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The Gershgorin Circle Theorem (Semyon Gershgorin,1931)

(everywhere, we assume n ≥ 2)

Theorem (Varga, Th. 1.11) Let A be an n × n (real or complex) matrix.
Let Λi be the sum of the absolute values of the i-th rowoff-diagonal entries:

Λi =
∑

j=1...n
j 6=i

|aij |

If λ is an eigenvalue of A, then there exists r , 1 ≤ r ≤ n such that λ lies
on the disk defined by the circle of radius Λr around arr :

|λ − arr | ≤ Λr .
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Gershgorin Circle Corollaries
Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

λ ∈
⋃

i=1...n
{µ ∈ V : |µ − aii | ≤ Λi}

Corollary: The Gershgorin circle theorem allows to estimate the spectral
radius ρ(A):

ρ(A) ≤ max
i=1...n

n∑
j=1

|aij | = ||A||∞,

ρ(A) ≤ max
j=1...n

n∑
i=1

|aij | = ||A||1.

Proof

|µ − aii | ≤ Λi ⇒ |µ| ≤ Λi + |aii | =
n∑

j=1
|aij |

Furthermore, σ(A) = σ(AT ). �
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Gershgorin circles: heat example I
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B = (I − D−1A) =
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We have bii = 0, Λi =

{
1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1
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Gershgorin circles: heat example II
Let n=11, h=0.1:

λi = cos
(

ihπ

1 + 2h

)
(i = 1 . . . n)
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⇒ the Gershgorin circle theorem is too pessimistic, we need a better
theory . . .
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Permutation matrices

I Permutation matrices are matrices which have exactly one non-zero
entry in each row and each column which has value 1.

I There is a one-to-one correspondence permutations π of the the
numbers 1 . . . n and n × n permutation matrices P = (pij) such that

pij =
{

1, π(i) = j
0, else

I Permutation matrices are orthogonal, and we have P−1 = PT

I A → PA permutes the rows of A
I A → APT permutes the columns of A
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Weighted directed graph representation of matrices
Define a directed graph from the
nonzero entries of a matrix A = (aik):

I Nodes: N = {Ni}i=1...n
I Directed edges:

E = {
−−−→NkNl |akl 6= 0}

I Matrix entries ≡ weights of
directed edges

A =


1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.
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I 1:1 equivalence between matrices and weighted directed graphs
I Convenient e.g. for sparse matrices
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Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

PAPT =
(

A11 A12
0 A22

)

A is irreducible if it is not reducible.

Theorem (Varga, Th. 1.17): A is irreducible ⇔ the matrix graph is
connected, i.e. for each ordered pair (Ni , Nj) there is a path consisting of
directed edges, connecting them.

Equivalently, for each i , j there is a sequence of consecutive nonzero matrix
entries aik1 , ak1k2 , ak2k3 . . . , akr−1kr akr j .

�
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Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue λ is a boundary point of the union of all the disks

λ ∈ ∂
⋃

i=1...n
{µ ∈ C : |µ − aii | ≤ Λi}

Then, all n Gershgorin circles pass through λ, i.e. for i = 1 . . . n,

|λ − aii | = Λi
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Consequences for heat example from Taussky theorem

I B = I − D−1A

I We had bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1

I Assume |λi | = 1. Then λi lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both
circles with radius 1

2 and 1 around 0.
I Contradiction ⇒ |λi | < 1, ρ(B) < 1!
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Diagonally dominant matrices
Definition Let A = (aij) be an n × n matrix.
I A is diagonally dominant if

(i) for i = 1 . . . n, |aii | ≥
∑

j=1...n
j 6=i

|aij |

I A is strictly diagonally dominant (sdd) if

(i) for i = 1 . . . n, |aii | >
∑

j=1...n
j 6=i

|aij |

I A is irreducibly diagonally dominant (idd) if
(i) A is irreducible

(ii) A is diagonally dominant –
for i = 1 . . . n, |aii | ≥

∑
j=1...n

j 6=i

|aij |

(iii) for at least one r , 1 ≤ r ≤ n, |arr | >
∑

j=1...n
j 6=r

|arj |
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A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.

