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Iterative methods: Recap
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Elements of iterative methods (Saad Ch.4)

Let V = Rn be equipped with the inner product (·, ·). Let A be an n × n
nonsingular matrix.

Solve Au = b iteratively. For this purpose, two components are needed:
I Preconditioner: a matrix M ≈ A “approximating” the matrix A but with

the property that the system Mv = f is easy to solve
I Iteration scheme: algorithmic sequence using M and A which updates the

solution step by step
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Simple iteration with preconditioning

Idea: Aû = b ⇒

û = û − M−1(Aû − b)

⇒ iterative scheme

uk+1 = uk − M−1(Auk − b) (k = 0, 1 . . . )

1. Choose initial value u0, tolerance ε, set k = 0

2. Calculate residuum rk = Auk − b

3. Test convergence: if ||rk || < ε set u = uk , finish

4. Calculate update: solve Mvk = rk

5. Update solution: uk+1 = uk − vk , set k = k + 1, repeat with step 2.
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The Jacobi method

I Let A = D − E − F , where D: main diagonal, E : negative lower triangular
part F : negative upper triangular part

I Preconditioner: M = D, where D is the main diagonal of A ⇒

uk+1,i = uk,i − 1
aii

(∑
j=1...n

aijuk,j − bi

)
(i = 1 . . . n)

I Equivalent to the succesive (row by row) solution of

aiiuk+1,i +
∑

j=1...n,j 6=i

aijuk,j = bi (i = 1 . . . n)

I Already calculated results not taken into account
I Alternative formulation with A = M − N:

uk+1 = D−1(E + F )uk + D−1b

= M−1Nuk + M−1b

I Variable ordering does not matter
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The Gauss-Seidel method

I Solve for main diagonal element row by row
I Take already calculated results into account

aiiuk+1,i +
∑
j<i

aijuk+1,j +
∑
j>i

aijuk,j = bi (i = 1 . . . n)

(D − E)uk+1 − Fuk = b

I May be it is faster
I Variable order probably matters
I Preconditioners: forward M = D − E , backward: M = D − F
I Splitting formulation: A = M − N

forward: N = F , backward: M = E
I Forward case:

uk+1 = (D − E)−1Fuk + (D − E)−1b

= M−1Nuk + M−1b
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Convergence

I Let û be the solution of Au = b.
I Let ek = uk − û be the error of the k-th iteration step

uk+1 = uk − M−1(Auk − b)

= (I − M−1A)uk + M−1b

uk+1 − û = uk − û − M−1(Auk − Aû)

= (I − M−1A)(uk − û)

= (I − M−1A)k(u0 − û)

resulting in

ek+1 = (I − M−1A)ke0

I So when does (I − M−1A)k converge to zero for k → ∞ ?
I Let B = I − M−1A
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Back to iterative methods

Sufficient condition for convergence: ρ(I − M−1A) < 1.
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Matrix preconditioned Richardson iteration

M, A spd.
I Scaled Richardson iteration with preconditoner M

uk+1 = uk − αM−1(Auk − b)

I Spectral equivalence estimate

0 < γmin(Mu, u) ≤ (Au, u) ≤ γmax (Mu, u)

I ⇒ γmin ≤ λi ≤ γmax

I ⇒ optimal parameter α = 2
γmax +γmin

I Convergence rate with optimal parameter: ρ ≤ κ(M−1A)−1
κ(M−1A)+1

I This is one possible way for convergence analysis which at once gives
convergence rates

I But . . . how to obtain a good spectral estimate for a particular problem ?
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1D heat conduction: spectral bounds estimate

I For i = 1 . . . n, the argument of cos is in (0, π)
I cos is monotonically decreasing in (0, π), so we get λmax for i = 1 and λmin

for i = n = 1+h
h

I Therefore:

λmax = 2
h

(
1 + cos

(
π

h
1 + 2h

))
≈ 2

h

(
2 − π2h2

2(1 + 2h)2

)
λmin = 2

h

(
1 + cos

(
π

1 + h
1 + 2h

))
≈ 2

h

(
π2h2

2(1 + 2h)2

)
Here, we used the Taylor expansion

cos(δ) = 1 − δ2

2 + O(δ4) (δ → 0)

cos(π − δ) = −1 + δ2

2 + O(δ4) (δ → 0)

and 1+h
1+2h = 1+2h

1+2h − h
1+2h = 1 − h

1+2h
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Jacobi preconditioned Richardson for 1D heat conduction

