
Lecture 23 Slide 1

Scientific Computing WS 2018/2019

Lecture 23

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de

Lecture 22 Slide 15

TOP 500 2018 rank 1-6
Based on linpack benchmark: solution of dense linear system. Typical
desktop computer: Rmax ≈ 100 . . . 1000GFlop/s

[Source:www.top500.org]

Lecture 23 Slide 2

Lecture 22 Slide 16

TOP 500 2018 rank 7-13

[Source:www.top500.org]

Lecture 23 Slide 3

Lecture 22 Slide 17

Parallel paradigms

SIMD
Single Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

MIMD
Multiple Instruction Multiple Data

[Source: computing.llnl.gov/tutorials]

I ”classical” vector systems: Cray,
Convex . . .

I Graphics processing units (GPU)

I Shared memory systems
I IBM Power, Intel Xeon, AMD

Opteron . . .
I Smartphones . . .
I Xeon Phi R.I.P.

I Distributed memory systems
I interconnected CPUs

Lecture 23 Slide 4

Lecture 22 Slide 18

MIMD Hardware: Distributed memory

[Source: computing.llnl.gov/tutorials]

I “Linux Cluster”
I “Commodity Hardware”
I Memory scales with number of

CPUs interconneted
I High latency for communication
I Mostly programmed using MPI

(Message passing interface)
I Explicit programming of

communications:
gather data, pack, send, receive,
unpack, scatter

MPI_Send(buf,count,type,dest,tag,comm)
MPI_Recv(buf,count,type,src,tag,comm,stat)

Lecture 23 Slide 5

Lecture 22 Slide 19

MIMD Hardware: Shared Memory
Symmetric Multiprocessing

(SMP)/Uniform memory acces
(UMA)

[Source: computing.llnl.gov/tutorials]

I Similar processors
I Similar memory access times

Nonuniform Memory Access (NUMA)

[Source: computing.llnl.gov/tutorials]

I Possibly varying memory access
latencies

I Combination of SMP systems
I ccNUMA: Cache coherent

NUMA

I Shared memory: one (virtual) address space for all processors involved
I Communication hidden behind memory acces
I Not easy to scale large numbers of CPUS
I MPI works on these systems as well

Lecture 23 Slide 6

Lecture 22 Slide 20

Hybrid distributed/shared memory

I Combination of shared and distributed memory approach
I Top 500 computers

[Source: computing.llnl.gov/tutorials]

I Shared memory nodes can be mixed CPU-GPU
I Need to master both kinds of programming paradigms

Lecture 23 Slide 7

Lecture 22 Slide 21

Shared memory programming: pthreads
I Thread: lightweight process which can run parallel to others
I pthreads (POSIX threads): widely distributed
I cumbersome tuning + syncronization
I basic structure for higher level interfaces

#include <pthread.h>
void *PrintHello(void *threadid)
{ long tid = (long)threadid;

printf("Hello World! It's me, thread #%ld!\n", tid);
pthread_exit(NULL);

}
int main (int argc, char *argv[])
{

pthread_t threads[NUM_THREADS];
int rc; long t;
for(t=0; t<NUM_THREADS; t++)
{

printf("In main: creating thread %ld\n", t);
rc = pthread_create(&threads[t], NULL, PrintHello, (void *)t);
if (rc) {printf("ERROR; return code from pthread_create() is %d\n", rc); exit(-1);}

}
pthread_exit(NULL);

}

Source: computing.llnl.gov/tutorials

I compile and link with

gcc -pthread -o pthreads pthreads.c

Lecture 23 Slide 8

Lecture 22 Slide 22

Shared memory programming: C++11 threads
I Threads introduced into C++ standard with C++11
I Quite late. . . many codes already use other approaches
I But interesting for new applications

#include <iostream>
#include <thread>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main() {
std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
//Join the threads with the main thread
for (int i = 0; i < num_threads; ++i) {

t[i].join();
}
return 0;

}

Source: https://solarianprogrammer.com/2011/12/16/cpp-11-thread-tutorial/

I compile and link with

g++ -std=c++11 -pthread cpp11threads.cxx -o cpp11threads

Lecture 23 Slide 9

Lecture 22 Slide 23

Thread programming: mutexes and locking

I If threads work with common data (write to the same memory
address, use the same output channel) access must be synchronized

I Mutexes allow to define regions in a program which are accessed by
all threads in a sequential manner.

