Scientific Computing WS 2019/2020

Lecture 11

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Recap

Regular splittings

- $A=M-N$ is a regular splitting if
- M is nonsingular
- M^{-1}, N are nonnegative, i.e. have nonnegative entries
- Regard the iteration $u_{k+1}=M^{-1} N u_{k}+M^{-1} b$.
- $B=I-M^{-1} A=M^{-1} N$ is a nonnegative matrix.

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, $A^{-1} \geq 0$, and $A=M-N$ is a regular splitting. Then $\rho\left(M^{-1} N\right)<1$.
Proof: Let $B=M^{-1} N$. Then $A=M(I-B)$, therefore $I-B$ is nonsingular.

In addition

$$
A^{-1} N=\left(M\left(I-M^{-1} N\right)\right)^{-1} N=\left(I-M^{-1} N\right)^{-1} M^{-1} N=(I-B)^{-1} B
$$

By Perron-Frobenius (for general matrices), $\rho(B)$ is an eigenvalue with a nonnegative eigenvector \mathbf{x}. Thus,

$$
0 \leq A^{-1} N \mathbf{x}=\frac{\rho(B)}{1-\rho(B)} \mathbf{x}
$$

Therefore $0 \leq \rho(B) \leq 1$.
Assume that $\rho(B)=1$. Then there exists $\mathbf{x} \neq \mathbf{0}$ such that $B \mathbf{x}=\mathbf{x}$.
Consequently, $(I-B) \mathbf{x}=\mathbf{0}$, contradicting the nonsingularity of $I-B$.
Therefore, $\rho(B)<1$.

M-Matrix definition

Definition Let A be an $n \times n$ real matrix. A is called M-Matrix if
(i) $a_{i j} \leq 0$ for $i \neq j$
(ii) A is nonsingular
(iii) $A^{-1} \geq 0$

Corollary: If A is an M-Matrix, then $A^{-1}>0 \Leftrightarrow A$ is irreducible.
Proof: See Varga.

Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that $a_{i i}>0$ and $a_{i j} \leq 0$ for $i \neq j$. Then A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show $A^{-1} \geq 0$.
Let $B=I-D^{-1} A$. Then $\rho(B)<1$, therefore $I-B$ is nonsingular.

- We have for $k>0$:

$$
\begin{aligned}
I-B^{k+1} & =(I-B)\left(I+B+B^{2}+\cdots+B^{k}\right) \\
(I-B)^{-1}\left(I-B^{k+1}\right) & =\left(I+B+B^{2}+\cdots+B^{k}\right)
\end{aligned}
$$

The left hand side for $k \rightarrow \infty$ converges to $(I-B)^{-1}$, therefore

$$
(I-B)^{-1}=\sum_{k=0}^{\infty} B^{k}
$$

As $B \geq 0$, we have $(I-B)^{-1}=A^{-1} D \geq 0$. As $D>0$ we must have $A^{-1} \geq 0$.

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

- fix a predefined zero pattern
- apply the standard LU factorization method, but calculate only those elements, which do not correspond to the given zero pattern
- Result: incomplete LU factors L, U, remainder R :

$$
A=L U-R
$$

- Problem: with complete LU factorization procedure, for any nonsingular matrix, the method is stable, i.e. zero pivots never occur. Is this true for the incomplete LU Factorization as well ?

Intermediate Summary

- Given some matrix, we now have some nice recipies to establish nonsingularity and iterative method convergence:
- Check if the matrix is irreducible. This is mostly the case for elliptic and parabolic PDEs.
- Check if the matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.
- Check if main diagonal entries are positive and off-diagonal entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and elementary iterative methods converge.
- These critera do not depend on the symmetry of the matrix!

Example: 1D finite difference matrix:

$$
A u=\left(\begin{array}{cccccc}
\alpha+\frac{1}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{1}{h}+\alpha
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{N-2} \\
u_{N-1} \\
u_{N}
\end{array}\right)=f=\left(\begin{array}{c}
\alpha v_{1} \\
h f_{2} \\
h f_{3} \\
\vdots \\
h f_{N-2} \\
h f_{N-1} \\
\alpha v_{n}
\end{array}\right)
$$

- idd
- positive main diagonal entries, nonpositive off-diagonal entries
$\Rightarrow A$ is nonsingular, has the M -property, and we can e.g. apply the Jacobi and Gauss-Seidel iterative method to solve it (ok, in 1D we already know this is a bad idea ...).
\Rightarrow for $f \geq 0$ and $v \geq 0$ it follows that $u \geq 0$.
\equiv heating and positive environment temperatures cannot lead to negative temperatures in the interior.

