = (I − B)−1B

By Perron-Frobenius (for general matrices), ρ(B) is an eigenvalue with a
nonnegative eigenvector x. Thus,

0 ≤ A−1Nx = ρ(B)
1 − ρ(B)x

Therefore 0 ≤ ρ(B) ≤ 1.
Assume that ρ(B) = 1. Then there exists x 6= 0 such that Bx = x.
Consequently, (I − B)x = 0, contradicting the nonsingularity of I − B.
Therefore, ρ(B) < 1. �

Lecture 11 Slide 4

Lecture 10 Slide 22

M-Matrix definition

Definition Let A be an n × n real matrix. A is called M-Matrix if

(i) aij ≤ 0 for i 6= j

(ii) A is nonsingular

(iii) A−1 ≥ 0

Corollary: If A is an M-Matrix, then A−1 > 0 ⇔ A is irreducible.

Proof: See Varga. �

Lecture 11 Slide 5

Lecture 10 Slide 24

Main practical M-Matrix criterion
Corollary: Let A be sdd or idd. Assume that aii > 0 and aij ≤ 0 for i 6= j.
Then A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show A−1 ≥ 0.
I Let B = I − D−1A. Then ρ(B) < 1, therefore I − B is nonsingular.
I We have for k > 0:

I − Bk+1 = (I − B)(I + B + B2 + · · · + Bk)
(I − B)−1(I − Bk+1) = (I + B + B2 + · · · + Bk)

The left hand side for k → ∞ converges to (I − B)−1, therefore

(I − B)−1 =
∞∑

k=0
Bk

As B ≥ 0, we have (I − B)−1 = A−1D ≥ 0. As D > 0 we must have
A−1 ≥ 0. �

Lecture 11 Slide 6

Lecture 10 Slide 26

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):
I fix a predefined zero pattern
I apply the standard LU factorization method, but calculate only those

elements, which do not correspond to the given zero pattern
I Result: incomplete LU factors L, U, remainder R :

A = LU − R

I Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?

Lecture 11 Slide 7

Lecture 10 Slide 33

Intermediate Summary

I Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

I Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

I Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

I Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.

I These critera do not depend on the symmetry of the matrix!

Lecture 11 Slide 8

Lecture 10 Slide 34

Example: 1D finite difference matrix:

Au =

α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
.

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α

u1
u2
u3
...

uN−2
uN−1
uN

= f =

αv1
hf2
hf3
...

hfN−2
hfN−1
αvn

I idd
I positive main diagonal entries, nonpositive off-diagonal entries

⇒ A is nonsingular, has the M-property, and we can e.g. apply the Jacobi
and Gauss-Seidel iterative method to solve it (ok, in 1D we already know
this is a bad idea . . .).

⇒ for f ≥ 0 and v ≥ 0 it follows that u ≥ 0.
≡ heating and positive environment temperatures cannot lead to negative
temperatures in the interior.

Lecture 11 Slide 9

Lecture 7 Slide 47

Iterative solver complexity I

I Solve linear system iteratively until ||ek || = ||(I − M−1A)ke0|| ≤ ε

ρke0 ≤ ε

k ln ρ < ln ε − ln e0

k ≥ kρ =
⌈

ln e0 − ln ε

ln ρ

⌉
I ⇒ we need at least kρ iteration steps to reach accuracy ε

I Optimal iterative solver complexity - assume:
I ρ < ρ0 < 1 independent of h resp. N
I A sparse (A · u has complexity O(N))
I Solution of Mv = r has complexity O(N).