#include <mutex>
std::mutex mtx;
void call_from_thread(int tid) {

mtx.lock()
std::cout << "Launched by thread " << tid << std::endl;
mtx.unlock()

}
int main()
{

std::thread t[num_threads];
for (int i = 0; i < num_threads; ++i) {

t[i] = std::thread(call_from_thread, i);
}
std::cout << "Launched from main\n";
for (int i = 0; i < num_threads; ++i) t[i].join();
return 0;

}

I Barrier: all threads use the same mutex for the same region
I Deadlock: two threads block each other by locking two different locks

and waiting for each other to finish

Lecture 23 Slide 10

Lecture 22 Slide 24

Shared memory programming: OpenMP
I Mostly based on pthreads
I Available in C++,C,Fortran for all common compilers
I Compiler directives (pragmas) describe parallel regions

... sequential code ...
#pragma omp parallel
{

... parallel code ...
}
(implicit barrier)
... sequential code ...

[Source: computing.llnl.gov/tutorials]

Lecture 23 Slide 11

Lecture 22 Slide 25

Shared memory programming: OpenMP II
#include <iostream>
#include <cstdlib>

void call_from_thread(int tid) {
std::cout << "Launched by thread " << tid << std::endl;

}

int main (int argc, char *argv[])
{

int num_threads=1;
if (argc>1) num_threads=atoi(argv[1]);

#pragma omp parallel for
for (int i = 0; i < num_threads; ++i)
{

call_from_thread(i);
}
return 0;

}

I compile and link with

g++ -fopenmp -o cppomp cppomp.cxx

Lecture 23 Slide 12

Lecture 22 Slide 26

Example: u = au + v und s = u · v

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)

u[i]+=a*v[i];

//implicit barrier
double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

I Code can be parallelized by introducing compiler directives
I Compiler directives are ignored if not in parallel mode
I Write conflict with + s: several threads may access the same variable

Lecture 23 Slide 13

Lecture 22 Slide 27

Preventing conflicts in OpenMP

I Critical sections are performed only by one thread at a time

double s=0.0;
#pragma omp parallel for
for(int i=0; i<n ; i++)
#pragma omp critical
{

s+=u[i]*v[i];
}

I Expensive, parallel program flow is interrupted

Lecture 23 Slide 14

Lecture 22 Slide 28

Do it yourself reduction
I Remedy: accumulate partial results per thread, combine them after

main loop
I “Reduction”

#include <omp.h>
int maxthreads=omp_get_max_threads();
double s0[maxthreads];
double u[n],v[n];
for (int ithread=0;ithread<maxthreads; ithread++)

s0[ithread]=0.0;

#pragma omp parallel for
for(int i=0; i<n ; i++)
{

int ithread=omp_get_thread_num();
s0[ithread]+=u[i]*v[i];

}

double s=0.0;
for (int ithread=0;ithread<maxthreads; ithread++)

s+=s0[ithread];

Lecture 23 Slide 15

Lecture 22 Slide 29

OpenMP Reduction Variables

double s=0.0;
#pragma omp parallel for reduction(+:s)
for(int i=0; i<n ; i++)

s+=u[i]*v[i];

I In standard situations, reduction variables can be used to avoid write
conflicts, no need to organize this by programmer

Lecture 23 Slide 16

Lecture 22 Slide 30

OpenMP: further aspects

double u[n],v[n];
#pragma omp parallel for
for(int i=0; i<n ; i++)
u[i]+=a*u[i];

[Quelle: computing.llnl.gov/tutorials]

I Distribution of indices with thread is implicit and can be influenced by
scheduling directives

I Number of threads can be set via OMP_NUM_THREADS environment
variable or call to omp_set_num_threads()

I First Touch Principle (NUMA): first thread which “touches” data
triggers the allocation of memory with the processeor where the
thread is running on

Lecture 23 Slide 17

Lecture 23 Slide 18

Parallelization of PDE solution

∆u = f inΩ, u|∂Ω = 0

⇒ u =
∫

Ω
f (y)G(x , y)dy .

