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Iterative methods: Recap



Elements of iterative methods (Saad Ch.4)

Let V = R" be equipped with the inner product (-,-). Let Abe an nxn
nonsingular matrix.

Solve Au = b iteratively. For this purpose, two components are needed:

» Preconditioner: a matrix M ~ A “approximating” the matrix A but with
the property that the system Mv = f is easy to solve

> Iteration scheme: algorithmic sequence using M and A which updates the
solution step by step




Simple iteration with preconditioning

Idea: All=b =

= iterative scheme

U1 = ik — MY (Aug — b) (k=0,1...)

. Choose initial value wup, tolerance ¢, set k =0
. Calculate residuum rix = Aui, — b
Test convergence: if ||r|| < & set u = u, finish

. Calculate update: solve Mvy = rx

aohr W N

. Update solution: wuy+1 = ux — vk, set k = k + 1, repeat with step 2.




The Jacobi method

» Let A= D — E — F, where D: main diagonal, E: negative lower triangular
part F: negative upper triangular part
» Preconditioner: M = D, where D is the main diagonal of A =

1 .
Uk1,i = Uki = —— E ajuj — by (i=1...n)
n

j=1...n

v

Equivalent to the succesive (row by row) solution of

Ajilk+1,i + g ajukj=bi (i=1...n)
J=len,jti

v

Already calculated results not taken into account
Alternative formulation with A= M — N:

v

Ukl = Dil(E + F)Uk + Dilb
=M "Nue + M b

v

Variable ordering does not matter




The Gauss-Seidel method

vyvyy

Solve for main diagonal element row by row
Take already calculated results into account

ajilk+1,i + E ajjlk+1,j + E ajjlkj = b; (i =1...

Jj<i J>i

(D — E)le+1 — Fuk =b

May be it is faster

Variable order probably matters

Preconditioners: forward M = D — E, backward: M =D — F
Splitting formulation: A= M — N

forward: N = F, backward: M = E

Forward case:

1= (D — E) "Fur+(D—E)7'b
=M Nug+ M b




Convergence

> Let i be the solution of Au=b.

» Let ex = ux — i be the error of the k-th iteration step
Uk+1 = Uk — /\/I_I(Auk —b)

(1= M 'Ayu + M b

U1 — b= ue — i — M7 (A — AD)

(I— M A)(u — )

= (1= M A) (up — 1)

resulting in

a1 = (I — M7 A e

> So when does (/ — M~*A)* converge to zero for k — oo ?

> let B=1—-MA




Back to iterative methods

Sufficient condition for convergence: p(/ — M™'A) < 1.




Matrix preconditioned Richardson iteration

M, A spd.

» Scaled Richardson iteration with preconditoner M

U1 = ux — oM~ (Aug — b)

> Spectral equivalence estimate
0 < Ymin(Mu, u) < (Au, u) < Ymax(Mu, u)
> = Ymin < Ai < Ymax
» = optimal parameter a = m
» Convergence rate with optimal parameter: p < :((%:7112:
» This is one possible way for convergence analysis which at once gives

convergence rates

» But ... how to obtain a good spectral estimate for a particular problem ?




1D heat conduction: spectral bounds estimate

» For i=1...n, the argument of cos is in (0, )

» cos is monotonically decreasing in (0, 7), so we get Amax for i = 1 and Amin

fori=n=1h
5 w2 h?
2(1 + 2h)2

h
» Therefore:

~ 2

~ h

L2

T h\ 2(1+2h)2

2 h
Amax = (1+°°s (“1 +2h))

2 1+h
Amin = 5 (1 + cos (wm))

Here, we used the Taylor expansion

cos(8) =1— % +0(5") (5—0)

cos(m—8) = -1+ %2 +0(8" (6—=0)

1th _ 142h _ _h_ _ 1 _ _h
and 555 = 1555 — 1o = L~ 199




Jacobi preconditioned Richardson for 1D heat conduction

> The Jacobi preconditioner just multiplies by 2, therefore for M~'A:
__mh
2(1 1 2h)?
w2 h?
2(1+ 2h)

Mmax ~ 2

Hmin ~

H . — 2 ~
Optimal parameter: a = x—5— ~ 1 (h—0)

>
» Good news: this is independent of h resp. n

» No need for spectral estimate in order to work with optimal parameter.
>

Is this true beyond this special case ?




Eigenvalue analysis for more general matrices

» For 1D heat conduction we had a very special regular structure of the
matrix which allowed exact eigenvalue calculations

» We need a generalization to varying coefficients, nonsymmetric
problems, unstructured grids ...
=- what can be done for general matrices ?



