Scientific Computing WS 2019/2020

Lecture 10

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

The Gershgorin Circle Theorem (Semyon Gershgorin,1931)

(everywhere, we assume $n \geq 2$)

Theorem (Varga, Th. 1.11) Let A be an $n \times n$ (real or complex) matrix. Let Λ_{i} be the sum of the absolute values of the i-th rowoff-diagonal entries:

$$
\Lambda_{i}=\sum_{\substack{j=1 \ldots . n \\ j \neq i}}\left|a_{i j}\right|
$$

If λ is an eigenvalue of A, then there exists $r, 1 \leq r \leq n$ such that λ lies on the disk defined by the circle of radius Λ_{r} around $a_{r r}$:

$$
\left|\lambda-a_{r r}\right| \leq \Lambda_{r}
$$

Gershgorin Circle Corollaries

Corollary: Any eigenvalue of A lies in the union of the disks defined by the Gershgorin circles

$$
\lambda \in \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{V}:\left|\mu-a_{i i}\right| \leq \Lambda_{i}\right\}
$$

Corollary: The Gershgorin circle theorem allows to estimate the spectral radius $\rho(A)$:

$$
\begin{aligned}
\rho(A) & \leq \max _{i=1 \ldots n} \sum_{j=1}^{n}\left|a_{i j}\right|=\|A\|_{\infty} \\
\rho(A) & \leq \max _{j=1 \ldots n} \sum_{i=1}^{n}\left|a_{i j}\right|=\|A\|_{1} .
\end{aligned}
$$

Proof

$$
\left|\mu-a_{i i}\right| \leq \Lambda_{i} \quad \Rightarrow \quad|\mu| \leq \Lambda_{i}+\left|a_{i i}\right|=\sum_{j=1}^{n}\left|a_{i j}\right|
$$

Furthermore, $\sigma(A)=\sigma\left(A^{T}\right)$.

Gershgorin circles: heat example I

$$
\begin{aligned}
& A=\left(\begin{array}{cccccc}
\frac{2}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{2}{h}
\end{array}\right) \\
& B=\left(I-D^{-1} A\right)=\left(\begin{array}{cccccc}
0 & \frac{1}{2} & & & & \\
\frac{1}{2} & 0 & \frac{1}{2} & & & \\
& \frac{1}{2} & 0 & \frac{1}{2} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & \frac{1}{2} & 0 & \frac{1}{2} & \\
& & & \frac{1}{2} & 0 & \frac{1}{2} \\
& & & & \frac{1}{2} & 0
\end{array}\right)
\end{aligned}
$$

We have $b_{i i}=0, \Lambda_{i}=\left\{\begin{array}{ll}\frac{1}{2}, & i=1, n \\ 1 & i=2 \ldots n-1\end{array} \Rightarrow\right.$ estimate $\left|\lambda_{i}\right| \leq 1$

Gershgorin circles: heat example II
Let $\mathrm{n}=11, \mathrm{~h}=0.1$:

$$
\lambda_{i}=\cos \left(\frac{i h \pi}{1+2 h}\right) \quad(i=1 \ldots n)
$$

\Rightarrow the Gershgorin circle theorem is too pessimistic, we need a better theory ...

Permutation matrices

- Permutation matrices are matrices which have exactly one non-zero entry in each row and each column which has value 1.
- There is a one-to-one correspondence permutations π of the the numbers $1 \ldots n$ and $n \times n$ permutation matrices $P=\left(p_{i j}\right)$ such that

$$
p_{i j}= \begin{cases}1, & \pi(i)=j \\ 0, & \text { else }\end{cases}
$$

- Permutation matrices are orthogonal, and we have $P^{-1}=P^{T}$
- $A \rightarrow P A$ permutes the rows of A
- $A \rightarrow A P^{T}$ permutes the columns of A

Weighted directed graph representation of matrices

Define a directed graph from the nonzero entries of a matrix $A=\left(a_{i k}\right)$:

- Nodes: $\mathcal{N}=\left\{N_{i}\right\}_{i=1 \ldots n}$
- Directed edges:

$$
\mathcal{E}=\left\{\overrightarrow{N_{k} N_{l}} \mid a_{k l} \neq 0\right\}
$$

