
Lecture 2 Slide 1

Scientific Computing WS 2019/2020

Lecture 2

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Lecture 1 Slide 2

Me

I Name: Dr. Jürgen Fuhrmann (no, not Prof.)
I Affiliation: Weierstrass Institute for Applied Analysis and Stochastics, Berlin

(WIAS);
Deputy Head, Numerical Mathematics and Scientific Computing

I Contact: juergen.fuhrmann@wias-berlin.de
I Course homepage:

http://www.wias-berlin.de/people/fuhrmann/teach.html

I Experience/Field of work:
I Numerical solution of partial differential equations (PDEs)
I Development, investigation, implementation of finite volume discretizations

for nonlinear systems of PDEs
I Ph.D. on multigrid methods
I Applications: electrochemistry, semiconductor physics, groundwater…
I Software development:

I WIAS code pdelib (http://pdelib.org)
I Languages: C, C++, Python, Lua, Fortran, Julia
I Visualization: OpenGL, VTK

Lecture 2 Slide 2

Lecture 1 Slide 3

Admin stuff

I Lectures: Tue 10-12 FH 311, Thu 10-12 MA269
I Consultation: Thu 12-13 MA269, more at WIAS on appointment
I There will be coding assignments in Julia

I Unix pool
I Installation possible for Linux, MacOSX, Windows

I Access to examination
I Attend ≈ 80% of lectures
I Return assignments

I Slides and code will be online, a script is being developed from the slides.
I See course homepage for literature, specific hints during course

Lecture 2 Slide 3

Lecture 2 Slide 4

UNIX Pool

I Please sign up to the account list provided by the admins
I Working groups of two students per account/computer
I Once the administrators open the accounts, you will be able to log in and

enter a new password

I Please check and correct the attendance list
I All examples during this course will be available on UNIX pool systems.

I More information is on https://www.math.tu-berlin.de/iuk/
lehrrechnerbereich/v_menue/lehrrechnerbereich/

I All homework can be done on UNIX pool machines as well (Room MA241
outside of course hours)

I Class examples can be executed on the Jupyter server
https://www-pool.math.tu-berlin.de/jupyter/ (use your WIR account)
(This possibility is new to both the admins and myself, so we are still
exploring...)

https://www.math.tu-berlin.de/iuk/lehrrechnerbereich/v_menue/lehrrechnerbereich/
https://www.math.tu-berlin.de/iuk/lehrrechnerbereich/v_menue/lehrrechnerbereich/
https://www-pool.math.tu-berlin.de/jupyter/

Lecture 2 Slide 5

Recap from last time

Lecture 1 Slide 15

Confusio Linguarum

”And the whole land was of one lan-
guage and of one speech. ... And
they said, Go to, let us build us a city
and a tower whose top may reach
unto heaven. ... And the Lord said,
behold, the people is one, and they
have all one language. ... Go to,
let us go down, and there confound
their language that they may not un-
derstand one another’s speech. So
the Lord scattered them abroad from
thence upon the face of all the earth.”
(Daniel 1:1-7)

Lecture 2 Slide 6

Lecture 1 Slide 17

Intended aims and topics of this course

I Indicate a reasonable path within this labyrinth
I Introduction to Julia
I Software management skills (version control)
I Relevant topics from numerical analysis
I Focus on partial differential equation (PDE) solution

I Solution of large linear systems of equations
I Finite elements
I Finite volumes
I Mesh generation
I Linear and nonlinear solvers
I Parallelization
I Visualization

Lecture 2 Slide 7

Lecture 1 Slide 19

von Neumann Architecture

CPU Core Memory (RAM)

Bus

USB Controller GPU

Monitor

IO Controller

Control

ALU

REG

Cache

REG REG REG

USB IO Mouse Keyboard

HDD/SSD

I Data and code stored in the same
memory ⇒ encoded in the same
way, stored as binary numbers

I Instruction cycle:
I Instruction decode: determine

operation and operands
I Get operands from memory
I Perform operation
I Write results back
I Continue with next instruction

Lecture 2 Slide 8

Lecture 1 Slide 25

Machine code

I Detailed instructions for the actions of the CPU
I Not human readable
I Sample types of instructions:

I Transfer data between memory location and register
I Perform arithmetic/logic operations with data in register
I Check if data in register fulfills some condition
I Conditionally change the memory address from where instructions are fetched

≡ “jump” to address
I Save all register context and take instructions from different memory location

until return ≡ “call”
I Instructions are very hard to handle, although programming started this way

. . .

