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TOP 500 2018 rank 1-6
Based on linpack benchmark: solution of dense linear system. Typical
desktop computer: Rmax ≈ 100 . . . 1000GFlop/s

[Source:www.top500.org ]
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TOP 500 2018 rank 7-13

[Source:www.top500.org ]
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Parallel paradigms

SIMD
Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

MIMD
Multiple Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

I ”classical” vector systems: Cray,
Convex . . .

I Graphics processing units (GPU)

I Shared memory systems
I IBM Power, Intel Xeon, AMD

Opteron . . .
I Smartphones . . .
I Xeon Phi R.I.P.

I Distributed memory systems
I interconnected CPUs
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MIMD Hardware: Distributed memory

[Source: computing.llnl.gov/tutorials]

I “Linux Cluster”
I “Commodity Hardware”
I Memory scales with number of

CPUs interconneted
I High latency for communication
I Mostly programmed using MPI

(Message passing interface)
I Explicit programming of

communications:
gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)
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MIMD Hardware: Shared Memory
Symmetric Multiprocessing

(SMP)/Uniform memory acces
(UMA)

[Source: computing.llnl.gov/tutorials]

I Similar processors
I Similar memory access times

Nonuniform Memory Access (NUMA)

[Source: computing.llnl.gov/tutorials]

I Possibly varying memory access
latencies

I Combination of SMP systems
I ccNUMA: Cache coherent

NUMA

I Shared memory: one (virtual) address space for all processors involved
I Communication hidden behind memory acces
I Not easy to scale large numbers of CPUS
I MPI works on these systems as well
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Hybrid distributed/shared memory

I Combination of shared and distributed memory approach
I Top 500 computers

[Source: computing.llnl.gov/tutorials]

I Shared memory nodes can be mixed CPU-GPU
I Need to master both kinds of programming paradigms
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Shared memory programming: pthreads
I Thread: lightweight process which can run parallel to others
I pthreads (POSIX threads): widely distributed
I cumbersome tuning + syncronization
I basic structure for higher level interfaces

#include <pthread.h>
void *PrintHello(void *threadid)
{ long tid = (long)threadid;

printf("Hello World! It's me, thread #%ld!\n", tid);
pthread_exit(NULL);

}
int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc; long t;
for(t=0; t<NUM_THREADS; t++)
{

printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc) {printf("ERROR; return code from pthread_create() is %d\n", rc); exit(-1);}

}
pthread_exit(NULL);

}

Source: computing.llnl.gov/tutorials

I compile and link with

gcc -pthread -o pthreads pthreads.c
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Shared memory programming: C++11 threads
I Threads introduced into C++ standard with C++11
I Quite late. . . many codes already use other approaches
I But interesting for new applications

#include <iostream>
#include <thread>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main() {
std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
//Join the threads with the main thread
for (int i = 0; i < num_threads; ++i) {

t[i].join();
}
return 0;

}

Source: https://solarianprogrammer.com/2011/12/16/cpp-11-thread-tutorial/

I compile and link with

g++ -std=c++11 -pthread cpp11threads.cxx -o cpp11threads
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Thread programming: mutexes and locking

I If threads work with common data (write to the same memory
address, use the same output channel) access must be synchronized

I Mutexes allow to define regions in a program which are accessed by
all threads in a sequential manner.

#include <mutex>
std::mutex mtx;
void call_from_thread(int tid) {

mtx.lock()
std::cout << "Launched by thread " << tid << std::endl;
mtx.unlock()

}
int main()
{

std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
for (int i = 0; i < num_threads; ++i) t[i].join();
return 0;

}

I Barrier: all threads use the same mutex for the same region
I Deadlock: two threads block each other by locking two different locks

and waiting for each other to finish
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Shared memory programming: OpenMP
I Mostly based on pthreads
I Available in C++,C,Fortran for all common compilers
I Compiler directives (pragmas) describe parallel regions

... sequential code ...
#pragma omp parallel
{

... parallel code ...
}
(implicit barrier)
... sequential code ...