The Gershgorin Circle Theorem (Semyon Gershgorin,1931)

(everywhere, we assume n > 2)

Theorem (Varga, Th. 1.11) Let A be an n x n (real or complex) matrix.
Let A; be the sum of the absolute values of the i-th rowoff-diagonal entries:

A= lal
j=1l...n
J#i

If X is an eigenvalue of A, then there exists r, 1 < r < n such that A lies
on the disk defined by the circle of radius A, around a,,:

A —an| <A,



Gershgorin Circle Theorem, Proof

Proof: Assume X is an eigenvalue, x = (x1 ... x,) is a corresponding
eigenvector. Assume x is normalized such that

max |x;| = [x.| = 1.
i=1...n

From Ax = Ax it follows that

= E %
(A auX:—E aUXJ

J#l
Mmanl=| S apgl < 3 laglbsl < 3 Jagl = A

j:ln J:ln j:ln
J#r J#r J#r



Gershgorin Circle Corollaries

Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

re | {nev:ip—ail <A}
i=1...n

Corollary: The Gershgorin circle theorem allows to estimate the spectral
radius p(A):

n

p(A) < ,.Qﬂlé?fnz |ai| = [1A]|oc,
=1

p(A) szmlaxnz |ai| = [|A[l1-
=1

Proof

n
—ail <A = [l <A+ al = ayl

Jj=1

Furthermore, o(A) = o(AT). O



Gershgorin circles: example

19 18 34
A=1|04 18 04
0.05 0.1 23

AM=1=22X=3
AL =5.2,A, = 0.8, )3 = 0.15

oD b s




Gershgorin circles: heat example |

B=(I-DA)=

1
We have b,‘,‘ = 0, /\,‘ = {]2-’

>IN

NI O

>

NP O NI

I\
| >

O NI

N|—= -

1
h
2" 1
h h
1 o2 1
h h.  _h
o2t
h h.  _h
o2
h h
1
2
1
vz
5?5
50

1= estimate |\;| <1



Gershgorin circles: heat example |l
Let n=11, h=0.1:

ihm .
)\;_cos<m) (i=1...n)

Im

= the Gershgorin circle theorem is too pessimistic, we need a better
theory ...



Permutation matrices

» Permutation matrices are matrices which have exactly one non-zero
entry in each row and each column which has value 1.

» There is a one-to-one correspondence permutations 7w of the the
numbers 1...n and n x n permutation matrices P = (pj;) such that

)L w() =
pu_{O7 else

» Permutation matrices are orthogonal, and we have p-1=pT
» A — PA permutes the rows of A

» A — APT permutes the columns of A



Weighted directed graph representation of matrices

Define a directed graph from the
nonzero entries of a matrix A = (a): 4

> Nodes: N ={N;}i—1.

» Directed edges:
11

€ = {NiNj|aw # 0} L3 5
» Matrix entries = weights of
directed edges 2 @

6
1. 0. 0. 2. 0. 8
3. 4 0. 5 0. 10
A=1]6. 0. 7. 8 09 9
0. 0. 10. 11. o.
0. 0. 0. 0. 12. 12 7

» 1:1 equivalence between matrices and weighted directed graphs

» Convenient e.g. for sparse matrices



Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

A A
T _ 11 12
PAP' = ( 0 A22)

A is irreducible if it is not reducible.

Theorem (Varga, Th. 1.17): A is irreducible < the matrix graph is
connected, i.e. for each ordered pair (N;, N;) there is a path consisting of
directed edges, connecting them.

Equivalently, for each i,/ there is a sequence of consecutive nonzero matrix
entries Aikyy Akyks koks -+ - 3 Fkp_1k, kyj-

O



Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue A is a boundary point of the union of all the disks

AED U {peC:|p—ail <N}

i=1...n

Then, all n Gershgorin circles pass through A, i.e. fori=1...n,

A —ai| = Ni



Taussky theorem proof

Proof Assume ) is eigenvalue, x a corresponding eigenvector, normalized
such that max;—1._,|x| = |x] = 1. From Ax = Ax it follows that

A —ani = agy (1)

j=1l...n
J#r
A—arl < Y lagl- bl < Y lagl = A (2)
j=1l...n Jj=l...n
J#r J#r

A is boundary point = |A —a,| = > Ja4|-|xj| =A
j=1l...n
J#r

Due to irreducibility there is at least one p with a,, # 0. For this p,

[xo| = 1 and equation (2) is valid (with p in place of r) = |\ — app| = A,

Due to irreducibility, this is true for all p=1...n. O



Consequences for heat example from Taussky theorem

» B=/-D1A

1

> Wehad by =0, A, =<2~ 7 = estimate |\ < 1
1 i=2...n-1

» Assume |A;| = 1. Then ); lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both
circles with radius % and 1 around 0.

» Contradiction = |A;] < 1, p(B) < 1!



Diagonally dominant matrices
Definition Let A = (a;) be an n x n matrix.
» Ais diagonally dominant if
(i) fori=1...n lai| > Y |ay]
j=1l...n
i#i
» A is strictly diagonally dominant (sdd) if
(i) fori=1...n |ai| > > |ay]
Jj=l...n
J#i
» Ais irreducibly diagonally dominant (idd) if
(i) A'is irreducible
(i) Ais diagonally dominant —

fori=1...n, |ai| > Z En
j=1l...n
i
(iii) for at least one r, 1 < r < n, |ay| > Z EFl

j=l...n
J#r



A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.

