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Homework assessment



General

> Please apologize terse answers - on the bright side of this | found time
to reply to all individually who handed things in by yesterday noon

> please stick to the filename scheme, this makes it easier for me to
give feedback to all of you

» Good style with zip files is that they unpack into subdir with the
same name. E.g. abc.zip unpacks into directory abc.

» Mac users: try to pack your stuff without the __MACOSX and
.DS_Store subdirectories

» No need to include binaries

> Always try to calculate errors if exact data is available (I should have
been more specific in assignment text)



Code style

> Try to specify datatypes in constants: 0.1f for float, 0.1l for long
double and avoid mixing of datatypes in expressions. In particular
write x/2.0 instead of x/2 if you do division of a double number.
(There are reasonable automatic conversion rules, but things are
clearer if they are explicit).

» Cast ints to double explicitely in floating point expressions. This
ensures that you don't accidentally create an integer intermediate
result. ( 1/i*i was the reason of many overflow errors in your codes)

» Math headers: use <cmath> instead of <math.h>. In particular, this
gives you long double version of functions if needed, in particular for
abs.

» When using printf, use the right format specifiers for output of
floating point numbers: %e for float and double, and %Le for
long double. %e,%Le give the exponential notation, and %f, JLf
give a fixed point notation without exponential which is not very
helpful for accuracy assessment.



Representation of real numbers

> Any real number x € R can be expressed via representation formula:

x = i dig~' e
i=0

> B E€N,B >2: base
> di € N,0 < d; < B: mantissa digits
> e €7 : exponent

» Scientific notation of floating point numbers: e.g. x = 6.022 - 10%
> =10
> d=(6,0,2,20...)
> e=23
» Non-unique: x = 0.6022 - 10**
> =10
> d=(0,6,0,2,2,0...)
> e=24

\4

Infinite for periodic decimal numbers, irrational numbers




Floating point numbers

» Computer representation uses 3 = 2, therefore d; € {0,1}
» Truncation to fixed finite size

—1
x =+ tz: diB~' B¢
i=0

> t: mantissa length
> Normalization: assume dp = 1 = save one bit for mantissa
> k: exponentsize —fK+1=L<e<U=pK-1
> Extra bit for sign
> = storage size: (t—1)+k+1
> |EEE 754 single precision (C++ float ): k = 8,t = 24 = 32 bit
» |EEE 754 double precision (C++ double ): k = 11,t = 53 = 64 bit




Floating point limits

Finite size of reprensentation = there are minimal and maximal possible
numbers which can be represented

> symmetry wrt. 0 because of sign bit
> smallest positive normalized number: dy = 1,di=0,i=1...t—1
Xmin = ﬁL
> float: 1.175494351e-38
> double: 2.2250738585072014e-308

> smallest positive denormalized number: d; =0,i =0...t—2,d;-1 =1
_ pl—tpl
Xmin = B B
> largest positive normalized number: di = —-1,0...t—1
Xmax = ﬁ(l - Bl_t)ﬁu
> float: 3.402823466e+38
> double: 1.7976931348623158e+308




Machine precision

» There cannot be more than 2+ floating point numbers = almost all real
numbers have to be approximated

> Let x be an exact value and X be its approximation Then: |;%X\ < e is the
best accuracy estimate we can get, where

> ¢ = Bt (truncation)

» €= 181"t (rounding)
> Also: € is the smallest representable number such that 1 4+ ¢ > 1.
> Relative errors show up in partiular when

> subtracting two close numbers
> adding smaller numbers to larger ones




Machine epsilon

» Smallest floating point number € such that 1+ ¢ > 1 in floating point
arithmetic

> In exact math it is true that from 1 4+ ¢ =1 it follows that 0 + ¢ =0
and vice versa. In floating point computations this is not true

» Many of you used the right algorithm and used the first value or
which 1 4+ & =1 as the result. This is half the desired quantity.