⇒ Number of iteration steps kρ independent of N
⇒ Overall complexity O(N)

Lecture 11 Slide 10

Lecture 7 Slide 48

Iterative solver complexity II

I Assume
I ρ = 1 − hδ ⇒ ln ρ ≈ −hδ → kρ = O(h−δ)

I d: space dimension ⇒ h ≈ N− 1
d ⇒ kρ = O(N

δ
d)

I O(N) complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)

⇒ Overall complexity O(N1+ δ
d)=O(N

d+δ
d)

I Jacobi: δ = 2
I Hypothetical “Improved iterative solver” with δ = 1 ?
I Overview on complexity estimates

dim ρ = 1 − O(h2) ρ = 1 − O(h) LU fact. LU solve
1 O(N3) O(N2) O(N) O(N)
2 O(N2) O(N 3

2) O(N 3
2) O(N log N)

3 O(N 5
3) O(N 4

3) O(N2) O(N 4
3)

Lecture 11 Slide 11

Lecture 7 Slide 49

Solver complexity scaling for 1D problems

dim ρ = 1 − O(h2) ρ = 1 − O(h) LU fact. LU solve
1 O(N3) O(N2) O(N) O(N)

0 200000 400000 600000 800000 1000000
N

100

102

104

106

108

1010

1012

1014

1016

1018

O
p
e
ra

ti
o
n
s

Complexity scaling for 1D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

10-4 10-3 10-2 10-1 100

h

100

102

104

106

108

1010

1012

1014

1016

1018

1020

1022

1024

O
p
e
ra

ti
o
n
s

Complexity scaling for 1D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

I Direct solvers significantly better than iterative ones

Lecture 11 Slide 12

Lecture 7 Slide 50

Solver complexity scaling for 2D problems

dim ρ = 1 − O(h2) ρ = 1 − O(h) LU fact. LU solve
2 O(N2) O(N 3

2) O(N 3
2) O(N log N)

0 200000 400000 600000 800000 1000000
N

100

102

104

106

108

1010

1012

1014

1016

1018

O
p
e
ra

ti
o
n
s

Complexity scaling for 2D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

10-4 10-3 10-2 10-1 100

h

100

102

104

106

108

1010

1012

1014

1016

1018

1020

1022

1024

O
p
e
ra

ti
o
n
s

Complexity scaling for 2D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

I Direct solvers better than simple iterative solvers (Jacobi etc.)
I Direct solves on par with improved iterative solvers

Lecture 11 Slide 13

Lecture 7 Slide 51

Solver complexity scaling for 3D problems

dim ρ = 1 − O(h2) ρ = 1 − O(h) LU fact. LU solve
3 O(N 5

3) O(N 4
3) O(N2) O(N 4

3)

0 200000 400000 600000 800000 1000000
N

100

102

104

106

108

1010

1012

1014

1016

1018

O
p
e
ra

ti
o
n
s

Complexity scaling for 3D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

10-4 10-3 10-2 10-1 100

h

100

102

104

106

108

1010

1012

1014

1016

1018

1020

1022

1024

O
p
e
ra

ti
o
n
s

Complexity scaling for 3D problems

ρ=1−O(h2)

ρ=1−O(h)

ρ¿1

LU fact

LU solve

I LU factorization is expensive
I LU solve on par with improved iterative solvers

Lecture 11 Slide 14

Lecture 7 Slide 52

What could be done ?
I Find optimal iterative solver with O(N) complexity
I Find “improved preconditioner” with κ(M−1A) = O(h−1) ⇒ δ = 1

I Find “improved iterative scheme”: with ρ =
√

κ−1√
κ+1 :

For Jacobi, we had κ = X 2 − 1 where X = 2(1+2h)
πh = O(h−1).

ρ = 1 +
√

X 2 − 1 − 1√
X 2 − 1 + 1

− 1

= 1 +
√

X 2 − 1 − 1 −
√

X 2 − 1 − 1√
X 2 − 1 + 1

= 1 − 1√
X 2 − 1 + 1

= 1 − 1

X
(√

1 − 1
X2 + 1

X

)
= 1 − O(h)

⇒ δ = 1

Lecture 11 Slide 15

Lecture 11 Slide 16

Krylov subspace methods

Lecture 11 Slide 17

Generalization of iteration schemes

I So far we considered simple iterative schemes, perhaps with
preconditioners

I Here, we introduce Krylov subspace methods which indeed in many
cases yield faster convergence than simple iterative schemes

