
Lecture 5 Slide 1

Scientific Computing WS 2018/2019

Lecture 5

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de



Lecture 5 Slide 2

Recap from last time



Lecture 4 Slide 31

Matrix + Vector norms
I Vector norms: let x = (xi ) ∈ Rn

I ||x ||1 =
∑n

i=1 |xi |: sum norm, l1-norm

I ||x ||2 =
√∑n

i=1 x2
i : Euclidean norm, l2-norm

I ||x ||∞ = maxn
i=1 |xi |: maximum norm, l∞-norm

I Matrix A = (aij ) ∈ Rn × Rn

I Representation of linear operator A : Rn → Rn defined by A : x 7→ y = Ax
with

yi =
n∑

j=1

aij xj

I Induced matrix norm:

||A||ν = max
x∈Rn,x 6=0

||Ax ||ν
||x ||ν

= max
x∈Rn,||x||ν =1

||Ax ||ν
||x ||ν

Lecture 5 Slide 3



Lecture 4 Slide 32

Matrix norms

I ||A||1 = maxn
j=1
∑n

i=1 |aij | maximum of column sums
I ||A||∞ = maxn

i=1
∑n

j=1 |aij | maximum of row sums

I ||A||2 =
√
λmax with λmax : largest eigenvalue of AT A.

Lecture 5 Slide 4



Lecture 4 Slide 33

Matrix condition number and error propagation

I Problem: solve Ax = b, where b is inexact
I Let ∆b be the error in b and ∆x be the resulting error in x such that

A(x + ∆x) = b + ∆b.

I Since Ax = b, we get A∆x = ∆b
I Therefore

{
∆x = A−1∆b
Ax = b

}
⇒
{
||A|| · ||x || ≥ ||b||
||∆x || ≤ ||A−1|| · ||∆b||

⇒ ||∆x ||
||x || ≤ κ(A) ||∆b||

||b||

where κ(A) = ||A|| · ||A−1|| is the condition number of A.

Lecture 5 Slide 5



Lecture 4 Slide 34

Solution of linear systems of equations

Lecture 5 Slide 6



Lecture 4 Slide 35

Approaches to linear system solution

Let A: n × n matrix, b ∈ Rn.
Solve Ax = b

I Direct methods:
I Exact

I up to machine precision
I condition number

I Expensive (in time and space)
I where does this matter ?

I Iterative methods:
I Only approximate

I with good convergence and proper accuracy control, results are not worse than for
direct methods

I May be cheaper in space and (possibly) time
I Convergence guarantee is problem dependent and can be tricky

Lecture 5 Slide 7



Lecture 4 Slide 36

Complexity: ”big O notation”

I Let f , g : V→ R+ be some functions, where V = N or V = R.
We write

f (x) = O(g(x)) (x →∞)
if there exist a constant C > 0 and x0 ∈ V such that

∀x > x0, |f (x)| ≤ C |g(x)|

I Often, one skips the part ”(x →∞)”
I Examples:

I Addition of two vectors: O(n)
I Matrix-vector multiplication (for matrix where all entries are assumed to be

nonzero): O(n2)

Lecture 5 Slide 8



Lecture 4 Slide 37

Really bad example of direct method

Solve Ax = b by Cramer’s rule

xi =

∣∣∣∣∣∣∣∣

a11 a12 . . . a1i−1 b1 a1i+1 . . . a1n
a21 . . . b2 . . . a2n
...

...
...

an1 . . . bn . . . ann

∣∣∣∣∣∣∣∣
/|A| (i = 1 . . . n)

This takes O(n!) operations...

Lecture 5 Slide 9



Lecture 4 Slide 38

Gaussian elimination

I Essentially the only feasible direct solution method
I Solve Ax = b with square matrix A.
I While formally, the algorithm is always the same, its implementation

depends on
I data structure to store matrix
I possibility to ignore zero entries for matrices with many zeroes
I sorting of elements

Lecture 5 Slide 10



Lecture 4 Slide 39

Gaussian elemination: pass 1

( 6 −2 2
12 −8 6
3 −13 3

)
x =

( 16
26
−19

)

Step 1: equation2 ← equation2 − 2 equation1
equation3 ← equation3 − 1

2 equation1

(6 −2 2
0 −4 2
0 −12 2

)
x =

( 16
−6
−27

)

Step 2: equation3 ← equation3 − 3 equation2

(6 −2 2
0 −4 2
0 0 −4

)
x =

(16
−6
−9

)

Lecture 5 Slide 11



Lecture 4 Slide 40

Gaussian elimination: pass 2

Solve upper triangular system

(6 −2 2
0 −4 2
0 0 −4

)
x =

(16
−6
−9

)

−4x3 = −9 ⇒ x3 = 9
4

−4x2 + 2x3 = −6 ⇒ −4x2 = −21
2 ⇒ x2 = 21

8
6x1 − 2x2 + 2x3 = 2 ⇒ 6x1 = 2 + 21

4 −
18
4 = 11

4 ⇒ x1 = 11
4

Lecture 5 Slide 12



Lecture 4 Slide 41

LU factorization

Pass 1 expressed in matrix operation

L1Ax =

(6 −2 2
0 −4 2
0 −12 2

)
x =

( 16
−6
−27

)
= L1b, L1 =

( 1 0 0
−2 1 0
− 1

2 0 1

)

L2L1Ax =

(6 −2 2
0 −4 2
0 0 −4

)
x =

(16
−6
−9

)
= L2L1b, L2 =

(1 0 0
0 1 0
0 −3 1

)

I Let L = L−1
1 L−1

2 =

(1 0 0
2 1 0
1
2 3 1

)
, U = L2L1A. Then A = LU

I Inplace operation. Diagonal elements of L are always 1, so no need to store
them ⇒ work on storage space for A and overwrite it.

Lecture 5 Slide 13



Lecture 4 Slide 42

LU factorization

Solve Ax = b
I Pass 1: factorize A = LU such that L,U are lower/upper triangular
I Pass 2: obtain x = U−1L−1b by solution of lower/upper triangular systems

I 1. solve Lx̃ = b
I 2. solve Ux = x̃

I We never calculate A−1 as this would be more expensive

Lecture 5 Slide 14



Lecture 4 Slide 43

Problem example

I Consider
(
ε 1
1 1

)(
x1
x2

)
=
(

1 + ε
1

)

I Solution:
(

x1
x2

)
=
(

1
1

)

I Machine arithmetic: Let ε << 1 such that 1 + ε = 1.
I Equation system in machine arithmetic:

1 · ε+ 1 · 1 = 1 + ε

1 · 1 + 1 · 1 = 2
I Still fulfilled!

Lecture 5 Slide 15



Lecture 4 Slide 44

Problem example II: Gaussian elimination

I Ordinary elimination: equation2 ← equation2 − 1
ε

equation1(
ε 1
0 1− 1

ε

)(
x1
x2

)
=
(

1 + ε
2− 1+ε

ε

)

I In exact arithmetic:

⇒ x2 =
1− 1

ε

1− 1
ε

= 1⇒ x1 = 1 + ε− x2
ε

= 1

I In floating point arithmetic: 1 + ε = 1, 1− 1
ε

= − 1
ε
, 2− 1

ε
= − 1

ε
:(

ε 1
0 − 1

ε

)(
x1
x2

)
=
(

1
− 1
ε

)

⇒ x2 = 1 ⇒ εx1 + 1 = 1 ⇒ x1 = 0

Lecture 5 Slide 16



Lecture 4 Slide 45

Problem example III: Partial Pivoting

I Before elimination step, look at the element with largest absolute value in
current column and put the corresponding row “on top” as the “pivot”

I This prevents near zero divisions and increases stability
(

1 1
ε 1

)(
x1
x2

)
=
(

2
1 + ε

)
⇒
(

1 1
0 1− ε

)(
x1
x2

)
=
(

2
1− ε

)

I Independent of ε:

x2 = 1− ε
1− ε = 1, x1 = 2− x2 = 1

I Instead of A, factorize PA: PA = LU, where P is a permutation matrix
which can be encoded using an integer vector

Lecture 5 Slide 17



Lecture 4 Slide 46

Gaussian elimination and LU factorization

I Full pivoting: in addition to row exchanges, perform column exchanges to
ensure even larger pivots. Seldomly used in practice.

I Gaussian elimination with partial pivoting is the “working horse” for direct
solution methods

I Complexity of LU-Factorization: O(N3), some theoretically better
algorithms are known with e.g. O(N2.736)

I Complexity of triangular solve: O(N2)
⇒ overall complexity of linear system solution is O(N3)

Lecture 5 Slide 18



Lecture 4 Slide 47

Cholesky factorization

I A = LLT for symmetric, positive definite matrices

Lecture 5 Slide 19



Lecture 4 Slide 48

BLAS, LAPACK

I BLAS: Basic Linear Algebra Subprograms http://www.netlib.org/blas/

I Level 1 - vector-vector: y← αx + y
I Level 2 - matrix-vector: y← αAx + βy
I Level 3 - matrix-matrix: C ← αAB + βC

I LAPACK: Linear Algebra PACKage http://www.netlib.org/lapack/
I Linear system solution, eigenvalue calculation etc.
I dgetrf: LU factorization
I dgetrs: LU solve

I Used in overwhelming number of codes (e.g. matlab, scipy etc.). Also, C++
matrix libraries use these routines. Unless there is special need, they should
be used.

I Reference implementations in Fortran, but many more implementations
available which carefully work with cache lines etc.

Lecture 5 Slide 20



Lecture 4 Slide 49

Matrices from PDEs

I So far, we assumed that matrices are stored in a two-dimensional, n × n
array of numbers

I This kind of matrices are also called dense matrices
I As we will see, matrices from PDEs (can) have a number of structural

properties one can take advantage of when storing a matrix and solving the
linear system

Lecture 5 Slide 21



Lecture 4 Slide 50

1D heat conduction

I vL, vR : ambient temperatures, α: heat transfer coefficient
I Second order boundary value problem in Ω = [0, 1]:

−u′′(x) = f (x) inΩ
−u′(0) + α(u(0)− vL) = 0

u′(1) + α(u(1)− vR ) = 0

I Let h = 1
n−1 , xi = x0 + (i − 1)h i = 1 . . . n be discretization points, let ui

approximations for u(xi ) and fi = f (xi )
I Finite difference approximation:

−u′(0) + α(u(0)− vL) ≈ 1
h (u0 − u1) + α(u0 − vL)

−u′′(xi )− f (xi ) ≈ 1
h2 (−ui+1 + 2ui − ui−1)− fi (i = 2 . . . n − 1)

u′(1) + α(u(1)− vR ) ≈ 1
h (un − un−1) + α(un − vR )

Lecture 5 Slide 22



Lecture 4 Slide 51

1D heat conduction: discretization matrix

I equations 2 . . . n − 1 multiplied by h
I only nonzero entries written




α + 1
h − 1

h
− 1

h
2
h − 1

h
− 1

h
2
h − 1

h
. . . . . . . . . . . .

− 1
h

2
h − 1

h
− 1

h
2
h − 1

h
− 1

h
1
h + α







u1
u2
u3
...

uN−2
uN−1
uN




=




αvL
hf2
hf3
...

hfN−2
hfN−1
αvR




I Each row contains ≤ 3 elements
I Only 3n − 2 of n2 elements are non-zero

Lecture 5 Slide 23



Lecture 4 Slide 52

General tridiagonal matrix




b1 c1
a2 b2 c2

a3 b3
. . .

. . . . . . cn−1
an bn







u1
u2
u3
...

un




=




f1
f2
f3
...
fn




I To store matrix, it is sufficient to store only nonzero elements in three
one-dimensional arrays for ai , bi , ci , respectively

Lecture 5 Slide 24



Lecture 4 Slide 53

Gaussian elimination for tridiagonal systems

Gaussian elimination using arrays a, b, c as matrix storage ?
From what we have seen, this question arises in a quite natural way, and
historically, the answer has been given several times

I TDMA (tridiagonal matrix algorithm)
I “Thomas algorithm” (Llewellyn H. Thomas, 1949 (?))
I “Progonka method” (from Russian ”run through”; Gelfand, Lokutsievski,

1952, published 1960)

Lecture 5 Slide 25



Lecture 4 Slide 54

Progonka: derivation

I aiui−1 + biui + ciui+1 = fi (i = 1 . . . n); a1 = 0, cN = 0
I For i = 1 . . . n − 1, assume there are coefficients αi , βi such that

ui = αi+1ui+1 + βi+1.
I Then, we can express ui−1 and ui via ui+1:

(aiαiαi+1 + biαi+1 + ci )ui+1 + aiαiβi+1 + aiβi + biβi+1 − fi = 0
I This is true independently of u if

{
aiαiαi+1 + biαi+1 + ci = 0
aiαiβi+1 + aiβi + biβi+1 − fi = 0

I or for i = 1 . . . n − 1:

{
αi+1 = − ci

aiαi +bi

βi+1 = fi−aiβi
aiαi +bi

Lecture 5 Slide 26



Lecture 4 Slide 55

Progonka: realization
I Forward sweep:

{
α2 = − c1

b1

β2 = fi
b1

for i = 2 . . . n − 1

{
αi+1 = − ci

aiαi +bi

βi+1 = fi−aiβi
aiαi +bi

I Backward sweep:

un = fn − anβn
anαn + bn

for n − 1 . . . 1:

ui = αi+1ui+1 + βi+1

Lecture 5 Slide 27



Lecture 4 Slide 56

Progonka: properties

I n unknowns, one forward sweep, one backward sweep
⇒ O(n) operations vs. O(n3) for algorithm using full matrix

I No pivoting ⇒ stability issues
I Stability for diagonally dominant matrices (|bi | > |ai |+ |ci |)
I Stability for symmetric positive definite matrices

Lecture 5 Slide 28



Lecture 5 Slide 29

2D finite difference grid

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

◦
◦
◦
◦
◦
◦
◦
◦
◦
◦
◦

I Each discretization point has not more then 4 neighbours
I Matrix can be stored in five diagonals,

LU factorization not anymore ≡ ”fill-in”
I Certain iterative methods can take advantage of the regular and hierachical

structure (multigrid) and are able to solve system in O(n) operations
I Another possibility: fast Fourier transform with O(n log n) operations



Lecture 5 Slide 30

Sparse matrices

I Tridiagonal and five-diagonal matrices can be seen as special cases of sparse
matrices

I Generally they occur in finite element, finite difference and finite volume
discretizations of PDEs on structured and unstructured grids

I Definition: Regardless of number of unknowns n, the number of non-zero
entries per row remains limited by nr

I If we find a scheme which allows to store only the non-zero matrix entries,
we would need nnr = O(n) storage locations instead of n2

I The same would be true for the matrix-vector multiplication if we program
it in such a way that we use every nonzero element just once: matrix-vector
multiplication would use O(n) instead of O(n2) operations



Lecture 5 Slide 31

Sparse matrix questions

I What is a good storage format for sparse matrices?
I Is there a way to implement Gaussian elimination for general sparse

matrices which allows for linear system solution with O(n) operation ?
I Is there a way to implement Gaussian elimination with pivoting for general

sparse matrices which allows for linear system solution with O(n)
operations?

I Is there any algorithm for sparse linear system solution with O(n)
operations?



Lecture 5 Slide 32

Coordinate (triplet) format

I Store all nonzero elements along with their row and column indices
I One real, two integer arrays, length = nnz= number of nonzero elements

Y.Saad, Iterative Methods, p.92



Lecture 5 Slide 33

Compressed Row Storage (CRS) format
(aka Compressed Sparse Row (CSR) or IA-JA etc.)