I Solution in x ∈ Ω is influenced by values of f in all points in Ω
I ⇒ global coupling: any solution algorithm needs global

communication

Lecture 23 Slide 19

Structured and unstructured grids

Structured grid

I Easy next neighbor access via
index calculation

I Efficient implementation on
SIMD/GPU

I Strong limitations on geometry

Unstructured grid

[Quelle: tetgen.org]

I General geometries
I Irregular, index vector based

access to next neighbors
I Hardly feasible fo SIMD/GPU

Lecture 23 Slide 20

Stiffness matrix assembly for Laplace operator for P1 FEM

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx

=
∫

Ω

∑
K∈Th

∇φi |K∇φj |K dx

Assembly loop:
Set aij = 0.
For each K ∈ Th:
For each m, n = 0 . . . d :

smn =
∫

K
∇λm∇λn dx

ajdof (K ,m),jdof (K ,n) = ajdof (K ,m),jdof (K ,n) + smn

Lecture 23 Slide 21

Mesh partitioning
Partition set of cells in Th, and color the graph of the partitions.
Result: C: set of colors, Pc : set of partitions of given color. Then:
Th =

⋃
c∈C

⋃
p∈Pc

p
I Sample algorithm:

I Subdivision of grid cells into equally sized subsets by METIS
(Karypis/Kumar) → Partitions of color 1

I Create separators along boundaries → Partitions of color 2
I “triple points” → Partitions of color 3

I No interference between assembly loops for partitions of the same
color

I Immediate parallelization without critical regions

Lecture 23 Slide 22

Parallel stiffness matrix assembly for Laplace operator for
P1 FEM

Set aij = 0.
For each color c ∈ C
#pragma omp parallel for

For each p ∈ Pc :
For each K ∈ p:
For each m, n = 0 . . . d :

smn =
∫

K ∇λm∇λn dx
ajdof (K ,m),jdof (K ,n)+ = smn

I Prevent write conflicts by loop organization
I No need for critical sections
I Similar structure for Voronoi finite volumes, nonlinear operator

evaluation, Jacobi matrix assembly

Lecture 23 Slide 23

Linear system solution

I Sparse matrices
I Direct solvers are hard to parallelize though many efforts are

undertaken, e.g. Pardiso
I Iterative methods easier to parallelize

I partitioning of vectors + coloring inherited from cell partitioning
I keep loop structure (first touch principle)
I parallelize

I vector algebra
I scalar products
I matrix vector products
I preconditioners

Lecture 23 Slide 24

MPI - Message passing interface

I library, can be used from C,C++, Fortran, python
I de facto standard for programming on distributed memory systems

(since ≈ 1995)
I highly portable
I support by hardware vendors: optimized communication speed
I based on sending/receiving messages over network

I instead, shared memory can be used as well
I very elementary programming model, need to hand-craft

communications

Lecture 23 Slide 25

How to install

I OpenMP/C++11 threads come along with compiler
I MPI needs to be installed in addition
I Can run on multiple systems
I openmpi available for Linux/Mac (homebrew)/ Windows (cygwin)

I https://www.open-mpi.org/faq/?category=mpi-apps
I Compiler wrapper mpic++

I wrapper around (configurable) system compiler
I proper flags + libraries to be linked

I Process launcher mpirun
I launcher starts a number of processes which execute statements

independently, ocassionally waiting for each other

Lecture 23 Slide 26

Threads vs processes

I MPI is based on processes, C++11 threads and OpenMP are based
on threads.