- Matrix entries \equiv weights of directed edges
$A=\left(\begin{array}{ccccc}1 . & 0 . & 0 . & 2 . & 0 . \\ 3 . & 4 . & 0 . & 5 . & 0 . \\ 6 . & 0 . & 7 . & 8 . & 9 . \\ 0 . & 0 . & 10 . & 11 . & 0 . \\ 0 . & 0 . & 0 . & 0 . & 12 .\end{array}\right)$

- 1:1 equivalence between matrices and weighted directed graphs
- Convenient e.g. for sparse matrices

Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

$$
P A P^{T}=\left(\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right)
$$

A is irreducible if it is not reducible.
Theorem (Varga, Th. 1.17): A is irreducible \Leftrightarrow the matrix graph is connected, i.e. for each ordered pair $\left(N_{i}, N_{j}\right)$ there is a path consisting of directed edges, connecting them.

Equivalently, for each i, j there is a sequence of consecutive nonzero matrix entries $a_{i k_{1}}, a_{k_{1} k_{2}}, a_{k_{2} k_{3}} \ldots, a_{k_{r-1} k_{r}} a_{k_{r} j}$.

Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the eigenvalue λ is a boundary point of the union of all the disks

$$
\lambda \in \partial \bigcup_{i=1 \ldots n}\left\{\mu \in \mathbb{C}:\left|\mu-a_{i i}\right| \leq \Lambda_{i}\right\}
$$

Then, all n Gershgorin circles pass through λ, i.e. for $i=1 \ldots n$,

$$
\left|\lambda-a_{i i}\right|=\Lambda_{i}
$$

Consequences for heat example from Taussky theorem

- $B=I-D^{-1} A$
- We had $b_{i i}=0, \Lambda_{i}=\left\{\begin{array}{ll}\frac{1}{2}, & i=1, n \\ 1 & i=2 \ldots n-1\end{array} \Rightarrow\right.$ estimate $\left|\lambda_{i}\right| \leq 1$
- Assume $\left|\lambda_{i}\right|=1$. Then λ_{i} lies on the boundary of the union of the Gershgorin circles. But then it must lie on the boundary of both circles with radius $\frac{1}{2}$ and 1 around 0 .
- Contradiction $\Rightarrow\left|\lambda_{i}\right|<1, \rho(B)<1$!

Diagonally dominant matrices

Definition Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix.

- A is diagonally dominant if
(i) for $i=1 \ldots n,\left|a_{i i}\right| \geq \sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|a_{i j}\right|$
- A is strictly diagonally dominant (sdd) if
(i) for $i=1 \ldots n,\left|a_{i i}\right|>\sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|a_{i j}\right|$
- A is irreducibly diagonally dominant (idd) if
(i) A is irreducible
(ii) A is diagonally dominant -

$$
\text { for } i=1 \ldots n,\left|a_{i i}\right| \geq \sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|a_{i j}\right|
$$

(iii) for at least one $r, 1 \leq r \leq n,\left|a_{r r}\right|>\sum_{\substack{j=1 \ldots n \\ j \neq r}}\left|a_{r j}\right|$

A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or irreducibly diagonally dominant. Then A is nonsingular.

If in addition, $a_{i i}>0$ is real for $i=1 \ldots n$, then all real parts of the eigenvalues of A are positive:

$$
\operatorname{Re} \lambda_{i}>0, \quad i=1 \ldots n
$$

Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with positive diagonal entries, it is positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity criterion, they must be positive, so A is positive definite.

Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector \mathbf{x} is

- positive $(x>0)$ if all entries of x are positive
- nonnegative $(x \geq 0)$ if all entries of x are nonnegative

Definition: A real $n \times n$ matrix A is

- positive $(A>0)$ if all entries of A are positive
- nonnegative $(A \geq 0)$ if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let $A \geq 0$ be an irreducible $n \times n$ matrix.
Then
(i) A has a positive real eigenvalue equal to its spectral radius $\rho(A)$.
(ii) To $\rho(A)$ there corresponds a positive eigenvector $\mathbf{x}>0$.
(iii) $\rho(A)$ increases when any entry of A increases.
(iv) $\rho(A)$ is a simple eigenvalue of A.