Iterative solver complexity I

- Solve linear system iteratively until $\left\|e_{k}\right\|=\left\|\left(I-M^{-1} A\right)^{k} e_{0}\right\| \leq \epsilon$

$$
\begin{aligned}
\rho^{k} e_{0} & \leq \epsilon \\
k \ln \rho & <\ln \epsilon-\ln e_{0} \\
k \geq k_{\rho} & =\left\lceil\frac{\ln e_{0}-\ln \epsilon}{\ln \rho}\right\rceil
\end{aligned}
$$

- \Rightarrow we need at least k_{ρ} iteration steps to reach accuracy ϵ
- Optimal iterative solver complexity - assume:
- $\rho<\rho_{0}<1$ independent of h resp. N
- A sparse ($A \cdot u$ has complexity $O(N)$)
- Solution of $M v=r$ has complexity $O(N)$.
\Rightarrow Number of iteration steps k_{ρ} independent of N
\Rightarrow Overall complexity $O(N)$

Iterative solver complexity II

- Assume
- $\rho=1-h^{\delta} \Rightarrow \ln \rho \approx-h^{\delta} \rightarrow k_{\rho}=O\left(h^{-\delta}\right)$
- d: space dimension $\Rightarrow h \approx N^{-\frac{1}{d}} \Rightarrow k_{\rho}=O\left(N^{\frac{\delta}{d}}\right)$
- $O(N)$ complexity of one iteration step (e.g. Jacobi, Gauss-Seidel)
\Rightarrow Overall complexity $O\left(N^{1+\frac{\delta}{d}}\right)=O\left(N^{\frac{d+\delta}{d}}\right)$
- Jacobi: $\delta=2$
- Hypothetical "Improved iterative solver" with $\delta=1$?
- Overview on complexity estimates

$$
\begin{array}{ccccc}
\operatorname{dim} & \rho=1-O\left(h^{2}\right) & \rho=1-O(h) & \text { LU fact. } & \text { LU solve } \\
\hline 1 & O\left(N^{3}\right) & O\left(N^{2}\right) & O(N) & O(N) \\
2 & O\left(N^{2}\right) & O\left(N^{\frac{3}{2}}\right) & O\left(N^{\frac{3}{2}}\right) & O(N \log N) \\
3 & O\left(N^{\frac{5}{3}}\right) & O\left(N^{\frac{4}{3}}\right) & O\left(N^{2}\right) & O\left(N^{\frac{4}{3}}\right)
\end{array}
$$

Solver complexity scaling for 1D problems

- Direct solvers significantly better than iterative ones

Solver complexity scaling for 2D problems

- Direct solvers better than simple iterative solvers (Jacobi etc.)
- Direct solves on par with improved iterative solvers

Solver complexity scaling for 3D problems

- LU factorization is expensive
- LU solve on par with improved iterative solvers

What could be done ?

- Find optimal iterative solver with $O(N)$ complexity
- Find "improved preconditioner" with $\kappa\left(M^{-1} A\right)=O\left(h^{-1}\right) \Rightarrow \delta=1$
- Find "improved iterative scheme": with $\rho=\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$:

For Jacobi, we had $\kappa=X^{2}-1$ where $X=\frac{2(1+2 h)}{\pi h}=O\left(h^{-1}\right)$.

$$
\begin{aligned}
\rho & =1+\frac{\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1}-1 \\
& =1+\frac{\sqrt{X^{2}-1}-1-\sqrt{X^{2}-1}-1}{\sqrt{X^{2}-1}+1} \\
& =1-\frac{1}{\sqrt{X^{2}-1}+1} \\
& =1-\frac{1}{X\left(\sqrt{1-\frac{1}{X^{2}}}+\frac{1}{X}\right)} \\
& =1-O(h)
\end{aligned}
$$

$\Rightarrow \delta=1$

Krylov subspace methods

Generalization of iteration schemes

- So far we considered simple iterative schemes, perhaps with preconditioners
- Here, we introduce Krylov subspace methods which indeed in many cases yield faster convergence than simple iterative schemes
- Material after
- M. Gutknecht A Brief Introduction to Krylov Space Methods for Solving Linear Systems
- J. Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain"
- Extended reading: J.Liesen, Z. Strakoš: Krylov Subspace Methods: Principles and Analysis
- Extended coverage of the topic available at TU: Prof. Jörg Liesen, Prof. Reinhard Nabben are active researchers in the field.