If in addition, aii > 0 is real for i = 1 . . . n, then all real parts of the
eigenvalues of A are positive:

Reλi > 0, i = 1 . . . n
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Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.

�

Lecture 10 Slide 13



Lecture 9 Slide 31

Perron-Frobenius Theorem (1912/1907)
Definition: A real n-vector x is
I positive (x > 0) if all entries of x are positive
I nonnegative (x ≥ 0) if all entries of x are nonnegative

Definition: A real n × n matrix A is
I positive (A > 0) if all entries of A are positive
I nonnegative (A ≥ 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A ≥ 0 be an irreducible n × n matrix.
Then

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A).
(ii) To ρ(A) there corresponds a positive eigenvector x > 0.
(iii) ρ(A) increases when any entry of A increases.
(iv) ρ(A) is a simple eigenvalue of A.

Proof: See Varga. �
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Perron-Frobenius for general nonnegative matrices
Each n × n matrix can be brought to the normal form

PAPT =


R11 R12 . . . R1m
0 R22 . . . R2m
...

. . .
0 0 . . . Rmm


where for j = 1 . . . m, either Rjj irreducible or Rjj = (0).

Theorem(Varga, Th. 2.20) Let A ≥ 0 be an n × n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius ρ(A). This
eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular

(ii) To ρ(A) there corresponds a nonzero eigenvector x ≥ 0.
(iii) ρ(A) does not decrease when any entry of A increases.

Proof: See Varga; σ(A) =
m⋃

j=1
σ(Rjj), apply irreducible Perron-Frobenius

to Rjj . �
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Theorem on Jacobi matrix
Theorem: Let A be sdd or idd, and D its diagonal. Then

ρ(|I − D−1A|) < 1

Proof: Let B = (bij) = I − D−1A. Then

bij =
{

0, i = j
− aij

aii
, i 6= j

If A is sdd, then for i = 1 . . . n,

∑
j=1...n

|bij | =
∑

j=1...n
j 6=i

|aij

aii
| = Λi

|aii |
< 1

Therefore, ρ(|B|) < 1.
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Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that aii > 0
and aij ≤ 0 for i 6= j. Then ρ(I − D−1A) < 1, i.e. the Jacobi method
converges.

Proof In this case, |B| = B �.
I Here, we made assumptions on the sign pattern and the diagonal

dominance of the matrix. No additional information on the nonzero
pattern or the symmetry has been used.

I Does this generalize to other iterative methods ?
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Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I B = I − M−1A = M−1N is a nonnegative matrix.
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Convergence theorem for regular splitting
Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a
regular splitting. Then ρ(M−1N) < 1.

Proof: Let B = M−1N. Then A = M(I − B), therefore I − B is
nonsingular.

In addition

A−1N = (M(I − M−1N))−1N = (I − M−1N)−1M−1N = (I − B)−1B

By Perron-Frobenius (for general matrices), ρ(B) is an eigenvalue with a
nonnegative eigenvector x. Thus,

0 ≤ A−1Nx = ρ(B)
1 − ρ(B)x

Therefore 0 ≤ ρ(B) ≤ 1.
Assume that ρ(B) = 1. Then there exists x 6= 0 such that Bx = x.
Consequently, (I − B)x = 0, contradicting the nonsingularity of I − B.
Therefore, ρ(B) < 1. �
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Convergence rate comparison

Corollary: ρ(M−1N) = τ
1+τ where τ = ρ(A−1N).

Proof: Rearrange τ = ρ(B)
1−ρ(B) �

Corollary: Let A−1 ≥ 0, A = M1 − N1 and A = M2 − N2 be regular
splittings.