I The Jacobi preconditioner just multiplies by h
2 , therefore for M−1A:

µmax ≈ 2 − π2h2

2(1 + 2h)2

µmin ≈ π2h2

2(1 + 2h)2

I Optimal parameter: α = 2
λmax +λmin

≈ 1 (h → 0)
I Good news: this is independent of h resp. n
I No need for spectral estimate in order to work with optimal parameter.
I Is this true beyond this special case ?
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Eigenvalue analysis for more general matrices

I For 1D heat conduction we had a very special regular structure of the
matrix which allowed exact eigenvalue calculations

I We need a generalization to varying coefficients, nonsymmetric
problems, unstructured grids . . .
⇒ what can be done for general matrices ?
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The Gershgorin Circle Theorem (Semyon Gershgorin,1931)

(everywhere, we assume n ≥ 2)

Theorem (Varga, Th. 1.11) Let A be an n × n (real or complex) matrix.
Let Λi be the sum of the absolute values of the i-th rowoff-diagonal entries:

Λi =
∑

j=1...n
j 6=i

|aij |

If λ is an eigenvalue of A, then there exists r , 1 ≤ r ≤ n such that λ lies
on the disk defined by the circle of radius Λr around arr :

|λ − arr | ≤ Λr .
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Gershgorin Circle Theorem, Proof
Proof: Assume λ is an eigenvalue, x = (x1 . . . xn) is a corresponding
eigenvector. Assume x is normalized such that

max
i=1...n

|xi | = |xr | = 1.

From Ax = λx it follows that

λxi =
∑

j=1...n
aijxj

(λ − aii)xi =
∑

j=1...n
j 6=i

aijxj

|λ − arr | =
∣∣ ∑

j=1...n
j 6=r

arjxj
∣∣ ≤

∑
j=1...n

j 6=r

|arj ||xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr

�
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Gershgorin Circle Corollaries
Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

λ ∈
⋃

i=1...n
{µ ∈ V : |µ − aii | ≤ Λi}

Corollary: The Gershgorin circle theorem allows to estimate the spectral
radius ρ(A):

ρ(A) ≤ max
i=1...n

n∑
j=1

|aij | = ||A||∞,

ρ(A) ≤ max
j=1...n

n∑
i=1

|aij | = ||A||1.

Proof

|µ − aii | ≤ Λi ⇒ |µ| ≤ Λi + |aii | =
n∑

j=1
|aij |

Furthermore, σ(A) = σ(AT ). �
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Gershgorin circles: example

A =

 1.9 1.8 3.4
0.4 1.8 0.4
0.05 0.1 2.3


λ1 = 1, λ2 = 2, λ3 = 3
Λ1 = 5.2, Λ2 = 0.8, λ3 = 0.15
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Gershgorin circles: heat example I

A =



2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h



B = (I − D−1A) =



0 1
2

1
2 0 1

2
1
2 0 1

2
. . . . . . . . . . . .

1
2 0 1

2
1
2 0 1

2
1
2 0


We have bii = 0, Λi =

{
1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1
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Gershgorin circles: heat example II
Let n=11, h=0.1:

λi = cos
(

ihπ

1 + 2h

)
(i = 1 . . . n)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Re

Im

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

⇒ the Gershgorin circle theorem is too pessimistic, we need a better
theory . . .
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Permutation matrices

I Permutation matrices are matrices which have exactly one non-zero
entry in each row and each column which has value 1.

I There is a one-to-one correspondence permutations π of the the
numbers 1 . . . n and n × n permutation matrices P = (pij) such that

pij =
{

1, π(i) = j
0, else

I Permutation matrices are orthogonal, and we have P−1 = PT

I A → PA permutes the rows of A
I A → APT permutes the columns of A
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Weighted directed graph representation of matrices
Define a directed graph from the
nonzero entries of a matrix A = (aik):

I Nodes: N = {Ni}i=1...n
I Directed edges:

E = {
−−−→NkNl |akl 6= 0}

I Matrix entries ≡ weights of
directed edges

A =


1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.