Simple iterative method I

Solve $A u=b$, assume exact solution \hat{u}.

$$
u_{k+1}=u_{k}-\alpha\left(A u_{k}-b\right) \quad(k=0,1 \ldots)
$$

1. Choose initial value u_{0}, tolerance ε, set $k=0$
2. Calculate residuum $r_{k}=A u_{k}-b$
3. Test convergence: if $\left\|r_{k}\right\|<\varepsilon$ set $u=u_{k}$, finish
4. Update solution: $u_{k+1}=u_{k}-\alpha r_{k}$, set $k=k+1$, repeat with step 2 .

Simple iterative method II

- From step 4:

$$
\begin{aligned}
A u_{k+1} & =A u_{k}-\alpha A r_{k} \\
A u_{k+1}-b & =A u_{k}-b-\alpha A r_{k} \\
r_{k+1} & =r_{k}-\alpha A r_{k}
\end{aligned}
$$

- Therefore $r_{k}=p_{k}(A) r_{0} \in \operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k} r_{0}\right\}$ where $p(\xi)=(1-\alpha \xi)^{k}$ is a polynomial of degre k
- For the iterate u_{k}, we have

$$
\begin{aligned}
u_{k} & =u_{k-1}-\alpha r_{k-1}=u_{k-2}-\alpha r_{k-2}-\alpha r_{k-1} \\
& =u_{0}-\alpha\left(r_{0}+r_{1}+\cdots+r_{k-1}\right) \\
& =u_{0}+q_{k-1}(A) r_{0}
\end{aligned}
$$

where q_{k-1} is a polynomial of degree $n-1$.

- From $r_{k}=A u_{k}-b=A u_{0}-b+A q_{k-1}(A) r_{0}=\left(I+A q_{k-1}(A)\right) r_{0}$ one obtains $p_{k}(\xi)=1+\xi q_{k}(\xi)$.
- Consequently, $x_{k} \in x_{0}+\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{k-1} r_{0}\right\}$

The Krylov subspace

Definition: Let $A \in \mathbb{R}^{N \times N}$ be nonsingular, let $0 \neq y \in \mathbb{R}^{n}$. The k-th Krylov subspace generated from A by y is defined as $\mathcal{K}_{k}(A, y)=\operatorname{span}\left\{y, A y, \ldots, A^{k-1} y\right\}$.

- For the simple iteration,

$$
\begin{aligned}
u_{k} & =u_{0}+q_{k-1}(A) r_{0} \in \mathcal{K}_{k}\left(A, r_{0}\right) \\
r_{k} & =p_{k}(A) r_{0} \in \mathcal{K}_{k+1}\left(A, r_{0}\right) \\
p_{k}(\xi) & =1+\xi q_{k}(\xi) \\
p_{k}(0) & =1
\end{aligned}
$$

with particular polynomials p, q.

- Are these the best ones ?

Krylov subspace

- $\mathcal{K}_{1} \subseteq \mathcal{K}_{2} \subseteq \cdots \subseteq \mathcal{K}_{k}$
- $\operatorname{dim} \mathcal{K}_{i} \leq \operatorname{dim} \mathcal{K}_{-1}+1$

When does the exact solution lie in \mathcal{K}_{k} ?
Definition: The grade of y is a positive integer $\nu=\nu(y, A)$ such that

$$
\operatorname{dim} \mathcal{K}_{k}(A, y)= \begin{cases}k & \text { if } k \leq \nu \\ \nu & \text { if } k \geq \nu\end{cases}
$$

- $\mathcal{K}_{\nu}(A, y)$ is the smallest A-invariant subspace which contains y.
- $y=\min \left\{k \mid A^{-1} y \in \mathcal{K}_{k}(A, y)\right\}$
- For any inital iterate u_{0} and intial residual $r_{0}=A u_{0}-b$, the exact solution $\hat{u} \in \mathcal{K}_{\nu\left(r_{r}, A\right)}\left(A, r_{0}\right)$ lies in the Krylov subspace corresponding to the grade of r_{0}.