If N2 ≥ N1, then 1 > ρ(M−1
2 N2) ≥ ρ(M−1

1 N1).

Proof: τ2 = ρ(A−1N2) ≥ ρ(A−1N1) = τ1

But τ
1+τ is strictly increasing. �
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Convergence rate comparison II
I Let A−1 ≥ 0, A = D − E − F , D > 0 diagonal, E , F ≥ 0 upper resp.

lower triangular parts.
I Jacobi: MJ = D, NJ = E + F . M−1

J > 0 ⇒ regular splitting

I Gauss-Seidel: MGS = D − E , NGS = F ≥ 0. Show M−1
GS ≥ 0:

MGS =


d11 −e12 −e13 . . . −e1n

d22 −e23 . . . −e2n
. . . . . .

...
dn−1,n−1 −en−1,n

. . . dnn


Elimination steps for MGSv = r :

vn = rn
dnn

, vn−1 = rn + en−1,nvn
dn−1,n−1

. . .

All coefficients are nonnegative ⇒ MGS − NGS : regular splitting
I NGS ≤ NJ ⇒ ρ(M−1

GS NGS) ≤ ρ(M−1
J NJ)
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M-Matrix definition

Definition Let A be an n × n real matrix. A is called M-Matrix if

(i) aij ≤ 0 for i 6= j

(ii) A is nonsingular

(iii) A−1 ≥ 0

Corollary: If A is an M-Matrix, then A−1 > 0 ⇔ A is irreducible.

Proof: See Varga. �



Lecture 10 Slide 23

M-Matrix main diagonal
Theorem: If A is an M-matrix, than is diagonal DA > 0 is positive.

Proof: Let C = A−1 ≥ 0. The AC = I and (AC)ii = 1.

n∑
k=1

aikcki = 1

aiicii = 1 −
n∑

k=1,k 6=i
aikcki ≥ 1

The last inequality is due to cki ≥ 0 and aik < 0 for k 6= i . As aiicii ≥ 1,
neither factor can be 0. So cii > 0 and aii > 0.

Theorem: (Saad, Th. 1.31) Assume

(i) aij ≤ 0 for i 6= j

(ii) aii > 0

Then A is an M-Matrix if and only if ρ(I − D−1A) < 1.

Proof: See Saad. �
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Main practical M-Matrix criterion
Corollary: Let A be sdd or idd. Assume that aii > 0 and aij ≤ 0 for i 6= j.
Then A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show A−1 ≥ 0.
I Let B = I − D−1A. Then ρ(B) < 1, therefore I − B is nonsingular.
I We have for k > 0:

I − Bk+1 = (I − B)(I + B + B2 + · · · + Bk)
(I − B)−1(I − Bk+1) = (I + B + B2 + · · · + Bk)

The left hand side for k → ∞ converges to (I − B)−1, therefore

(I − B)−1 =
∞∑

k=0
Bk

As B ≥ 0, we have (I − B)−1 = A−1D ≥ 0. As D > 0 we must have
A−1 ≥ 0. �
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M-Matrix comparison criterion
Theorem(Saad, Th. 1.33): Let A, B n × n matrices such that

(i) A ≤ B

(ii) bij ≤ 0 for i 6= j.

Then, if A is an M-Matrix, so is B.

Proof: From M-property of A and A ≤ B we have 0 < DA ≤ DB . We
have DB − B ≥ 0 and

DA − A ≥ DB − B
I − D−1

A A ≥ D−1
A (DB − B)

≥ D−1
B (DB − B)

≥ I − D−1
B B =: G ≥ 0

Perron-Frobenius ⇒ ρ(G) = ρ(I − D−1
B B) ≤ ρ(I − D−1

A A) < 1
⇒ I − G is nonsingular. From the proof of the M-matrix criterion,
D−1

B B = (I − G)−1 =
∑∞

k=0 Gk ≥ 0. As DB > 0, we get B ≥ 0.

�

Corollary A ≤ MGS ⇒ MGS is an M-Matrix.
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Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):
I fix a predefined zero pattern
I apply the standard LU factorization method, but calculate only those

elements, which do not correspond to the given zero pattern
I Result: incomplete LU factors L, U, remainder R :

A = LU − R

I Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?
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M-Property propagation in Gaussian Elimination

Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix
A1 obtained from the first step of Gaussian elimination is an M-matrix.