[Source: computing.llnl.gov/tutorials]
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Shared memory programming: OpenMP II
#include <iostream>
#include <cstdlib>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main (int argc, char *argv[])
{

int num_threads=1;
if (argc>1) num_threads=atoi(argv[1]);

#pragma omp parallel for
for (int i = 0; i < num_threads; ++i)
{

call_from_thread(i);
}
return 0;

}

I compile and link with

g++ -fopenmp -o cppomp cppomp.cxx
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Example: u = au + v und s = u · v

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)

u[i]+=a*v[i];

//implicit barrier
double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

I Code can be parallelized by introducing compiler directives
I Compiler directives are ignored if not in parallel mode
I Write conflict with + s: several threads may access the same variable
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Preventing conflicts in OpenMP

I Critical sections are performed only by one thread at a time

double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
#pragma omp critical
{

s+=u[i]*v[i];
}

I Expensive, parallel program flow is interrupted
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Do it yourself reduction
I Remedy: accumulate partial results per thread, combine them after

main loop
I “Reduction”

#include <omp.h>
int maxthreads=omp_get_max_threads();
double s0[maxthreads];
double u[n],v[n];
for (int ithread=0;ithread<maxthreads; ithread++)

s0[ithread]=0.0;

#pragma omp parallel for
for(int i=0; i<n ; i++)
{

int ithread=omp_get_thread_num();
s0[ithread]+=u[i]*v[i];

}

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)

s+=s0[ithread];

Lecture 23 Slide 15



Lecture 22 Slide 29

OpenMP Reduction Variables

double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

I In standard situations, reduction variables can be used to avoid write
conflicts, no need to organize this by programmer
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OpenMP: further aspects

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)
u[i]+=a*u[i];

[Quelle: computing.llnl.gov/tutorials]

I Distribution of indices with thread is implicit and can be influenced by
scheduling directives

I Number of threads can be set via OMP_NUM_THREADS environment
variable or call to omp_set_num_threads()

I First Touch Principle (NUMA): first thread which “touches” data
triggers the allocation of memory with the processeor where the
thread is running on
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Parallelization of PDE solution

∆u = f inΩ, u|∂Ω = 0

⇒ u =
∫

Ω
f (y)G(x , y)dy .

I Solution in x ∈ Ω is influenced by values of f in all points in Ω
I ⇒ global coupling: any solution algorithm needs global

communication
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Structured and unstructured grids

Structured grid

I Easy next neighbor access via
index calculation

I Efficient implementation on
SIMD/GPU

I Strong limitations on geometry

Unstructured grid

[Quelle: tetgen.org]

I General geometries
I Irregular, index vector based

access to next neighbors
I Hardly feasible fo SIMD/GPU
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Stiffness matrix assembly for Laplace operator for P1 FEM

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx

=
∫

Ω

∑
K∈Th

∇φi |K∇φj |K dx

Assembly loop:
Set aij = 0.
For each K ∈ Th:
For each m, n = 0 . . . d :

smn =
∫

K
∇λm∇λn dx

ajdof (K ,m),jdof (K ,n) = ajdof (K ,m),jdof (K ,n) + smn
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Mesh partitioning
Partition set of cells in Th, and color the graph of the partitions.
Result: C: set of colors, Pc : set of partitions of given color. Then:
Th =

⋃
c∈C

⋃
p∈Pc

p
I Sample algorithm:

I Subdivision of grid cells into equally sized subsets by METIS
(Karypis/Kumar) → Partitions of color 1

I Create separators along boundaries → Partitions of color 2
I “triple points” → Partitions of color 3

I No interference between assembly loops for partitions of the same
color

I Immediate parallelization without critical regions
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Parallel stiffness matrix assembly for Laplace operator for
P1 FEM

Set aij = 0.
For each color c ∈ C
#pragma omp parallel for

For each p ∈ Pc :
For each K ∈ p:
For each m, n = 0 . . . d :

smn =
∫

K ∇λm∇λn dx
ajdof (K ,m),jdof (K ,n)+ = smn

I Prevent write conflicts by loop organization
I No need for critical sections
I Similar structure for Voronoi finite volumes, nonlinear operator

evaluation, Jacobi matrix assembly
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Linear system solution

I Sparse matrices
I Direct solvers are hard to parallelize though many efforts are

undertaken, e.g. Pardiso
I Iterative methods easier to parallelize

I partitioning of vectors + coloring inherited from cell partitioning
I keep loop structure (first touch principle)
I parallelize

I vector algebra
I scalar products
I matrix vector products
I preconditioners
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MPI - Message passing interface

I library, can be used from C,C++, Fortran, python
I de facto standard for programming on distributed memory systems

(since ≈ 1995)
I highly portable
I support by hardware vendors: optimized communication speed
I based on sending/receiving messages over network

I instead, shared memory can be used as well
I very elementary programming model, need to hand-craft

communications
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How to install

I OpenMP/C++11 threads come along with compiler
I MPI needs to be installed in addition
I Can run on multiple systems
I openmpi available for Linux/Mac (homebrew)/ Windows (cygwin)

I https://www.open-mpi.org/faq/?category=mpi-apps
I Compiler wrapper mpic++

I wrapper around (configurable) system compiler
I proper flags + libraries to be linked

I Process launcher mpirun
I launcher starts a number of processes which execute statements

independently, ocassionally waiting for each other
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Threads vs processes

I MPI is based on processes, C++11 threads and OpenMP are based
on threads.