» Some did not divide start with 1.0 but by other numbers. E.g. 0.1 is
not represented exactly in floating point arithmetic

» Recipe for calculation:

Set e = 1.0;

while 1.0 + ¢/2.0 > 1.0 do
| e=¢/2.0

end

» But ... this may be optimized away...



Normalized floating point number

» IEEE 754 32 bit floating point number — normally the same as C++
float

off1[2]3
x| |eoler |er |e2
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» Storage layout for a normalized number (dy = 1)

94 e5 EG

> bit 0: sign,0 >+, 1— —

» bit 1...8: r = 8 exponent bits, value e +2""! — 1 = 127 is stored
= no need for sign bit in exponent

> bit 9...31: t = 23 mantissa bits d; ... dx
» do = 1 not stored = "hidden bit"”

» Examples
1 0_01111111_00000000000000000000000 e = 0, stored 127
2 0_10000000_00000000000000000000000 e =1, stored 128
0.5 0_01111110_00000000000000000000000 e = —1, stored 126
0.1 0_.01111011_10011001100110011001101 infinite periodic
0 0_00000000_00000000000000000000000

» Numbers which are exactly represented in decimal system may not be
exactly represented in binary system.



How Additionworks ?

> General:
> 1. Adjust exponent of number to be added:

> Until both exponents are equal, add one to exponent, shift mantissa to
right by one bit

» 2. Add both numbers
» 3. Normalize result

» For 14+¢€, We have at maximum t bit shifts of normalized mantissa
until mantissa becomes 0, so € = 27¢.



Data of IEEE 754 floating point representations

size t r €
float 32 | 23 8 | 1.1920928955078125e-07
double 64 | 53 | 11 | 2.2204460492503131e-16

long double | 128 | 63 | 15 | 1.0842021724855044e-19

» Floating point format not standardized by language but by IEEE
comitee

» Implementation of long double varies, may even be the same as
double, or may be significantly slower, so it is mostly no good option

» There are high accuracy floating point number packages available,
which however perform calculations without support of the CPU
floating point arithmetic



Summation

2
T
> Basel sum: X =
» Intended answer for accuracy: sum in reverse order. Start with adding

up many small values which would be cancelled out if added to an

already large sum value.

100

1000
10000
100000
1000000
10000000
100000000

RR R RRA R R

Results for float:

forward sum
5497677326202392e+00
6349840164184570e+00
6439348459243774e+00
6447253227233886e+00
6447253227233886e+00
6447253227233886e+00
6447253227233886e+00
6447253227233886e+00

DN N O OO

forward sum error
51664447784423828e-02
95016098022460937e-03
99331474304199218e-04
08854675292968750e-04
08854675292968750e-04
08854675292968750e-04
08854675292968750e-04

.08854675292968750e-04

N T

.6449340581893920

reverse sum

54976773262023925e+00
63498389720916748e+00
64393448829650878e+00
64483404159545898e+00
64492404460906982e+00
64493298530578613e+00
64493393898010253e+00

reverse sum error
51664447784423828e-02
95028018951416015e-03
99689102172851562e-04
00135803222656250e-04
01327896118164062e-05
19209289550781250e-06
38418579101562500e-07

+00

No gain in accuracy for forward sum for n > 10000

19209289550781250e-07



Kahan summation

» Some of you hinted at the Kahan compensated summation algorithm
(thanks!):
T sum_kah=0.0;
T error_compensation=0.0;
for (int i=1; i<=n;i++)
{
T x=1i;
T increment=1.0/(x*x);
T corrected_increment=increment-error_compensation;
T good_sum=sum_kah+corrected_increment;
error_compensation= (good_sum-sum_kah)-corrected_increment;
sum_kah =good_sum;

}

» When implementing, be careful that expressions are not optimized
away ...

» William Kahan (1933-) is the principle architect of the IEEE 754
floating point standard ...