Krylov subspace methods

Definition: Let $A \in \mathbb{R}^{N \times N}$ be nonsingular, let $0 \neq y \in \mathbb{R}^{N}$. An interative method such that

$$
u_{k}=u_{0}+q_{k-1}(A) r_{0} \in \mathcal{K}_{k}\left(A, r_{0}\right)
$$

where q_{k-1} is a polynomial of degree k is called Krylov subspace method.

- For the residuals of the method, we have $r_{k}=p_{k}(A) r_{0} \in \mathcal{K}_{k+1}\left(A, r_{0}\right)$ with $p_{k}(\xi)=1+\xi q_{k}(\xi)$
- Preconditioned form: use the same ansatz for $M^{-1} A x=M^{-1} b$ and define Krylov subspace for $M^{-1} A$

The case of symmetric positive definite matrices

Assume A is spd (symmetric, positive definite)

$$
a(u, v)=(A u, v)=v^{\top} A u=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} v_{i} u_{j}
$$

As A is SPD, for all $u \neq 0$ we have $(A u, u)>0$.
For a given vector b, regard the function

$$
f(u)=\frac{1}{2} a(u, u)-b^{T} u
$$

What is the minimizer of f ?

$$
f^{\prime}(u)=A u-b=0
$$

- Solution of SPD system \equiv minimization of f.

Method of steepest descent

- Given some vector u_{i}, look for a new iterate u_{i+1}.
- The direction of steepest descend is given by $-f^{\prime}\left(u_{i}\right)$.
- So look for u_{i+1} in the direction of $-f^{\prime}\left(u_{i}\right)=r_{i}=b-A u_{i}$ such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha r_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha r_{i}\right)=f^{\prime}\left(u_{i}+\alpha r_{i}\right) \cdot r_{i} \\
& =\left(b-A\left(u_{i}+\alpha r_{i}\right), r_{i}\right) \\
& =\left(b-A u_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
& =\left(r_{i}, r_{i}\right)-\alpha\left(A r_{i}, r_{i}\right) \\
\alpha & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)}
\end{aligned}
$$

Method of steepest descent: iteration scheme

$$
\begin{aligned}
r_{i} & =b-A u_{i} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A r_{i}, r_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} r_{i}
\end{aligned}
$$

Let \hat{u} the exact solution. Define $e_{i}=u_{i}-\hat{u}$, then $r_{i}=-A e_{i}$
Let $\|u\|_{A}=(A u, u)^{\frac{1}{2}}$ be the energy norm wrt. A.
Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq\left(\frac{\kappa-1}{\kappa+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\text {min }}(A)}$ is the spectral condition number.

Method of steepest descent: advantages

- Simple Richardson iteration $u_{k+1}=u_{k}-\alpha\left(A u_{k}-f\right)$ needs good eigenvalue estimate to be optimal with $\alpha=\frac{2}{\lambda_{\text {max }}+\lambda_{\text {min }}}$
- In this case, asymptotic convergence rate is $\rho=\frac{\kappa-1}{\kappa+1}$
- Steepest descent has the same rate without need for spectral estimate

Conjugate directions

For steepest descent, there is no guarantee that a search direction $d_{i}=r_{i}=-A e_{i}$ is not used several times. If all search directions would be orthogonal, or, indeed, A-orthogonal, one could control this situation.

So, let $d_{0}, d_{1} \ldots d_{n-1}$ be a series of A-orthogonal (or conjugate) search directions, i.e. $\left(A d_{i}, d_{j}\right)=0, i \neq j$.