N1

N2

N3

N4

N5

1

2

4

3 5

6

7

8

9
10

11

12

I 1:1 equivalence between matrices and weighted directed graphs
I Convenient e.g. for sparse matrices
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Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

PAPT =
(

A11 A12
0 A22

)

A is irreducible if it is not reducible.

Theorem (Varga, Th. 1.17): A is irreducible ⇔ the matrix graph is
connected, i.e. for each ordered pair (Ni , Nj) there is a path consisting of
directed edges, connecting them.

Equivalently, for each i , j there is a sequence of consecutive nonzero matrix
entries aik1 , ak1k2 , ak2k3 . . . , akr−1kr akr j .

�
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Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue λ is a boundary point of the union of all the disks

λ ∈ ∂
⋃

i=1...n
{µ ∈ C : |µ − aii | ≤ Λi}

Then, all n Gershgorin circles pass through λ, i.e. for i = 1 . . . n,

|λ − aii | = Λi
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Taussky theorem proof
Proof Assume λ is eigenvalue, x a corresponding eigenvector, normalized
such that maxi=1...n |xi | = |xr | = 1. From Ax = λx it follows that

(λ − arr )xr =
∑

j=1...n
j 6=r

arjxj (1)

|λ − arr | ≤
∑

j=1...n
j 6=r

|arj | · |xj | ≤
∑

j=1...n
j 6=r

|arj | = Λr (2)

λ is boundary point ⇒ |λ − arr | =
∑

j=1...n
j 6=r

|arj | · |xj | = Λr

⇒ For all p 6= r with arp 6= 0, |xp | = 1.

Due to irreducibility there is at least one p with arp 6= 0. For this p,
|xp | = 1 and equation (2) is valid (with p in place of r) ⇒ |λ − app | = Λp

Due to irreducibility, this is true for all p = 1 . . . n. �
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Consequences for heat example from Taussky theorem

I B = I − D−1A

I We had bii = 0, Λi =
{

1
2 , i = 1, n
1 i = 2 . . . n − 1

⇒ estimate |λi | ≤ 1

I Assume |λi | = 1. Then λi lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both
circles with radius 1

2 and 1 around 0.
I Contradiction ⇒ |λi | < 1, ρ(B) < 1!
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Diagonally dominant matrices
Definition Let A = (aij) be an n × n matrix.
I A is diagonally dominant if

(i) for i = 1 . . . n, |aii | ≥
∑

j=1...n
j 6=i

|aij |

I A is strictly diagonally dominant (sdd) if

(i) for i = 1 . . . n, |aii | >
∑

j=1...n
j 6=i

|aij |

I A is irreducibly diagonally dominant (idd) if
(i) A is irreducible

(ii) A is diagonally dominant –
for i = 1 . . . n, |aii | ≥

∑
j=1...n

j 6=i

|aij |

(iii) for at least one r , 1 ≤ r ≤ n, |arr | >
∑

j=1...n
j 6=r

|arj |
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A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.

If in addition, aii > 0 is real for i = 1 . . . n, then all real parts of the
eigenvalues of A are positive:

Reλi > 0, i = 1 . . . n
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A very practical nonsingularity criterion, proof I

Proof:
I Assume A strictly diagonally dominant. Then the union of the

Gershgorin disks does not contain 0 and λ = 0 cannot be an
eigenvalue ⇒ A is nonsingular.

I As for the real parts, the union of the disks is⋃
i=1...n

{µ ∈ C : |µ − aii | ≤ Λi}

and Reµ must be larger than zero if µ should be contained.
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A very practical nonsingularity criterion, proof I

I Assume A irreducibly diagonally dominant. Then, if 0 is an
eigenvalue, it sits on the boundary of one of the Gershgorin disks.

By Taussky theorem, we have |aii | = Λi for all i = 1 . . . n.

This is a contradiction as by definition there is at least one i such
that |aii | > Λi

I Assume aii > 0, real. All real parts of the eigenvalues must be ≥ 0.

Therefore, if a real part is 0, it lies on the boundary of at least one
disk.

By Taussky theorem it must be contained at the same time in the
boundary of all the disks and in the imaginary axis.

This contradicts the fact that there is at least one disk which does
not touch the imaginary axis as by definition there is at least one i
such that |aii | > Λi �
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Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.