Recap on nonnegative matrices



The Gershgorin Circle Theorem (Semyon Gershgorin,1931)

(everywhere, we assume n > 2)

Theorem (Varga, Th. 1.11) Let A be an n x n (real or complex) matrix.

Let
= > lal
j=l...n
J#i
If X is an eigenvalue of A then there exists r, 1 < r < n such that
|>\ - arr| S /\r
Proof Assume ) is eigenvalue, x a corresponding eigenvector, normalized
such that max;—1._,|x;| = |x,] = 1. From Ax = Ax it follows that
Cabi= Y apg
j=l...n
j#i
N=arl=1 > apx| < D lagllgl < D lagl =A
j=1...n Jj=1...n Jj=1l...n
J#r J#r J#r




Gershgorin Circle Corollaries

Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

A€ U {MEVI|/L*3,‘,‘|S/\,‘}

i=1...n
Corollary:
n
pA) < max S Jag] = [|Al|oc
=Lon &
n
p(A) < max 3" Jay| = Al
e
Proof

n
l—ail <A = ul SN+ ail =) lag)
j=1

Furthermore, o(A) = o(AT).




Gershgorin circles: example

19 1.8 34
A=[04 18 04|, M =1,0=2)=3A =52,A = 08,3 =0.15
0.05 0.1 23




Gershgorin circles: heat example |

B=(I-D7tA) =

1
We have b; =0, \; = {f’

2 _1
BT Y
h 1
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) = estimate |\;| <1




Gershgorin circles: heat example Il
Let n=11, h=0.1:

ihm .
/\;—cos(1+2h> (i

0

6

= the Gershgorin circle theorem is too pessimistic...




Weighted directed graph representation of matrices
Define a directed graph from the
nonzero entries of a matrix A = (ay):

> Nodes: N = {N;}i=1..n
» Directed edges:

€ = {NeN)a # 0} 11

1
3 5
» Matrix entries = weights of
directed edges 2 @

6
1. 0. 0. 2. 0. 8
3. 4 0. 5 0. 10
A=1]6. 0. 7. 8 O 9
0. 0. 10. 11. oO.
0. 0. 0. 0. 12 12 7

» 1:1 equivalence between matrices and weighted directed graphs

» Convenient e.g. for sparse matrices




Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

A A
T _ 11 12
PAP' = < 0 A22)

A is irreducible if it is not reducible.

Theorem (Varga, Th. 1.17): Ais irreducible < the matrix graph is
connected, i.e. for each ordered pair (N;, N;) there is a path consisting of
directed edges, connecting them.

Equivalently, for each i, j there is a sequence of consecutive nonzero matrix
entries ajk,, ak ky» koks - - - » Ak_1k, Ak, j-

]




Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue \ is a boundary point of the union of all the disks

Aeod U {peC:lu—a; <N}

i=1...n

Then, all n Gershgorin circles pass through A, i.e. for i =1...n,

A —aii| = A;




Consequences for heat example from Taussky theorem

» B=1-DA
1

We had b; =0, A; = {2’

) = estimate |\;| <1
1 i=2...n-1

v

v

Assume |A;| = 1. Then J; lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both
circles with radius % and 1 around 0.

v

Contradiction = |\;| < 1, p(B) < 1!




Diagonally dominant matrices
Definition Let A = (a;) be an n X n matrix.
> A is diagonally dominant if
(i) fori=1...n |ai| > Y |ay|
j=l...n
#i
> A is strictly diagonally dominant (sdd) if
(i) fori=1...n, |ai| > Z |ajj]
j=1l...n
J#i
» Ais irreducibly diagonally dominant (idd) if
(i) A'is irreducible

(i) A is diagonally dominant —

fori=1...n, |a;| > Z |aj|

j=1l...n
J#i
(iii) for at least one r, 1 < r < n, |a,| > Z |ay]|
Jj=1l...n

J#r




A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.

If in addition, a; > 0 is real for i = 1...n, then all real parts of the
eigenvalues of A are positive:

Re\; >0, i=1...n




Corollary

Theorem: If A is complex hermitian or real symmetric, sdd or idd, with
positive diagonal entries, it is positive definite.

Proof: All eigenvalues of A are real, and due to the nonsingularity
criterion, they must be positive, so A is positive definite.




Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector x is

> positive (x > 0) if all entries of x are positive
» nonnegative (x > 0) if all entries of x are nonnegative

Definition: A real n x n matrix A is

> positive (A > 0) if all entries of A are positive
> nonnegative (A > 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A > 0 be an irreducible n X n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius p(A).
(ii) To p(A) there corresponds a positive eigenvector x > 0.
(iii) p(A) increases when any entry of A increases.

(iv) p(A) is a simple eigenvalue of A.

Proof: See Varga. ]




Perron-Frobenius for general nonnegative matrices

Each n x n matrix can be brought to the normal form

Rii Ri2 ... Rin
pApT — 0 Ry ... R
0 0 ... Rum

where for j = 1...m, either R irreducible or Rj; = (0).
Theorem(Varga, Th. 2.20) Let A > 0 be an n X n matrix. Then

(i) A has a nonnegative eigenvalue equal to its spectral radius p(A). This
eigenvalue is positive unless A is reducible and its normal form is
strictly upper triangular

(i) To p(A) there corresponds a nonzero eigenvector x > 0.

(iii) p(A) does not decrease when any entry of A increases.
m
Proof: See Varga; o(A) = Ua(Rjj), apply irreducible Perron-Frobenius
j=1
to RJJ (I




Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that a; > 0
and a; < 0 for i # j. Then p(I — D7A) < 1, i.e. the Jacobi method
converges.

Proof In this case, |B| = B 0.




Regular splittings

» A= M — N is a regular splitting if

» M is nonsingular
» M7, N are nonnegative, i.e. have nonnegative entries

» Regard the iteration ux 1 = M~ Nuy + M~1h.
» We have | — M~TA = M~1N.




Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A~1 >0, and A=M — N is a
regular splitting. Then p(M~IN) < 1.

Proof: Let G = M~IN. Then A= M(I — G), therefore | — G is
nonsingular.

In addition
ATIN = (M(I = MINYIN= (- MIN)IMIN=(1- G)'G

By Perron-Frobenius (for general matrices), p(G) is an eigenvalue with a
nonnegative eigenvector x. Thus,

G)
0< A lNx= Lx
- 1—p(G)

Therefore 0 < p(G) < 1.
As | — G is nonsingular, p(G) < 1. d




Convergence rate comparison

Corollary: p(M~'N) = ;== where 7 = p(A~!N).

Proof: Rearrange 7 = % O

Corollary: Let A>0, A= M; — Ny and A= M, — N, be regular
splittings. If Ny > Ny > 0, then 1 > p(My *Ny) > p(M 1 Ny).

Proof: 7 = p(AilNz) > p(AilNl) =T

But I is strictly increasing.




M-Matrix definition

Definition Let A be an n x n real matrix. A is called M-Matrix if
(i) aj <O0forij
(ii) Ais nonsingular

(i) A7t >0
Corollary: If A is an M-Matrix, then A~! > 0 < A is irreducible

Proof: See Varga.




Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that a; > 0 and a; < 0 for i # ;.
Then A is an M-Matrix.

Proof: We know that A is nonsingular, but we have to show A~ > 0.
» Let B=/— DA Then p(B) < 1, therefore | — B is nonsingular.
» We have for k > 0:

|- B =(I-B)(I+ B+ B> +---+ B
(I-B) Y -B"Y)Y=(+B+B*+---4 B

The left hand side for k — oo converges to (/ — B)™1, therefore

(I-B)'=) B*

k=0

As B >0, we have (I — B)™! = A=1D > 0. As D > 0 we must have
Afl 2 0. O




Application

Let A be an M-Matrix. Assume A=D — E — F.

» Jacobi method: M = D is nonsingular, M1>0 N=E+F
nonnegative = convergence

» Gauss-Seidel: M = D — E is an M-Matrix as A < M and M has
non-positive off-digonal entries. N = F > 0. = convergence

» Comparison: N; > Ngs = Gauss-Seidel converges faster.

» More general: Block Jacobi, Block Gauss Seidel etc.




Intermediate Summary

» Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

» Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

» Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

» Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.

» These critera do not depend on the symmetry of the matrix!




Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

» fix a predefined zero pattern

> apply the standard LU factorization method, but calculate only those
elements, which do not correspond to the given zero pattern

» Result: incomplete LU factors L, U, remainder R:

A=LU-R

» Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?



Comparison of M-Matrices

Theorem(Saad, Th. 1.33): Let A, B n x n matrices such that
(i) A<B

(i) by <0 for i # j.

Then, if A is an M-Matrix, so is B.

Proof: For the diagonal parts, one has Dg > Da > 0,
Dy — A > Dg — B > 0 Therefore

| —D'A> D (Dg — B) > Dg'(Dg— B) =1 — Dg'B =: G > 0.
Perron-Frobenius = p(G) = p(I — Dg'B) < p(I — D;*A) < 1

= | — G is nonsingular. From the proof of the M-matrix criterion,
Dg'B=(I-G)t=33°,G*>0. As Dg > 0, we get B > 0.



M-Property propagation in Gaussian Elimination

Theorem:(Ky Fan; Saad Th 1.10) Let A be an M-matrix. Then the matrix
A1 obtained from the first step of Gaussian elimination is an M-matrix.

. 1 __ .. _ 213y
Proof: One has a; = a; — 4,

aj,aj1,ay <0, a1 >0

= a;; <0 fori#j

1 0
—a12
an

A= L[;A; with L; = nonsingular, nonnegative

= O o o

—ain
. ai O
= A; nonsingular

Let e; ... e, be the unit vectors. Then Aflel = ﬁel >0. Forj>1,
Alle; = AlL7le = Ale > 0.
= A >0



Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to
compute the incomplete LU factorization with a given nonzero pattern

A=LU-R

is stable. Moreover, A= LU — R is a regular splitting.



Stability of ILU decomposition Il

Proof

Let A, = A; + R, = LA+ Ry where Ry is a nonnegative matrix which
occurs from dropping some off diagonal entries from A;. Thus, Ay > A;
and A; is an M-matrix. We can repeat this recursively

A = Ak + R = LAk 1 + Ry
= Lgly—1Ak—2 + Lk Rk—1 + R«
=Lly_q-... LA+ LLg_1-... LRy +---+ Rk

Let L=(Lp_1-... L))", U=A,_1. Then U= LA+ S with
S=L,qlp o ...- LR+ +Rp—1=Ly—1L, 5 ... -L2(R1+R2+. .. R,,,l)

Lt R=Ri+Ro+...R,_1, then A= LU — R where U"1L™1, R are
nonnegative.



ILU(0)

vy

v

Special case of ILU: ignore any fill-in.
Representation:

M= (D—-E)D~YD - F)

D is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

Setup:

for(int i=0;i<n;i++)
d(i)=a(i,i)

for(int i=0;i<n;i++)
{
d(i)=1.0/d(i)
for (int j=i+1;j<m;j++)
d(j)=d(j)-a(i,j)*d(i)*a(j,i)
}



ILU(0)

Solve Mu =v
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ILU(0)

vy

vvyvyyy

Generally better convergence properties than Jacobi, Gauss-Seidel
One can develop block variants
Alternatives:

> ILUM: (“modified"): add ignored off-diagonal entries to D

> ILUT: zero pattern calculated dynamically based on drop tolerance
Dependence on ordering
Can be parallelized using graph coloring
Not much theory: experiment for particular systems
| recommend it as the default initial guess for a sensible preconditioner
Incomplete Cholesky: symmetric variant of ILU