If in addition, a; > 0 is real for i = 1...n, then all real parts of the
eigenvalues of A are positive:

ReAi >0, i=1...n



A very practical nonsingularity criterion, proof |

Proof:

» Assume A strictly diagonally dominant. Then the union of the
Gershgorin disks does not contain 0 and A = 0 cannot be an
eigenvalue = A is nonsingular.

» As for the real parts, the union of the disks is
U {neC:lp—ai <N}
i=1...n

and Rep must be larger than zero if p should be contained.



A very practical nonsingularity criterion, proof |

» Assume A irreducibly diagonally dominant. Then, if 0 is an
eigenvalue, it sits on the boundary of one of the Gershgorin disks.

By Taussky theorem, we have |a;| = A; for all i=1...n.

This is a contradiction as by definition there is at least one i such
that |a,-,-| > NA;
> Assume a; > 0, real. All real parts of the eigenvalues must be > 0.

Therefore, if a real part is 0, it lies on the boundary of at least one
disk.

By Taussky theorem it must be contained at the same time in the
boundary of all the disks and in the imaginary axis.

This contradicts the fact that there is at least one disk which does
not touch the imaginary axis as by definition there is at least one i
such that |a;| > A; O



Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.



Heat conduction matrix

>
Sl

Sl

Sl
>IN

Fi= -
>IN -

>

» Aisidd = A is nonsingular

> diagA is positive real = eigenvalues of A have positive real parts

> A is real, symmetric = A is positive definite



Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector x is

» positive (x > 0) if all entries of x are positive
» nonnegative (x > 0) if all entries of x are nonnegative

Definition: A real n x n matrix A is

» positive (A > 0) if all entries of A are positive
» nonnegative (A > 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A > 0 be an irreducible n x n matrix.
Then

(i) A has a positive real eigenvalue equal to its spectral radius p(A).
(i) To p(A) there corresponds a positive eigenvector x > 0.
(iii) p(A) increases when any entry of A increases.
(iv) p(A) is a simple eigenvalue of A.

Proof: See Varga.



Perron-Frobenius for general nonnegative matrices

Each n x n matrix can be brought to the normal form

Rii R ... Rim
pAPT Ry»n ... Ry
0 0 ... Rum

where for j = 1...m, either Rj irreducible or R;; = (0).
Theorem(Varga, Th. 2.20) Let A > 0 be an n x n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius p(A). This
eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular

(i) To p(A) there corresponds a nonzero eigenvector x > 0.

(iii) p(A) does not decrease when any entry of A increases.

Proof: See Varga; o(A) = | Jo(Rj). apply irreducible Perron-Frobenius

s

j=1
to RJJ O



Theorem on Jacobi matrix
Theorem: Let A be sdd or idd, and D its diagonal. Then

p(1 - DA < 1

Proof: Let B = (b;) =1— D7'A. Then

If Aissdd, thenfori=1...n

aj
> lbgl= Y 1P =n <1
all
j=1l...n Jj=1...n
J#i

Therefore, p(|B|) < 1



Theorem on Jacobi matrix Il
If Aisidd, thenfori=1...n,

ij Ai
> Ibil= 30 1= kst

j=l...n j=1..n "
J#i
A,
E |bj| = ﬁ < 1 for at least one r
a
j=l...n "

Therefore, p(|B|) <= 1. Assume p(|B|) = 1. By Perron-Frobenius, 1 is an
eigenvalue. As it is in the union of the Gershgorin disks, for some i,

A;

||

N=1< — <1

and it must lie on the boundary of this union. By Taussky then one has for

all 7

A
N=1< 1
|2

which contradicts the idd condition.



Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that a; > 0
and a; <0 for i # j. Then p(/ — D~*A) < 1, i.e. the Jacobi method

converges.
Proof In this case, |B| = B .

» Here, we made assumptions on the sign pattern and the diagonal
dominance of the matrix. No additional information on the nonzero
pattern or the symmetry has been used.

» Does this generalize to other iterative methods 7



Regular splittings

» A= M — Nis a regular splitting if

» M is nonsingular
> M~ N are nonnegative, i.e. have nonnegative entries

» Regard the iteration w3 = M~ Nu, + M~1h.
» B=1/— M"1A= M~IN is a nonnegative matrix.



Convergence theorem for regular splitting
Theorem: Assume A is nonsingular, A1>0and A=M—Nisa
regular splitting. Then p(M~1N) < 1.

Proof: Let B= M~IN. Then A= M(I — B), therefore | — B is
nonsingular.

In addition
AN = (M(I = MIN)IN= (I = M N *MIN = (I - B)™'B

By Perron-Frobenius (for general matrices), p(B) is an eigenvalue with a
nonnegative eigenvector x. Thus,

B)
0< A 'Nx = Lx

1—p(B)
Therefore 0 < p(B) <
Assume that p(B) = 1 hen there exists x # 0 such that Bx = x.
Consequently, (I — B)x = 0, contradicting the nonsingularity of / — B.
Therefore, p(B) < 1. O