�
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Heat conduction matrix

A =



α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α


I A is idd ⇒ A is nonsingular
I diagA is positive real ⇒ eigenvalues of A have positive real parts
I A is real, symmetric ⇒ A is positive definite
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Perron-Frobenius Theorem (1912/1907)
Definition: A real n-vector x is
I positive (x > 0) if all entries of x are positive
I nonnegative (x ≥ 0) if all entries of x are nonnegative

Definition: A real n × n matrix A is
I positive (A > 0) if all entries of A are positive
I nonnegative (A ≥ 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A ≥ 0 be an irreducible n × n matrix.
Then

(i) A has a positive real eigenvalue equal to its spectral radius ρ(A).
(ii) To ρ(A) there corresponds a positive eigenvector x > 0.
(iii) ρ(A) increases when any entry of A increases.
(iv) ρ(A) is a simple eigenvalue of A.

Proof: See Varga. �
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Perron-Frobenius for general nonnegative matrices
Each n × n matrix can be brought to the normal form

PAPT =


R11 R12 . . . R1m
0 R22 . . . R2m
...

. . .
0 0 . . . Rmm


where for j = 1 . . . m, either Rjj irreducible or Rjj = (0).

Theorem(Varga, Th. 2.20) Let A ≥ 0 be an n × n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius ρ(A). This
eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular

(ii) To ρ(A) there corresponds a nonzero eigenvector x ≥ 0.
(iii) ρ(A) does not decrease when any entry of A increases.

Proof: See Varga; σ(A) =
m⋃

j=1
σ(Rjj), apply irreducible Perron-Frobenius

to Rjj . �
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Theorem on Jacobi matrix
Theorem: Let A be sdd or idd, and D its diagonal. Then

ρ(|I − D−1A|) < 1

Proof: Let B = (bij) = I − D−1A. Then

bij =
{

0, i = j
− aij

aii
, i 6= j

If A is sdd, then for i = 1 . . . n,

∑
j=1...n

|bij | =
∑

j=1...n
j 6=i

|aij

aii
| = Λi

|aii |
< 1

Therefore, ρ(|B|) < 1.
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Theorem on Jacobi matrix II
If A is idd, then for i = 1 . . . n,∑

j=1...n
|bij | =

∑
j=1...n

j 6=i

|aij

aii
| = Λi

|aii |
≤ 1

∑
j=1...n

|brj | = Λr
|arr |

< 1 for at least one r

Therefore, ρ(|B|) <= 1. Assume ρ(|B|) = 1. By Perron-Frobenius, 1 is an
eigenvalue. As it is in the union of the Gershgorin disks, for some i ,

|λ| = 1 ≤ Λi
|aii |

≤ 1

and it must lie on the boundary of this union. By Taussky then one has for
all i

|λ| = 1 ≤ Λi
|aii |

= 1

which contradicts the idd condition. �
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Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that aii > 0
and aij ≤ 0 for i 6= j. Then ρ(I − D−1A) < 1, i.e. the Jacobi method
converges.

Proof In this case, |B| = B �.
I Here, we made assumptions on the sign pattern and the diagonal

dominance of the matrix. No additional information on the nonzero
pattern or the symmetry has been used.

I Does this generalize to other iterative methods ?
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Regular splittings

I A = M − N is a regular splitting if
I M is nonsingular
I M−1, N are nonnegative, i.e. have nonnegative entries

I Regard the iteration uk+1 = M−1Nuk + M−1b.
I B = I − M−1A = M−1N is a nonnegative matrix.
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Convergence theorem for regular splitting
Theorem: Assume A is nonsingular, A−1 ≥ 0, and A = M − N is a
regular splitting. Then ρ(M−1N) < 1.

Proof: Let B = M−1N. Then A = M(I − B), therefore I − B is
nonsingular.

In addition

A−1N = (M(I − M−1N))−1N = (I − M−1N)−1M−1N = (I − B)−1B

By Perron-Frobenius (for general matrices), ρ(B) is an eigenvalue with a
nonnegative eigenvector x. Thus,

0 ≤ A−1Nx = ρ(B)
1 − ρ(B)x

Therefore 0 ≤ ρ(B) ≤ 1.
Assume that ρ(B) = 1. Then there exists x 6= 0 such that Bx = x.
Consequently, (I − B)x = 0, contradicting the nonsingularity of I − B.
Therefore, ρ(B) < 1. �


