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The Gershgorin Circle Theorem (Semyon Gershgorin,1931)

(everywhere, we assume n > 2)

Theorem (Varga, Th. 1.11) Let A be an n x n (real or complex) matrix.
Let A; be the sum of the absolute values of the i-th rowoff-diagonal entries:

A= layl
j=1l...n
J#i

If X is an eigenvalue of A, then there exists r, 1 < r < n such that X lies
on the disk defined by the circle of radius A, around a,,:

IA—a,] <A,




Gershgorin Circle Corollaries

Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

M E U {peV:|u—a; <N}

i=l...n

Corollary: The Gershgorin circle theorem allows to estimate the spectral
radius p(A):

n
p(A) < ig}éfnz; a5l = [1Al]oc,
=

A < max 3 Jay] = 1Al
Proof

n
n—ail <N = ul SN+ el = layl
j=1

Furthermore, o(A) = o(AT). d




Gershgorin circles: heat example |
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Gershgorin circles: heat example |l
Let n=11, h=0.1:

ihm .
)\;—cos(m> (i=1...n)

= the Gershgorin circle theorem is too pessimistic, we need a better
theory ...




Permutation matrices

» Permutation matrices are matrices which have exactly one non-zero
entry in each row and each column which has value 1.

» There is a one-to-one correspondence permutations 7 of the the
numbers 1...n and n x n permutation matrices P = (pj;) such that

oy {1, (i) =J

0, else

» Permutation matrices are orthogonal, and we have P71 = PT
> A — PA permutes the rows of A

> A — APT permutes the columns of A




Weighted directed graph representation of matrices

Define a directed graph from the
nonzero entries of a matrix A = (ay): 4

» Nodes: N = {N;}i—1..n

» Directed edges:
11

& = {NiNj|ay # 0} ! 3 5
» Matrix entries = weights of
directed edges 2 @

6
1. 0. O 2. 0. 8
3. 4. 0. 5 0. 10
A=1]6. 0. 7. 8. 9. 9
0. 0. 10. 11. O.
0. 0. 0. 0. 12 12 7

» 1:1 equivalence between matrices and weighted directed graphs

» Convenient e.g. for sparse matrices




Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

A A
T _ 11 12
PAPT = ( 0 A22>

A is irreducible if it is not reducible.

Theorem (Varga, Th. 1.17): Ais irreducible < the matrix graph is
connected, i.e. for each ordered pair (N;, N;) there is a path consisting of
directed edges, connecting them.

Equivalently, for each i, j there is a sequence of consecutive nonzero matrix
entries ik, ak kys koks - - - » Ak, 1k, Ak, j-

O




Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue A is a boundary point of the union of all the disks

A€o U {peC:lu—ai <A}

i=1...n

Then, all n Gershgorin circles pass through A, i.e. fori=1...n,

A —ai| = Ni




Consequences for heat example from Taussky theorem

> B=/—DA
1

> We had b; =0, A; = {2’

) = estimate |\;| <1
1 i=2...n-1

> Assume |\j| = 1. Then ); lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both
circles with radius % and 1 around 0.

> Contradiction = |A\;| < 1, p(B) < 1!




Diagonally dominant matrices
Definition Let A = (a;) be an n X n matrix.
» A is diagonally dominant if
(i) fori=1...n |a;| > Y |a]
j=1...n
A
> A is strictly diagonally dominant (sdd) if
(i) fori=1...n |ai| > Y |a]
Jj=1...n
i
> A s irreducibly diagonally dominant (idd) if
(i) A'is irreducible
(i) Ais diagonally dominant —

fori=1...n lail > > |ay|
j=1l...n
J#i
(iii) for at least one r, 1 < r < n, |an| > Z |ay]|

j=1l...n
i




A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.

If in addition, a; > 0 is real for i = 1...n, then all real parts of the
eigenvalues of A are positive:

Re); >0, i=1...n




Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.




Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector x is

> positive (x > 0) if all entries of x are positive
> nonnegative (x > 0) if all entries of x are nonnegative

Definition: A real n X n matrix A is

> positive (A > 0) if all entries of A are positive
> nonnegative (A > 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A > 0 be an irreducible n x n matrix.
Then

(i) A has a positive real eigenvalue equal to its spectral radius p(A).
(i) To p(A) there corresponds a positive eigenvector x > 0.
(iii) p(A) increases when any entry of A increases.
(iv) p(A) is a simple eigenvalue of A.

Proof: See Varga.




Perron-Frobenius for general nonnegative matrices

Each n x n matrix can be brought to the normal form

Ri Rz ... Rim
PAPT — 0 Ry ... R
0 0 ... Rom

where for j =1...m, either Rj irreducible or R;; = (0).
Theorem(Varga, Th. 2.20) Let A > 0 be an n x n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius p(A). This
eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular

(i) To p(A) there corresponds a nonzero eigenvector x > 0.

(iii) p(A) does not decrease when any entry of A increases.
m
Proof: See Varga; o(A) = U o(Rj), apply irreducible Perron-Frobenius
j=1
to RJJ O




Theorem on Jacobi matrix
Theorem: Let A be sdd or idd, and D its diagonal. Then

p(ll =D A <1

Proof: Let B = (b;) =/ — D'A. Then

_Joo =]
Tl E i#

If Aissdd, thenfori=1...n,

a,-j /\,'

E bij| = E —| = <1
. | U| . |8ii| |3ii|
j=1l...n Jj=1...n

J#i

Therefore, p(|B|) < 1.




Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that a; > 0
and a; < 0 for i # j. Then p(/ — D7A) < 1, i.e. the Jacobi method
converges.

Proof In this case,

B|=B 0.

» Here, we made assumptions on the sign pattern and the diagonal
dominance of the matrix. No additional information on the nonzero
pattern or the symmetry has been used.

» Does this generalize to other iterative methods ?




Regular splittings

» A= M — N is a regular splitting if

» M is nonsingular
> M~ N are nonnegative, i.e. have nonnegative entries

> Regard the iteration w1 = M~ Nu, + M~ 1h.

> B=/— M"'A= M"1Nis a nonnegative matrix.




Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A~1 >0,and A=M — N isa
regular splitting. Then p(M~1N) < 1.

Proof: Let B= M~!N. Then A= M(I/ — B), therefore | — B is
nonsingular.

In addition
ATIN = (M(I = M7TN)IN= (I - MIN)*M~IN = (- B)"'B

By Perron-Frobenius (for general matrices), p(B) is an eigenvalue with a
nonnegative eigenvector x. Thus,

B)
0< A lNx = Lx
1-p(B)

Then there exists x # 0 such that Bx = x.

Therefore 0 < p(B) <
) =
— B) = 0, contradicting the nonsingularity of / — B.
1.

Assume that p(B
Consequently, (/

Therefore, p(B) < O




Convergence rate comparison

Corollary: p(M~'N) = ;== where 7 = p(A~'N).

Proof: Rearrange 7 = 15(:83) O

Corollary: Let A~1 >0, A= M; — Ny and A= M, — N be regular
splittings.

If No > Ny, then 1> p(My1No) > p(M;Ny).
Proof: 7 = p(A7INy) > p(A7INy) =7y

But 7 is strictly increasing.



Convergence rate comparison |l

» Let A1 >0, A=D — E—F, D > 0 diagonal, E, F > 0 upper resp.
lower triangular parts.

> Jacobi: M; =D, N;=E+F. M;' > 0 = regular splitting
» Gauss-Seidel: Mgs = D — E, Ngs = F > 0. Show /\/IES1 > 0:

dii —en —en3 —€1n
dr —ex —eo
Mgs =
dnfl,nfl —€n—1,n
dnn

Elimination steps for Mgsv = r:

I'n rn+ €n—1,nVn
Vp—1 _— ..

dn—l,n—l
All coefficients are nonnegative = Mgs — Ngs: regular splitting

> Ngs < Ny = p(MgdNes) < p(M;Ny)



M-Matrix definition

Definition Let A be an n x n real matrix. A is called M-Matrix if
(i) a; <0 fori##j

(i) A is nonsingular

(i) A7t >0

Corollary: If Ais an M-Matrix, then A~ > 0 < A is irreducible.

Proof: See Varga.



M-Matrix main diagonal

Theorem: If A is an M-matrix, than is diagonal D4 > 0 is positive.

Proof: Let C=A"1>0. The AC=1/and (AC); = 1.

n
E aikcki =1
k=1

n
ajicii =1 — E aixcki > 1
k=1 ki

The last inequality is due to ¢y > 0 and ajx < 0 for k £ i. As ajic;i > 1,
neither factor can be 0. So ¢; > 0 and a;; > 0.