I Processes are essentially like commands launched from the command
line and require large bookeeping, each process has its own address
space

I Threads are created within a process and share its address space,
require significantly less bookeeping and resources

I Multithreading requires careful programming since threads share data
structures that should only be modified by one thread at a time.
Unlike threads, with processes there can be no write conflicts

I When working with multiple processes, one becomes responsible for
inter-process communication

Lecture 23 Slide 27

MPI Programming Style

I Generally, MPI allows to work with completely different programs
I Typically, one writes one program which is started in multiple

incarnations on different hosts in a network or as different processes
on one host

I MPI library calls are used to determine the identiy of a running
program and the region of the data to work on

I Communication + barriers have to be programmed explicitely.

Lecture 23 Slide 28

MPI Hello world
// Initialize MPI.
MPI_Init (&argc, &argv);

// Get the number of processes.
MPI_Comm_size (MPI_COMM_WORLD, &nproc);

// Determine the rank (number, identity) of this process.
MPI_Comm_rank (MPI_COMM_WORLD, &iproc);

if (iproc == 0)
{

cout << "Number of available processes: " << nproc << "\n";
}
cout << "Hello from proc " << iproc << endl;
MPI_Finalize ();

I Compile with mpic++ mpi-hello.cpp -o mpi-hello
I All MPI programs begin with MPI_Init() and end with

MPI_Finalize()
I the communicator MPI_COMM_WORLD designates all processes in the

current process group, there may be other process groups etc.
I The whole program is started N times as system process, not as

thread: mpirun -np N mpi-hello

Lecture 23 Slide 29

MPI hostfile

host1 slots=n1
host2 slots=n2

...

I Distribute code execution over several hosts
I MPI gets informed how many independent processes can be run on

which node and distributes the required processes accordingly
I MPI would run more processes than slots available. Avoid this

situation !
I Need ssh public key access and common file system access for proper

execution
I Telling mpi to use host file:

mpirun --hostfile hostfile -np N mpi-hello

Lecture 23 Slide 30

MPI Send

MPI_Send (start, count, datatype, dest, tag, comm)

I Send data to other process(es)
I The message buffer is described by (start, count, datatype):

I start: Start address
I count: number of items
I datatype: data type of one item

I The target process is specified by dest, which is the rank of the target
process in the communicator specified by comm

I When this function returns, the data has been delivered to the system
and the buffer can be reused. The message may not have been
received by the target process.

I The tag codes some type of message

Lecture 23 Slide 31

MPI Receive

MPI_Recv(start, count, datatype, source, tag, comm, status)

I Waits until a matching (on source and tag) message is received from
the system, and the buffer can be used.

I source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

I status contains further information
I Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.

Lecture 23 Slide 32

MPI Broadcast

MPI_Bcast(start, count, datatype, root, comm)

I Broadcasts a message from the process with rank “root” to all other
processes of the communicator

I Root sends, all others receive.

Lecture 23 Slide 33

Differences with OpenMP

I Programmer has to care about all aspects of communication and data
distribution, even in simple situations

I In simple situations (regularly structured data) OpenMP provides
reasonable defaults. For MPI these are not available

I For PDE solvers (FEM/FVM assembly) on unstructured meshes, in
both cases we have to care about data distribution

I We need explicit handling of data at interfaces with MPI, while with
OpenMP, possible communication is hidden behind the common
address space

Lecture 23 Slide 34

Examination dates

Tue Feb 26.
Wed Feb 27.
Wed Mar 14.
Thu Mar 15.
Tue Mar 26.
Wed Mar 27.
Mon Apr 29.(?)
Tue Apr 30.(?)

Time: 10:00-13:00 (6 slots per examination date)
Please inscribe yourself into the corresponding sheets. (See also the back
sides).
Room: t.b.a. (MA, third floor)
Prof. Nabben answers all administrative questions.
Please bring your yellow sheets 3 days before the examination to Frau
Gillmeister

Lecture 23 Slide 35

No lecture on Tue Jan 29!