I Material after
I M. Gutknecht A Brief Introduction to Krylov Space Methods for

Solving Linear Systems
I J. Shewchuk: An Introduction to the Conjugate Gradient Method

Without the Agonizing Pain“

I Extended reading: J.Liesen, Z. Strakoš: Krylov Subspace Methods:
Principles and Analysis

I Extended coverage of the topic available at TU: Prof. Jörg Liesen,
Prof. Reinhard Nabben are active researchers in the field.

http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Lecture 11 Slide 18

Simple iterative method I

Solve Au = b, assume exact solution û.

uk+1 = uk − α(Auk − b) (k = 0, 1 . . .)

1. Choose initial value u0, tolerance ε, set k = 0

2. Calculate residuum rk = Auk − b

3. Test convergence: if ||rk || < ε set u = uk , finish

4. Update solution: uk+1 = uk − αrk , set k = k + 1, repeat with step 2.

Lecture 11 Slide 19

Simple iterative method II
I From step 4:

Auk+1 = Auk − αArk

Auk+1 − b = Auk − b − αArk

rk+1 = rk − αArk

I Therefore rk = pk(A)r0 ∈ span{r0, Ar0, . . . , Akr0}
where p(ξ) = (1 − αξ)k is a polynomial of degre k

I For the iterate uk , we have
uk = uk−1 − αrk−1 = uk−2 − αrk−2 − αrk−1

= u0 − α(r0 + r1 + · · · + rk−1)
= u0 + qk−1(A)r0

where qk−1 is a polynomial of degree n − 1.
I From rk = Auk − b = Au0 − b + Aqk−1(A)r0 = (I + Aqk−1(A))r0 one

obtains pk(ξ) = 1 + ξqk(ξ).
I Consequently, xk ∈ x0 + span{r0, Ar0, . . . , Ak−1r0}

Lecture 11 Slide 20

The Krylov subspace

Definition: Let A ∈ RN×N be nonsingular, let 0 6= y ∈ Rn. The k-th
Krylov subspace generated from A by y is defined as
Kk(A, y) = span{y , Ay , . . . , Ak−1y}.

I For the simple iteration,

uk = u0 + qk−1(A)r0 ∈ Kk(A, r0)
rk = pk(A)r0 ∈ Kk+1(A, r0)

pk(ξ) = 1 + ξqk(ξ)
pk(0) = 1

with particular polynomials p, q.
I Are these the best ones ?

Lecture 11 Slide 21

Krylov subspace

I K1 ⊆ K2 ⊆ · · · ⊆ Kk

I dim Ki ≤ dim K−1 + 1

When does the exact solution lie in Kk?

Definition: The grade of y is a positive integer ν = ν(y , A) such that

dim Kk(A, y) =
{

k ifk ≤ ν

ν ifk ≥ ν

I Kν(A, y) is the smallest A-invariant subspace which contains y .
I y = min{k|A−1y ∈ Kk(A, y)}
I For any inital iterate u0 and intial residual r0 = Au0 − b, the exact

solution û ∈ Kν(r0,A)(A, r0) lies in the Krylov subspace corresponding
to the grade of r0.

Lecture 11 Slide 22

Krylov subspace methods

Definition: Let A ∈ RN×N be nonsingular, let 0 6= y ∈ RN . An interative
method such that

uk = u0 + qk−1(A)r0 ∈ Kk(A, r0)

where qk−1 is a polynomial of degree k is called Krylov subspace method.
I For the residuals of the method, we have rk = pk(A)r0 ∈ Kk+1(A, r0)

with pk(ξ) = 1 + ξqk(ξ)
I Preconditioned form: use the same ansatz for M−1Ax = M−1b and

define Krylov subspace for M−1A

Lecture 11 Slide 23

The case of symmetric positive definite matrices

Assume A is spd (symmetric, positive definite)

a(u, v) = (Au, v) = vT Au =
n∑

i=1

n∑
j=1

aijviuj

As A is SPD, for all u 6= 0 we have (Au, u) > 0.