Proof: One has a1
ij = aij − ai1a1j

a11
,

aij , ai1, a1j ≤ 0, a11 > 0
⇒ a1

ij ≤ 0 for i 6= j

A = L1A1 with L1 =


1 0 . . . 0

−a12
a11

1 . . . 0
...

. . . 0
−a1n
a11

0 . . . 1

 nonsingular, nonnegative

⇒ A1 nonsingular

Let e1 . . . en be the unit vectors. Then A−1
1 e1 = 1

a11 e1 ≥ 0. For j > 1,
A−1

1 ej = A−1L−1ej = A−1ej ≥ 0.
⇒ A−1

1 ≥ 0

�
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Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to
compute the incomplete LU factorization with a given nonzero pattern

A = LU − R

is stable. Moreover, A = LU − R is a regular splitting.
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Stability of ILU decomposition II

Proof

Let Ã1 = A1 + R1 = L1A + R1 where R1 is a nonnegative matrix which
occurs from dropping some off diagonal entries from A1. Thus, Ã1 ≥ A1
and Ã1 is an M-matrix. We can repeat this recursively

Ãk = Ak + Rk = LkAk−1 + Rk

= LkLk−1Ak−2 + LkRk−1 + Rk

= LkLk−1 · . . . · L1A + LkLk−1 · . . . · L2R1 + · · · + Rk

Let L = (Ln−1 · . . . · L1)−1, U = Ãn−1. Then U = L−1A + S with

S = Ln−1Ln−2· . . . ·L2R1+· · ·+Rn−1 = Ln−1Ln−2· . . . ·L2(R1+R2+. . . Rn−1)

Let R = R1 + R2 + . . . Rn−1, then A = LU − R where U−1L−1, R are
nonnegative.

�
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ILU(0)
I Special case of ILU: ignore any fill-in.
I Representation:

M = (D̃ − E)D̃−1(D̃ − F )

I D̃ is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

I Setup:

for i=1:n
d[i]=a[i,i]

end

for i=1:n
d[i]=1.0/d[i]
for j=i+1:n

d[j]=d[j]-a[i,j]*d[i]*a[j,i]
end

end



Lecture 10 Slide 31

ILU(0)

Solve Mu = v

for i=1:n
x=0.0
for j=1:i-1

x=x+a[i,j]*u[j]
u[i]=d[i]*(v[i]-x)

end
end
for i=n:-1:1

x=0.0
for j=i+1:n

x=x+a[i,j]*u[j]
u[i]=u[i]-d[i]*x

end
end
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ILU(0)

I Generally better convergence properties than Jacobi, Gauss-Seidel
I One can develop block variants
I Alternatives:

I ILUM: (“modified”): add ignored off-diagonal entries to D̃
I ILUT: zero pattern calculated dynamically based on drop tolerance

I Dependence on ordering
I Can be parallelized using graph coloring
I Not much theory: experiment for particular systems
I I recommend it as the default initial guess for a sensible preconditioner
I Incomplete Cholesky: symmetric variant of ILU
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Intermediate Summary

I Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

I Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

I Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

I Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.

I These critera do not depend on the symmetry of the matrix!
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Example: 1D finite difference matrix:

Au =



α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α





u1
u2
u3
...

uN−2
uN−1
uN


= f =



αv1
hf2
hf3
...

hfN−2
hfN−1
αvn


I idd
I positive main diagonal entries, nonpositive off-diagonal entries

⇒ A is nonsingular, has the M-property, and we can e.g. apply the Jacobi
and Gauss-Seidel iterative method to solve it (ok, in 1D we already know
this is a bad idea . . . ).

⇒ for f ≥ 0 and v ≥ 0 it follows that u ≥ 0.
≡ heating and positive environment temperatures cannot lead to negative
temperatures in the interior.