- Look for u_{i+1} in the direction of d_{i} such that it minimizes f in this direction, i.e. set $u_{i+1}=u_{i}+\alpha_{i} d_{i}$ with α choosen from

$$
\begin{aligned}
0 & =\frac{d}{d \alpha} f\left(u_{i}+\alpha d_{i}\right)=f^{\prime}\left(u_{i}+\alpha d_{i}\right) \cdot d_{i} \\
& =\left(b-A\left(u_{i}+\alpha d_{i}\right), d_{i}\right) \\
& =\left(b-A u_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
& =\left(r_{i}, d_{i}\right)-\alpha\left(A d_{i}, d_{i}\right) \\
\alpha_{i} & =\frac{\left(r_{i}, d_{i}\right)}{\left(A d_{i}, d_{i}\right)}
\end{aligned}
$$

- $u_{i+1} \in \operatorname{span}\left\{d_{0} \ldots d_{i}\right\}$

Conjugate gradients

- Choose $d_{0} \ldots d_{i}$ such that $\operatorname{span}\left\{d_{0} \ldots d_{i}\right\}=\mathcal{K}_{i}\left(A, r_{0}\right)$.
- Orthogonalize by Gram-Schmidt
- Result: short recursions!
- $u_{i} \in u_{0}+\mathcal{K}_{i}\left(A, r_{0}\right)$ minimizes the energy norm of the error e_{i} : $\left\|e_{i}\right\|_{A}=\left(A e_{i}, e_{i}\right)$.
- $r_{i+1} \perp \mathcal{K}_{i}\left(A, r_{0}\right)$
- There are at most N directions, so the method yields the exact solution after at most N iteration steps.

Conjugate gradients - the algorithm

Given initial value u_{0}, spd matrix A , right hand side b.

$$
\begin{aligned}
d_{0} & =r_{0}=b-A u_{0} \\
\alpha_{i} & =\frac{\left(r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

At the i-th step, the algorithm yields the element from $e_{0}+\mathcal{K}_{i}$ with the minimum energy error.

Theorem The convergence rate of the method is

$$
\left\|e_{i}\right\|_{A} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{A}
$$

where $\kappa=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)}$ is the spectral condition number of A.

Preconditioning

Let M be spd, and spectrally equivalent to A, and assume that $\kappa\left(M^{-1} A\right) \ll \kappa(A)$.
Let E be such that $M=E E^{T}$, e.g. its Cholesky factorization. Then, $\sigma\left(M^{-1} A\right)=\sigma\left(E^{-1} A E^{-T}\right):$
Assume $M^{-1} A u=\lambda u$. We have

$$
\left(E^{-1} A E^{-T}\right)\left(E^{T} u\right)=\left(E^{T} E^{-T}\right) E^{-1} A u=E^{T} M^{-1} A u=\lambda E^{T} u
$$

$\Leftrightarrow E^{T} u$ is an eigenvector of $E^{-1} A E^{-T}$ with eigenvalue λ.

Preconditioned CG I

Now we can use the CG algorithm for the preconditioned system

$$
E^{-1} A E^{-T} \tilde{x}=E^{-1} b
$$

with $\tilde{u}=E^{\top} u$

$$
\begin{aligned}
\tilde{d}_{0} & =\tilde{r}_{0}=E^{-1} b-E^{-1} A E^{-T} u_{0} \\
\alpha_{i} & =\frac{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)}{\left(E^{-1} A E^{-T} \tilde{d}_{i}, \tilde{d}_{i}\right)} \\
\tilde{u}_{i+1} & =\tilde{u}_{i}+\alpha_{i} \tilde{d}_{i} \\
\tilde{r}_{i+1} & =\tilde{r}_{i}-\alpha_{i} E^{-1} A E^{-T} \tilde{d}_{i} \\
\beta_{i+1} & =\frac{\left(\tilde{r}_{i+1}, \tilde{r}_{i+1}\right)}{\left(\tilde{r}_{i}, \tilde{r}_{i}\right)} \\
\tilde{d}_{i+1} & =\tilde{r}_{i+1}+\beta_{i+1} \tilde{d}_{i}
\end{aligned}
$$

Not very practical as we need E

Preconditioned CG II

Assume $\tilde{r}_{i}=E^{-1} r_{i}, \tilde{d}_{i}=E^{T} d_{i}$, we get the equivalent algorithm

$$
\begin{aligned}
r_{0} & =b-A u_{0} \\
d_{0} & =M^{-1} r_{0} \\
\alpha_{i} & =\frac{\left(M^{-1} r_{i}, r_{i}\right)}{\left(A d_{i}, d_{i}\right)} \\
u_{i+1} & =u_{i}+\alpha_{i} d_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A d_{i} \\
\beta_{i+1} & =\frac{\left(M^{-1} r_{i+1}, r_{i+1}\right)}{\left(r_{i}, r_{i}\right)} \\
d_{i+1} & =M^{-1} r_{i+1}+\beta_{i+1} d_{i}
\end{aligned}
$$

It relies on the solution of the preconditioning system, the calculation of the matrix vector product and the calculation of the scalar product.