Proof: See Varga.

Perron-Frobenius for general nonnegative matrices

Each $n \times n$ matrix can be brought to the normal form

$$
P A P^{T}=\left(\begin{array}{cccc}
R_{11} & R_{12} & \ldots & R_{1 m} \\
0 & R_{22} & \ldots & R_{2 m} \\
\vdots & & \ddots & \\
0 & 0 & \ldots & R_{m m}
\end{array}\right)
$$

where for $j=1 \ldots m$, either $R_{j j}$ irreducible or $R_{j j}=(0)$.
Theorem(Varga, Th. 2.20) Let $A \geq 0$ be an $n \times n$ matrix. Then
(i) A has a nonnegative eigenvalue equal to its spectral radius $\rho(A)$. This eigenvalue is positive unless A is reducible and its normal form is strictly upper triangular
(ii) To $\rho(A)$ there corresponds a nonzero eigenvector $\mathbf{x} \geq 0$.
(iii) $\rho(A)$ does not decrease when any entry of A increases.

Proof: See Varga; $\sigma(A)=\bigcup_{j=1}^{m} \sigma\left(R_{j j}\right)$, apply irreducible Perron-Frobenius to $R_{j j}$.

Theorem on Jacobi matrix

Theorem: Let A be sdd or idd, and D its diagonal. Then

$$
\rho\left(\left|I-D^{-1} A\right|\right)<1
$$

Proof: Let $B=\left(b_{i j}\right)=I-D^{-1} A$. Then

$$
b_{i j}= \begin{cases}0, & i=j \\ -\frac{a_{j j}}{a_{i i}}, & i \neq j\end{cases}
$$

If A is sdd, then for $i=1 \ldots n$,

$$
\sum_{j=1 \ldots n}\left|b_{i j}\right|=\sum_{\substack{j=1 \ldots n \\ j \neq i}}\left|\frac{a_{i j}}{a_{i i}}\right|=\frac{\Lambda_{i}}{\left|a_{i i}\right|}<1
$$

Therefore, $\rho(|B|)<1$.

Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that $a_{i i}>0$ and $a_{i j} \leq 0$ for $i \neq j$. Then $\rho\left(I-D^{-1} A\right)<1$, i.e. the Jacobi method converges.

Proof In this case, $|B|=B$

- Here, we made assumptions on the sign pattern and the diagonal dominance of the matrix. No additional information on the nonzero pattern or the symmetry has been used.
- Does this generalize to other iterative methods ?

Regular splittings

- $A=M-N$ is a regular splitting if
- M is nonsingular
- M^{-1}, N are nonnegative, i.e. have nonnegative entries
- Regard the iteration $u_{k+1}=M^{-1} N u_{k}+M^{-1} b$.
- $B=I-M^{-1} A=M^{-1} N$ is a nonnegative matrix.

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, $A^{-1} \geq 0$, and $A=M-N$ is a regular splitting. Then $\rho\left(M^{-1} N\right)<1$.
Proof: Let $B=M^{-1} N$. Then $A=M(I-B)$, therefore $I-B$ is nonsingular.

In addition

$$
A^{-1} N=\left(M\left(I-M^{-1} N\right)\right)^{-1} N=\left(I-M^{-1} N\right)^{-1} M^{-1} N=(I-B)^{-1} B
$$

By Perron-Frobenius (for general matrices), $\rho(B)$ is an eigenvalue with a nonnegative eigenvector \mathbf{x}. Thus,

$$
0 \leq A^{-1} N \mathbf{x}=\frac{\rho(B)}{1-\rho(B)} \mathbf{x}
$$

Therefore $0 \leq \rho(B) \leq 1$.
Assume that $\rho(B)=1$. Then there exists $\mathbf{x} \neq \mathbf{0}$ such that $B \mathbf{x}=\mathbf{x}$.
Consequently, $(I-B) \mathbf{x}=\mathbf{0}$, contradicting the nonsingularity of $I-B$.
Therefore, $\rho(B)<1$.