For a given vector b, regard the function

f (u) = 1
2a(u, u) − bT u

What is the minimizer of f ?

f ′(u) = Au − b = 0

I Solution of SPD system ≡ minimization of f .

Lecture 11 Slide 24

Method of steepest descent

I Given some vector ui , look for a new iterate ui+1.
I The direction of steepest descend is given by −f ′(ui).
I So look for ui+1 in the direction of −f ′(ui) = ri = b − Aui such that

it minimizes f in this direction, i.e. set ui+1 = ui + αri with α choosen
from

0 = d
dα

f (ui + αri) = f ′(ui + αri) · ri

= (b − A(ui + αri), ri)
= (b − Aui , ri) − α(Ari , ri)
= (ri , ri) − α(Ari , ri)

α = (ri , ri)
(Ari , ri)

Lecture 11 Slide 25

Method of steepest descent: iteration scheme

ri = b − Aui

αi = (ri , ri)
(Ari , ri)

ui+1 = ui + αi ri

Let û the exact solution. Define ei = ui − û, then ri = −Aei

Let ||u||A = (Au, u) 1
2 be the energy norm wrt. A.

Theorem The convergence rate of the method is

||ei ||A ≤
(

κ − 1
κ + 1

)i
||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number.

Lecture 11 Slide 26

Method of steepest descent: advantages

I Simple Richardson iteration uk+1 = uk − α(Auk − f) needs good
eigenvalue estimate to be optimal with α = 2

λmax +λmin

I In this case, asymptotic convergence rate is ρ = κ−1
κ+1

I Steepest descent has the same rate without need for spectral estimate

Lecture 11 Slide 27

Conjugate directions
For steepest descent, there is no guarantee that a search direction
di = ri = −Aei is not used several times. If all search directions would be
orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let d0, d1 . . . dn−1 be a series of A-orthogonal (or conjugate) search
directions, i.e. (Adi , dj) = 0, i 6= j.
I Look for ui+1 in the direction of di such that it minimizes f in this

direction, i.e. set ui+1 = ui + αidi with α choosen from

0 = d
dα

f (ui + αdi) = f ′(ui + αdi) · di

= (b − A(ui + αdi), di)
= (b − Aui , di) − α(Adi , di)
= (ri , di) − α(Adi , di)

αi = (ri , di)
(Adi , di)

I ui+1 ∈ span{d0 . . . di}

Lecture 11 Slide 28

Conjugate gradients

I Choose d0 . . . di such that span{d0 . . . di} = Ki(A, r0).
I Orthogonalize by Gram-Schmidt
I Result: short recursions!
I ui ∈ u0 + Ki(A, r0) minimizes the energy norm of the error ei :

||ei ||A = (Aei , ei).
I ri+1 ⊥ Ki(A, r0)
I There are at most N directions, so the method yields the exact

solution after at most N iteration steps.

Lecture 11 Slide 29

Conjugate gradients - the algorithm
Given initial value u0, spd matrix A, right hand side b.

d0 = r0 = b − Au0

αi = (ri , ri)
(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (ri+1, ri+1)
(ri , ri)

di+1 = ri+1 + βi+1di

At the i-th step, the algorithm yields the element from e0 + Ki with the
minimum energy error.

Theorem The convergence rate of the method is

||ei ||A ≤ 2
(√

κ − 1√
κ + 1

)i

||e0||A

where κ = λmax (A)
λmin(A) is the spectral condition number of A.

Lecture 11 Slide 30

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that
κ(M−1A) << κ(A).

Let E be such that M = EET , e.g. its Cholesky factorization. Then,
σ(M−1A) = σ(E−1AE−T):

Assume M−1Au = λu. We have

(E−1AE−T)(ET u) = (ET E−T)E−1Au = ET M−1Au = λET u

⇔ ET u is an eigenvector of E−1AE−T with eigenvalue λ.

Lecture 11 Slide 31

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

E−1AE−T x̃ = E−1b

with ũ = ET u

d̃0 = r̃0 = E−1b − E−1AE−T u0

αi = (r̃i , r̃i)
(E−1AE−T d̃i , d̃i)

ũi+1 = ũi + αi d̃i

r̃i+1 = r̃i − αiE−1AE−T d̃i

βi+1 = (r̃i+1, r̃i+1)
(r̃i , r̃i)

d̃i+1 = r̃i+1 + βi+1d̃i

Not very practical as we need E

Lecture 11 Slide 32

Preconditioned CG II
Assume r̃i = E−1ri , d̃i = ET di , we get the equivalent algorithm

r0 = b − Au0

d0 = M−1r0

αi = (M−1ri , ri)
(Adi , di)

ui+1 = ui + αidi

ri+1 = ri − αiAdi

βi+1 = (M−1ri+1, ri+1)
(ri , ri)

di+1 = M−1ri+1 + βi+1di

It relies on the solution of the preconditioning system, the calculation of
the matrix vector product and the calculation of the scalar product.

The convergence rate of the method is

||ei ||E−1AE−T ≤ 2
(√

κ − 1√
κ + 1

)i

||e0||E−1AE−T

where κ = γmax
γmin

comes from γmin(Mu, u) ≤ (Au, u) ≤ γmax(Mu, u).

Lecture 11 Slide 33

Issues and consequences

I Usually we stop the iteration when the residual r becomes small.
However during the iteration, floating point errors occur which distort
the calculations and lead to the fact that the accumulated residuals

ri+1 = ri − αiAdi

give a much more optimistic picture on the state of the iteration than
the real residual

ri+1 = b − Aui+1

I The convergence rate estimate in terms of
√

κ−1√
κ+1 indeed provides a

qualitatively better complexity estimate for the solution algorithm
I Always consider CG when solving symmetric positive definite linear

systems iteratively

Lecture 11 Slide 34

Unsymmetric problems
I By definition, CG is only applicable to symmetric problems.
I The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x0, perform

r0 = b − A x0 r̃0 6= 0
p0 = r0 p̃0 = r̃0

αi = (r̃i , ri)
(p̃i , Api)

xi+1 = xi + αipi x̃i+1 = x̃i + αi p̃i

ri+1 = ri − αiApi r̃i+1 = r̃i − αi p̃iAT

βi = (r̃i+1, ri+1)
(r̃i , ri)

pi+1 = ri+1 + βipi p̃i+1 = r̃i+1 + βi p̃i

I The two sequences produced by the algorithm are biorthogonal, i.e.,
(p̃i , Apj) = (r̃i , rj) = 0 for i 6= j.

I We have ri ∈ Ki(A, r0) and r̃i ∈ K(AT , r̃0)

Lecture 11 Slide 35

Unsymmetric problems II
I BiCG is very unstable and additionally needs the transposed matrix

vector product, it is seldomly used in practice
I There is as well a preconditioned variant of BiCG which also needs

the transposed preconditioner.
I Main practical approaches to fix the situation:

I “Conjugate gradients squared” (CGS, Sonneveld, 1989): Replace
multiplication by AT in BICG with multiplication by A, residual
polynomial pCGS = p2

BICG .
I “Stabilize” BiCG → BiCGstab (H. Van der Vorst, 1992), BiCGstab(l)

(Sleijpen/Fokkema 1993)
I Error minimization in Krylov subspace → “Generalized Minimum

Residual” (GMRES, Saad/Schulz, 1986)
I Both CGS and BiCGstab can show erratic convergence behavior ⇒

always try to stop iteration after residual check
I For GMRES one has to keep the full Krylov subspace, which is not

possible in practice ⇒ restart strategy.
I As in the case of CG, always combine preconditioners with Krylov

subspace methods
I From my experience, BiCGstab is a good first guess

Lecture 11 Slide 36

Krylov subspace methods in Julia

I Several packages available
I Seemingly most well maintained: IterativeSolvers.jl

I CG, GMRES, BiCGStab and others.
I We will explore these later when we go to 2D examples.

https://github.com/JuliaMath/IterativeSolvers.jl