534c 29e5 31db 48c1 fd03 4883 ec08 e85d
feff ff48 85ed 741e 0f1f 8400 0000 0000
4c89 ea4c 89f6 4489 ff41 ff14 dc48 83c3
0148 39eb 75ea 4883 c408 5b5d 415c 415d
415e 415f c390 662e 0f1f 8400 0000 0000
f3c3 0000 4883 ec08 4883 c408 c300 0000
0100 0200 4865 6c6c 6f20 776f 726c 6400
011b 033b 3400 0000 0500 0000 20fe ffff
8000 0000 60fe ffff 5000 0000 4dff ffff

Lecture 2 Slide 9

Lecture 1 Slide 26

Assembler code

I Human readable representation of CPU instructions
I Some write it by hand …

I Code close to abilities and structure of the machine
I Handle constrained resources (embedded systems, early computers)

I Translated to machine code by a programm called assembler

.file "code.c"

.section .rodata

.LC0:

.string "Hello world"

.text

...
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
subq $16, %rsp
movl %edi, -4(%rbp)
movq %rsi, -16(%rbp)
movl $.LC0, %edi
movl $0, %eax
call printf

Lecture 2 Slide 10

Lecture 1 Slide 27

Compiled high level languages

I Algorithm description using mix of mathematical formulas and statements
inspired by human language

I Translated to machine code (resp. assembler) by compiler

#include <stdio.h>
int main (int argc, char *argv[])
{
printf("Hello world");

}

I “Far away” from CPU ⇒ the compiler is responsible for creation of
optimized machine code

I Fortran, COBOL, C, Pascal, Ada, Modula2, C++, Go, Rust, Swift
I Strongly typed
I Tedious workflow: compile - link - run

source3.c

source2.c

source1.c

source3.o

source2.o

source1.o

executable output

compile

compile

compile

link run as system executable

Lecture 2 Slide 11

Lecture 1 Slide 29

Compiled languages in Scientific Computing

I Fortran: FORmula TRANslator (1957)
I Fortran4: really dead
I Fortran77: large number of legacy libs: BLAS, LAPACK, ARPACK …
I Fortran90, Fortran2003, Fortran 2008

I Catch up with features of C/C++ (structures,allocation,classes,inheritance,
C/C++ library calls)

I Lost momentum among new programmers
I Hard to integrate with C/C++
I In many aspects very well adapted to numerical computing
I Well designed multidimensional arrays

I C: General purpose language
I K&R C (1978) weak type checking
I ANSI C (1989) strong type checking
I Had structures and allocation early on
I Numerical methods support via libraries
I Fortran library calls possible

I C++: The powerful object oriented language
I Superset of C (in a first approximation)
I Classes, inheritance, overloading, templates (generic programming)
I C++11: ≈ 2011 Quantum leap: smart pointers, threads, lambdas, initializer

lists in standard
I Since then: C++14, C++17, C++20
I With great power comes the possibility of great failure…

Lecture 2 Slide 12

Lecture 1 Slide 30

High level scripting languages

I Algorithm description using mix of mathematical formulas and statements
inspired by human language

I Simpler syntax, less ”boiler plate”

print("Hello world")

I Need intepreter in order to be executed
I Very far away from CPU ⇒ usually significantly slower compared to

compiled languages
I Matlab, Python, Lua, perl, R, Java, javascript
I Less strict type checking, powerful introspection capabilities
I Immediate workflow: “just run”

I in fact: first compiled to bytecode which can be interpreted more efficiently

module1.py

module2.py

module3.py

main.py bytecode output

import
bytecode compilation run in interpreter

Lecture 2 Slide 13

Lecture 1 Slide 31

JIT based languages

I Most interpreted language first compile to bytecode wich then is run in the
interpreter and not on the processor ⇒ perfomance bottleneck,
I remedy: use compiled language for performance critical parts
I “two language problem”, additional work for interface code

I Better: Just In Time compiler (JIT): compile to machine code “on the fly”
I V8 → javascript
I LuaJIT, Java, Smalltalk
I LLVM → Julia (v1.0 since August, 2018)
I LLVM Compiler infrastructure → Python/NUMBA

I Drawback over compiled languages: compilation delay at every start, can be
mediated by caching

I Advantage over compiled languages: simpler syntax, tracing JIT,
i.e. optimization at runtime

Module1

Module2

Module3

Main.jl machine code output

import
JIT compilation run on processor

Lecture 2 Slide 14

Lecture 1 Slide 32

Julia History & Resources

I 2009-02: V0.1 Development started in 2009
at MIT (S. Bezanson, S. Karpinski, V.
Shah, A. Edelman)

I 2012: V0.1
I 2016-10: V0.5 experimental threading

support
I 2017-02: SIAM Review: Julia - A Fresh

Approach to Numerical Computing
I 2018-08: V1.0
I 2018 Wilkinson Prize for numerical software

I Homepage incl. download link: https://julialang.org/

I Wikibook: https://en.wikibooks.org/wiki/Introducing_Julia

I TU Berlin Jupyter server
https://www-pool.math.tu-berlin.de/jupyter: you will be able to
user your UNIX pool account

Lecture 2 Slide 15

Lecture 1 Slide 33

Julia - a first characterization

“Like matlab, but faster”

“Like matlab, but open source”

“Like python + numpy, but faster and counting from 1”
I Main purpose: performant numerics
I Multidimensional arrays as first class objects

(like Fortran, Matlab; unlike C++, Swift, Rust, Go . . .)
I Array indices counting from 1

(like Fortran, Matlab; unlike C++, python) - but it seems this becomes
more flexible

I Array slicing etc.
I Extensive library of standard functions, linear algebra operations
I Package ecosystem

Lecture 2 Slide 16