Convergence rate comparison

Corollary: $\rho\left(M^{-1} N\right)=\frac{\tau}{1+\tau}$ where $\tau=\rho\left(A^{-1} N\right)$.
Proof: Rearrange $\tau=\frac{\rho(B)}{1-\rho(B)} \square$

Corollary: Let $A^{-1} \geq 0, A=M_{1}-N_{1}$ and $A=M_{2}-N_{2}$ be regular splittings.
If $N_{2} \geq N_{1}$, then $1>\rho\left(M_{2}^{-1} N_{2}\right) \geq \rho\left(M_{1}^{-1} N_{1}\right)$.
Proof: $\tau_{2}=\rho\left(A^{-1} N_{2}\right) \geq \rho\left(A^{-1} N_{1}\right)=\tau_{1}$
But $\frac{\tau}{1+\tau}$ is strictly increasing.

Convergence rate comparison II

- Let $A^{-1} \geq 0, A=D-E-F, D>0$ diagonal, $E, F \geq 0$ upper resp. lower triangular parts.
- Jacobi: $M_{J}=D, N_{J}=E+F . M_{J}^{-1}>0 \Rightarrow$ regular splitting
- Gauss-Seidel: $M_{G S}=D-E, N_{G S}=F \geq 0$. Show $M_{G S}^{-1} \geq 0$:

$$
M_{G S}=\left(\begin{array}{ccccc}
d_{11} & -e_{12} & -e_{13} & \cdots & -e_{1 n} \\
& d_{22} & -e_{23} & \cdots & -e_{2 n} \\
& & \ddots & \ddots & \vdots \\
& & & d_{n-1, n-1} & -e_{n-1, n} \\
& & & \cdots & d_{n n}
\end{array}\right)
$$

Elimination steps for $M_{G S} v=r:$

$$
v_{n}=\frac{r_{n}}{d_{n n}}, \quad v_{n-1}=\frac{r_{n}+e_{n-1, n} v_{n}}{d_{n-1, n-1}} \ldots
$$

All coefficients are nonnegative $\Rightarrow M_{G S}-N_{G S}$: regular splitting

- $N_{G S} \leq N_{J} \Rightarrow \rho\left(M_{G S}^{-1} N_{G S}\right) \leq \rho\left(M_{J}^{-1} N_{J}\right)$

M-Matrix definition

Definition Let A be an $n \times n$ real matrix. A is called M-Matrix if
(i) $a_{i j} \leq 0$ for $i \neq j$
(ii) A is nonsingular
(iii) $A^{-1} \geq 0$

Corollary: If A is an M-Matrix, then $A^{-1}>0 \Leftrightarrow A$ is irreducible. Proof: See Varga.

M-Matrix main diagonal

Theorem: If A is an M-matrix, than is diagonal $D_{A}>0$ is positive.
Proof: Let $C=A^{-1} \geq 0$. The $A C=I$ and $(A C)_{i i}=1$.

$$
\begin{aligned}
\sum_{k=1}^{n} a_{i k} c_{k i} & =1 \\
a_{i i} c_{i i} & =1-\sum_{k=1, k \neq i}^{n} a_{i k} c_{k i} \geq 1
\end{aligned}
$$

The last inequality is due to $c_{k i} \geq 0$ and $a_{i k}<0$ for $k \neq i$. As $a_{i i} c_{i i} \geq 1$, neither factor can be 0 . So $c_{i i}>0$ and $a_{i i}>0$.

Theorem: (Saad, Th. 1.31) Assume
(i) $a_{i j} \leq 0$ for $i \neq j$
(ii) $a_{i i}>0$

Then A is an M-Matrix if and only if $\rho\left(I-D^{-1} A\right)<1$.
Proof: See Saad.

Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that $a_{i i}>0$ and $a_{i j} \leq 0$ for $i \neq j$. Then A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show $A^{-1} \geq 0$.

- Let $B=I-D^{-1} A$. Then $\rho(B)<1$, therefore $I-B$ is nonsingular.
- We have for $k>0$:

$$
\begin{aligned}
I-B^{k+1} & =(I-B)\left(I+B+B^{2}+\cdots+B^{k}\right) \\
(I-B)^{-1}\left(I-B^{k+1}\right) & =\left(I+B+B^{2}+\cdots+B^{k}\right)
\end{aligned}
$$

The left hand side for $k \rightarrow \infty$ converges to $(I-B)^{-1}$, therefore

$$
(I-B)^{-1}=\sum_{k=0}^{\infty} B^{k}
$$

As $B \geq 0$, we have $(I-B)^{-1}=A^{-1} D \geq 0$. As $D>0$ we must have $A^{-1} \geq 0$.

M-Matrix comparison criterion

Theorem(Saad, Th. 1.33): Let $A, B n \times n$ matrices such that
(i) $A \leq B$
(ii) $b_{i j} \leq 0$ for $i \neq j$.

Then, if A is an M-Matrix, so is B.
Proof: From M-property of A and $A \leq B$ we have $0<D_{A} \leq D_{B}$. We have $D_{B}-B \geq 0$ and

$$
\begin{aligned}
D_{A}-A & \geq D_{B}-B \\
I-D_{A}^{-1} A & \geq D_{A}^{-1}\left(D_{B}-B\right) \\
& \geq D_{B}^{-1}\left(D_{B}-B\right) \\
& \geq I-D_{B}^{-1} B=: G \geq 0
\end{aligned}
$$

Perron-Frobenius $\Rightarrow \rho(G)=\rho\left(I-D_{B}^{-1} B\right) \leq \rho\left(I-D_{A}^{-1} A\right)<1$
$\Rightarrow I-G$ is nonsingular. From the proof of the M-matrix criterion, $D_{B}^{-1} B=(I-G)^{-1}=\sum_{k=0}^{\infty} G^{k} \geq 0$. As $D_{B}>0$, we get $B \geq 0$.

Corollary $A \leq M_{G S} \Rightarrow M_{G S}$ is an M-Matrix.

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

- fix a predefined zero pattern
- apply the standard LU factorization method, but calculate only those elements, which do not correspond to the given zero pattern
- Result: incomplete LU factors L, U, remainder R :

$$
A=L U-R
$$

- Problem: with complete LU factorization procedure, for any nonsingular matrix, the method is stable, i.e. zero pivots never occur. Is this true for the incomplete LU Factorization as well ?

M-Property propagation in Gaussian Elimination

Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix A_{1} obtained from the first step of Gaussian elimination is an M-matrix.
Proof: One has $a_{i j}^{1}=a_{i j}-\frac{a_{i 1} a_{1 j}}{a_{11}}$,
$a_{i j}, a_{i 1}, a_{1 j} \leq 0, a_{11}>0$
$\Rightarrow a_{i j}^{1} \leq 0$ for $i \neq j$
$A=L_{1} A_{1}$ with $L_{1}=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ \frac{-a_{12}}{a_{11}} & 1 & \ldots & 0 \\ \vdots & & \ddots & 0 \\ \frac{-a_{1 n}}{a_{11}} & 0 & \ldots & 1\end{array}\right)$ nonsingular, nonnegative
$\Rightarrow A_{1}$ nonsingular

Let $e_{1} \ldots e_{n}$ be the unit vectors. Then $A_{1}^{-1} e_{1}=\frac{1}{a_{1} 1} e_{1} \geq 0$. For $j>1$, $A_{1}^{-1} e_{j}=A^{-1} L^{-1} e_{j}=A^{-1} e_{j} \geq 0$.
$\Rightarrow A_{1}^{-1} \geq 0$

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute the incomplete LU factorization with a given nonzero pattern

$$
A=L U-R
$$

is stable. Moreover, $A=L U-R$ is a regular splitting.