I Processes are essentially like commands launched from the command
line and require large bookeeping, each process has its own address
space

I Threads are created within a process and share its address space,
require significantly less bookeeping and resources

I Multithreading requires careful programming since threads share data
structures that should only be modified by one thread at a time.
Unlike threads, with processes there can be no write conflicts

I When working with multiple processes, one becomes responsible for
inter-process communication
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MPI Programming Style

I Generally, MPI allows to work with completely different programs
I Typically, one writes one program which is started in multiple

incarnations on different hosts in a network or as different processes
on one host

I MPI library calls are used to determine the identiy of a running
program and the region of the data to work on

I Communication + barriers have to be programmed explicitely.
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MPI Hello world
// Initialize MPI.
MPI_Init ( &argc, &argv );

// Get the number of processes.
MPI_Comm_size ( MPI_COMM_WORLD, &nproc );

// Determine the rank (number, identity) of this process.
MPI_Comm_rank ( MPI_COMM_WORLD, &iproc );

if ( iproc == 0 )
{

cout << "Number of available processes: " << nproc << "\n";
}
cout << "Hello from proc " << iproc << endl;
MPI_Finalize ( );

I Compile with mpic++ mpi-hello.cpp -o mpi-hello
I All MPI programs begin with MPI_Init() and end with

MPI_Finalize()
I the communicator MPI_COMM_WORLD designates all processes in the

current process group, there may be other process groups etc.
I The whole program is started N times as system process, not as

thread: mpirun -np N mpi-hello
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MPI hostfile

host1 slots=n1
host2 slots=n2

...

I Distribute code execution over several hosts
I MPI gets informed how many independent processes can be run on

which node and distributes the required processes accordingly
I MPI would run more processes than slots available. Avoid this

situation !
I Need ssh public key access and common file system access for proper

execution
I Telling mpi to use host file:

mpirun --hostfile hostfile -np N mpi-hello
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MPI Send

MPI_Send (start, count, datatype, dest, tag, comm)

I Send data to other process(es)
I The message buffer is described by (start, count, datatype):

I start: Start address
I count: number of items
I datatype: data type of one item

I The target process is specified by dest, which is the rank of the target
process in the communicator specified by comm

I When this function returns, the data has been delivered to the system
and the buffer can be reused. The message may not have been
received by the target process.

I The tag codes some type of message
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MPI Receive

MPI_Recv(start, count, datatype, source, tag, comm, status)

I Waits until a matching (on source and tag) message is received from
the system, and the buffer can be used.

I source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

I status contains further information
I Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.
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MPI Broadcast

MPI_Bcast(start, count, datatype, root, comm )

I Broadcasts a message from the process with rank “root” to all other
processes of the communicator

I Root sends, all others receive.
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Differences with OpenMP

I Programmer has to care about all aspects of communication and data
distribution, even in simple situations

I In simple situations (regularly structured data) OpenMP provides
reasonable defaults. For MPI these are not available

I For PDE solvers (FEM/FVM assembly) on unstructured meshes, in
both cases we have to care about data distribution

I We need explicit handling of data at interfaces with MPI, while with
OpenMP, possible communication is hidden behind the common
address space
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Examination dates

Tue Feb 26.
Wed Feb 27.
Wed Mar 14.
Thu Mar 15.
Tue Mar 26.
Wed Mar 27.
Mon Apr 29.(?)
Tue Apr 30.(?)

Time: 10:00-13:00 (6 slots per examination date)
Please inscribe yourself into the corresponding sheets. (See also the back
sides).
Room: t.b.a. (MA, third floor)
Prof. Nabben answers all administrative questions.
Please bring your yellow sheets 3 days before the examination to Frau
Gillmeister



Lecture 23 Slide 35

No lecture on Tue Jan 29!