Theorem: (Saad, Th. 1.31) Assume
(i) aj <0fori#j
(i) a; >0
Then A is an M-Matrix if and only if p(/ — D71A) < 1.
Proof: See Saad. O



Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that a;; > 0 and a; < 0 for i # j.
Then A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show A-1>0.
» Let B=/— D71A. Then p(B) < 1, therefore | — B is nonsingular.
» We have for k > 0:

|- Bt =(I-B)(I+B+B*+---+ B
(I-B)'(I-B""Y=(+B+B>+---4+ BN

The left hand side for k — oo converges to (/ — B)~!, therefore

(I-B)™*=> B

k=0

As B >0, we have (/ — B)"' = A71D > 0. As D > 0 we must have
A-1>0. O



M-Matrix comparison criterion
Theorem(Saad, Th. 1.33): Let A, B n x n matrices such that

(i) A<B
(i) by <0 for i #j.
Then, if A is an M-Matrix, so is B.

Proof: From M-property of A and A < B we have 0 < Dy < Dg. We
have Dg — B > 0 and

Ds—A> Dg— B
|- D*A> D, (Dg — B)
> Dg'(Dg — B)
>1-Dg'B=:G>0
Perron-Frobenius = p(G) = p(I — Dg'B) < p(I — D;'A) < 1

= | — G is nonsingular. From the proof of the M-matrix criterion,
Dg'B=(1-G) "1 =332,G">0. As Dg > 0, we get B > 0.

Corollary A < Mgs = Mgs is an M-Matrix.



Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

>
| 4

>

fix a predefined zero pattern

apply the standard LU factorization method, but calculate only those
elements, which do not correspond to the given zero pattern

Result: incomplete LU factors L, U, remainder R:

A=LU-R

Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well 7



M-Property propagation in Gaussian Elimination

Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix
A; obtained from the first step of Gaussian elimination is an M-matrix.

Proof: One has a; = a; — 222,
11
aj,ain,ay <0, a1 >0
= aj; <0 fori#j
1 0 0
—a1 0
A= L1A; with [; = o nonsingular, nonnegative
: 0
= 1

ai
= A; nonsingular

Let e; ... e, be the unit vectors. Then Al_lel = ﬁel >0. Forj>1,
Alle = A7l = A"te > 0.
= A >0



Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to
compute the incomplete LU factorization with a given nonzero pattern

A=LU-R

is stable. Moreover, A= LU — R is a regular splitting.



Stability of ILU decomposition Il

Proof

Let /N41 = A; + Ry = L1 A+ R; where R; is a nonnegative matrixﬂwhich
occurs from dropping some off diagonal entries from A;. Thus, Ay > A;
and A; is an M-matrix. We can repeat this recursively

A=Ak + R = LAk 1 + Ry
= Lelg_1Ax—2 + LxRk—1 + Rx
=Ly ly_q- ... LA+ Lilg—q1- ... LRy +---+ Rk

Let L=(Lp_1- ... -L)"", U=A,_1. Then U= LA+ S with
S=Lpqlp o ...- LR+ +Ry—1=L,—1L, 5 ... -LQ(R1+R2+. .. R,,,l)

Lt R=Ri+Ro+...R,_1, then A= LU — R where U™1L1, R are
nonnegative.



ILU(0)

for
end

for

end

Special case of ILU: ignore any fill-in.
Representation:

M= (D—-E)D™Y(D-F)

D is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

Setup:

i=1:n
dlil=ali,i]

i=1:n

d[i]=1.0/d[i]

for j=i+l:n
d[jl=d[jl-ali,jl*d[i]l*alj,1i]

end



ILU(0)

Solve Mu = v
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ILU(0)

vy

vvVvyyvyy

Generally better convergence properties than Jacobi, Gauss-Seidel
One can develop block variants
Alternatives:

> ILUM: (“modified”): add ignored off-diagonal entries to D

» ILUT: zero pattern calculated dynamically based on drop tolerance
Dependence on ordering
Can be parallelized using graph coloring
Not much theory: experiment for particular systems
| recommend it as the default initial guess for a sensible preconditioner
Incomplete Cholesky: symmetric variant of ILU



Intermediate Summary

» Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

» Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

» Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

» Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.

» These critera do not depend on the symmetry of the matrix!



Example: 1D finite difference matrix:

oz—i—% —% uy avy
S v i,
-1 2 _1 u hf-
h h h 3 3
1 2 1
“h X Un—2 hfn_2
—% Zl l—z Un-1 hfn_1
-5 ;T un QaVvp
> idd

» positive main diagonal entries, nonpositive off-diagonal entries

= A is nonsingular, has the M-property, and we can e.g. apply the Jacobi
and Gauss-Seidel iterative method to solve it (ok, in 1D we already know
this is a bad idea ...).

= for f > 0 and v > 0 it follows that u > 0.
= heating and positive environment temperatures cannot lead to negative
temperatures in the interior.