Stability of ILU decomposition II

Proof

Let $\tilde{A}_{1}=A_{1}+R_{1}=L_{1} A+R_{1}$ where R_{1} is a nonnegative matrix which occurs from dropping some off diagonal entries from A_{1}. Thus, $\tilde{A}_{1} \geq A_{1}$ and \tilde{A}_{1} is an M-matrix. We can repeat this recursively

$$
\begin{aligned}
\tilde{A}_{k}=A_{k}+R_{k} & =L_{k} A_{k-1}+R_{k} \\
& =L_{k} L_{k-1} A_{k-2}+L_{k} R_{k-1}+R_{k} \\
& =L_{k} L_{k-1} \cdot \ldots \cdot L_{1} A+L_{k} L_{k-1} \cdot \ldots \cdot L_{2} R_{1}+\cdots+R_{k}
\end{aligned}
$$

Let $L=\left(L_{n-1} \cdot \ldots \cdot L_{1}\right)^{-1}, U=\tilde{A}_{n-1}$. Then $U=L^{-1} A+S$ with
$S=L_{n-1} L_{n-2} \cdot \ldots \cdot L_{2} R_{1}+\cdots+R_{n-1}=L_{n-1} L_{n-2} \cdot \ldots \cdot L_{2}\left(R_{1}+R_{2}+\ldots R_{n-1}\right)$
Let $R=R_{1}+R_{2}+\ldots R_{n-1}$, then $A=L U-R$ where $U^{-1} L^{-1}, R$ are nonnegative.

ILU(0)

- Special case of ILU: ignore any fill-in.
- Representation:

$$
M=(\tilde{D}-E) \tilde{D}^{-1}(\tilde{D}-F)
$$

- \tilde{D} is a diagonal matrix (wich can be stored in one vector) which is calculated by the incomplete factorization algorithm.
- Setup:

```
for i=1:n
    d[i]=a[i,i]
end
for i=1:n
    d[i]=1.0/d[i]
    for j=i+1:n
        d[j]=d[j]-a[i,j]*d[i]*a[j,i]
    end
end
```


$\operatorname{ILU}(0)$

Solve $M u=v$

```
for \(i=1: n\)
    \(\mathrm{x}=0.0\)
    for \(j=1: i-1\)
        \(x=x+a[i, j] * u[j]\)
        \(\mathrm{u}[\mathrm{i}]=\mathrm{d}[\mathrm{i}] *(\mathrm{v}[\mathrm{i}]-\mathrm{x})\)
    end
end
for \(i=n:-1: 1\)
    \(\mathrm{x}=0.0\)
    for \(j=i+1: n\)
        \(x=x+a[i, j] * u[j]\)
        \(u[i]=u[i]-d[i] * x\)
    end
end
```


ILU(0)

- Generally better convergence properties than Jacobi, Gauss-Seidel
- One can develop block variants
- Alternatives:
- ILUM: ("modified"): add ignored off-diagonal entries to \tilde{D}
- ILUT: zero pattern calculated dynamically based on drop tolerance
- Dependence on ordering
- Can be parallelized using graph coloring
- Not much theory: experiment for particular systems
- I recommend it as the default initial guess for a sensible preconditioner
- Incomplete Cholesky: symmetric variant of ILU

Intermediate Summary

- Given some matrix, we now have some nice recipies to establish nonsingularity and iterative method convergence:
- Check if the matrix is irreducible.

This is mostly the case for elliptic and parabolic PDEs.

- Check if the matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.
- Check if main diagonal entries are positive and off-diagonal entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and elementary iterative methods converge.
- These critera do not depend on the symmetry of the matrix!

Example: 1D finite difference matrix:

$$
A u=\left(\begin{array}{cccccc}
\alpha+\frac{1}{h} & -\frac{1}{h} & & & & \\
-\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\
& -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\
& & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\
& & & & -\frac{1}{h} & \frac{1}{h}+\alpha
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{N-2} \\
u_{N-1} \\
u_{N}
\end{array}\right)=f=\left(\begin{array}{c}
\alpha v_{1} \\
h f_{2} \\
h f_{3} \\
\vdots \\
h f_{N-2} \\
h f_{N-1} \\
\alpha v_{n}
\end{array}\right)
$$

- idd
- positive main diagonal entries, nonpositive off-diagonal entries
$\Rightarrow A$ is nonsingular, has the M -property, and we can e.g. apply the Jacobi and Gauss-Seidel iterative method to solve it (ok, in 1D we already know this is a bad idea ...).
\Rightarrow for $f \geq 0$ and $v \geq 0$ it follows that $u \geq 0$.
\equiv heating and positive environment temperatures cannot lead to negative temperatures in the interior.

