TU Berlin, Scientific Computing, WS19/20 Homework assignment \#1

Please return this assignment by by Tuesday, Nov. 12. Send it in form of a compressed (zip) file by e-mail to juergen.fuhrmann@wias-berlin.de. Please prefix file and subdirectory names with your last names, e.g. "MuellerNguyenHW01.zip". The file should contain a subdirectory with

- the commented Julia code in form of a module according to this template:

```
module MuellerNguyenHWO1
function task1(;optional_parameters)
end
function task2(;optional_parameters)
end
end
```

- a pdf describing your answers. Hint: you can use the package Literate.jl to create this pdf from your source (e.g. via Jupyter notebook or via markdown + pandoc)

1 Summation

Write a Julia program which calculates $\sum_{n=1}^{K} \frac{1}{n^{2}}$ for $K=10,100,1000,10000,100000$ and report the values for Float16, Float32, Float64. Compare the results to the value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ (hint: look it up under "Basel problem").

What can be done in order to improve the accuracy of the calculation?

2 Heat conduction problem

Given:

- Domain $\Omega=(0,1)$
- Right hand side $f: \Omega \rightarrow \mathbb{R}, f=1$
- Boundary values $v_{L}, v_{R}=0$
- Transfer coefficient $\alpha=1$

Search function $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{array}{rlr}
-u^{\prime \prime} & =f \quad \text { in } \Omega \\
-u^{\prime}(0)+\alpha\left(u(0)-v_{L}\right) & =0 \\
u^{\prime}(1)+\alpha\left(u(1)-v_{R}\right) & =0 &
\end{array}
$$

1. Calculate the exact solution of this problem

- What is the limit of this solution for $\alpha \rightarrow \infty$?

2. Implement the finite difference discretization as a linear tridiagonal system on an equidistributed mesh with $N=2^{k}+1$ points with $k=6 \ldots 14$. Hint: have a look at the slides of https://www.wias-berlin.de/people/ fuhrmann/blobs/SciComp-Winter-1920-105-linsolve.html
3. Use different solution strategies to solve the resulting linear system of equations:
a) Your implementation of TDMA (Progonka)
b) Julia dense matrix LU factorization
c) Julia tridiagonal matrix LU factorization
d) Julia sparse matrix LU factorization
e) Multiplication by the inverse

- Check the results against the exact solution. What happens if N is increased?
- Provide timings using the @benchmark macro of the Julia BenchmarkTools. Which method is the fastest and why?
- What is the number of nonzero entries of the inverse matrix? Why don't we calculate the inverse instead of the LU factorization to solve the linear problem?
- What happens for increased values of the transfer coefficient $\alpha=1,10,100,1.0 \cdot 10^{5}, 1.0 \cdot 10^{10}, 1.0 \cdot 10^{20}$?