The convergence rate of the method is

$$
\left\|e_{i}\right\|_{E^{-1} A E^{-T}} \leq 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{i}\left\|e_{0}\right\|_{E^{-1} A E^{-T}}
$$

where $\kappa=\frac{\gamma_{\max }}{\gamma_{\min }}$ comes from $\gamma_{\min }(M u, u) \leq(A u, u) \leq \gamma_{\max }(M u, u)$.

Issues and consequences

- Usually we stop the iteration when the residual r becomes small. However during the iteration, floating point errors occur which distort the calculations and lead to the fact that the accumulated residuals

$$
r_{i+1}=r_{i}-\alpha_{i} A d_{i}
$$

give a much more optimistic picture on the state of the iteration than the real residual

$$
r_{i+1}=b-A u_{i+1}
$$

- The convergence rate estimate in terms of $\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}$ indeed provides a qualitatively better complexity estimate for the solution algorithm
- Always consider CG when solving symmetric positive definite linear systems iteratively

Unsymmetric problems

- By definition, CG is only applicable to symmetric problems.
- The biconjugate gradient (BICG) method provides a generalization:

Choose initial guess x_{0}, perform

$$
\begin{array}{rlrl}
r_{0} & =b-A x_{0} & \tilde{r}_{0} \neq 0 \\
p_{0} & =r_{0} & \tilde{p}_{0}=\tilde{r}_{0} \\
\alpha_{i} & =\frac{\left(\tilde{r}_{i}, r_{i}\right)}{\left(\tilde{p}_{i}, A p_{i}\right)} & & \\
x_{i+1} & =x_{i}+\alpha_{i} p_{i} & \tilde{x}_{i+1}=\tilde{x}_{i}+\alpha_{i} \tilde{p}_{i} \\
r_{i+1} & =r_{i}-\alpha_{i} A p_{i} & \tilde{r}_{i+1}=\tilde{r}_{i}-\alpha_{i} \tilde{p}_{i} A^{T} \\
\beta_{i} & =\frac{\left(\tilde{r}_{i+1}, r_{i+1}\right)}{\left(\tilde{r}_{i}, r_{i}\right)} & & \\
p_{i+1} & =r_{i+1}+\beta_{i} p_{i} & \tilde{p}_{i+1}=\tilde{r}_{i+1}+\beta_{i} \tilde{p}_{i}
\end{array}
$$

- The two sequences produced by the algorithm are biorthogonal, i.e., $\left(\tilde{p}_{i}, A p_{j}\right)=\left(\tilde{r}_{i}, r_{j}\right)=0$ for $i \neq j$.
\rightarrow We have $r_{i} \in \mathcal{K}_{i}\left(A, r_{0}\right)$ and $\tilde{r}_{i} \in \mathcal{K}\left(A^{T}, \tilde{r}_{0}\right)$

Unsymmetric problems II

- BiCG is very unstable and additionally needs the transposed matrix vector product, it is seldomly used in practice
- There is as well a preconditioned variant of BiCG which also needs the transposed preconditioner.
- Main practical approaches to fix the situation:
- "Conjugate gradients squared" (CGS, Sonneveld, 1989): Replace multiplication by A^{T} in BICG with multiplication by A, residual polynomial $p_{\text {CGS }}=p_{\text {BICG }}^{2}$.
- "Stabilize" BiCG \rightarrow BiCGstab (H. Van der Vorst, 1992), BiCGstab(I) (Sleijpen/Fokkema 1993)
- Error minimization in Krylov subspace \rightarrow "Generalized Minimum Residual" (GMRES, Saad/Schulz, 1986)
- Both CGS and BiCGstab can show erratic convergence behavior \Rightarrow always try to stop iteration after residual check
- For GMRES one has to keep the full Krylov subspace, which is not possible in practice \Rightarrow restart strategy.
- As in the case of CG, always combine preconditioners with Krylov subspace methods
- From my experience, BiCGstab is a good first guess

Krylov subspace methods in Julia

- Several packages available
- Seemingly most well maintained: IterativeSolvers.j|
- CG, GMRES, BiCGStab and others.
- We will explore these later when we go to 2D examples.