I real array AA, length nnz, containing all nonzero elements row by row
I integer array JA, length nnz, containing the column indices of the elements

of AA
I integer array IA, length n+1, containing the start indizes of each row in the

arrays IA and JA and IA(n+1)=nnz+1

A =




1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.




AA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA 1 4 1 2 4 1 3 4 5 3 4 5

IA 1 3 6 10 12 13

I Used in most sparse matrix solver packages
I CSC (Compressed Column Storage) uses similar principle but stores the

matrix column-wise.



Lecture 5 Slide 34

The big schism

I Should array indices count from zero or from one ?
I Fortran, Matlab, Julia count from one
I C/C++, python count from zero
I It matters when passing index arrays to sparse matrix packages

http://xkcd.com/1739/



Lecture 5 Slide 35

CRS format with zero array offsets . . .

A =




1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.




AA 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA 0 3 0 1 3 0 2 3 4 2 3 4

IA 0 2 5 9 11 12

I some package APIs provide the possibility to specify array offset
I index shift is not very expensive compared to the rest of the work



Lecture 5 Slide 36

Sparse direct solvers

I Sparse direct solvers implement Gaussian elimination with different pivoting
strategies

I UMFPACK
I Pardiso (omp + MPI parallel)
I SuperLU (omp parallel)
I MUMPS (MPI parallel)
I Pastix

I Quite efficient for 1D/2D problems
I Essentially they implement the LU factorization algorithm
I They suffer from fill-in, especially for 3D problems: Let nz(M) be the

number of nonzero elements of a matrix A. Let A = LU be an
LU-Factorization. Then, as a rule, nz(L + U) > NZ(A).

I ⇒ increased memory usage to store L,U
I ⇒ high operation cout



Lecture 5 Slide 37

Sparse direct solvers: solution steps (Saad Ch. 3.6)

1. Pre-ordering
I Decrease amount of non-zero elements generated by fill-in by re-ordering of

the matrix
I Several, graph theory based heuristic algorithms exist

2. Symbolic factorization
I If pivoting is ignored, the indices of the non-zero elements are calculated and

stored
I Most expensive step wrt. computation time

3. Numerical factorization
I Calculation of the numerical values of the nonzero entries
I Moderately expensive, once the symbolic factors are available

4. Upper/lower triangular system solution
I Fairly quick in comparison to the other steps

I Separation of steps 2 and 3 allows to save computational costs for problems
where the sparsity structure remains unchanged, e.g. time dependent
problems on fixed computational grids

I With pivoting, steps 2 and 3 have to be performed together
I Instead of pivoting, iterative refinement may be used in order to maintain

accuracy of the solution



Lecture 5 Slide 38

Sparse direct solvers: influence of reordering
I Sparsity patterns for original matrix with three different orderings of

unknowns – number of nonzero elements (of course) independent of
ordering:

https://de.mathworks.com

I Sparsity patterns for corresponding LU factorizations – number of nonzero
elements depend original ordering!

https://de.mathworks.com



Lecture 5 Slide 39

Sparse direct solvers: Complexity

I Complexity estimates depend on storage scheme, reordering etc.
I Sparse matrix - vector multiplication has complexity O(N)
I Some estimates can be given for from graph theory for discretizations of

heat equation with N = nd unknowns on close to cubic grids in space
dimension d

I sparse LU factorization:
d work storage
1 O(N) | O(n) O(N) | O(n)
2 O(N 3

2 ) | O(n3) O(N log N) | O(n2 log n)
3 O(N2) | O(n6) O(N 4

3 ) | O(n4)
I triangular solve: work dominated by storage complexity

d work
1 O(N) | O(n)
2 O(N log N) | O(n2 log n)
3 O(N 4

3 ) | O(n4)
Source: J. Poulson, PhD thesis, http://hdl.handle.net/2152/ETD-UT-2012-12-6622

http://hdl.handle.net/2152/ETD-UT-2012-12-6622


Lecture 5 Slide 40

Iterative methods



Lecture 5 Slide 41

Elements of iterative methods (Saad Ch.4)

Let V = Rn be equipped with the inner product (·, ·), let A be an n × n
nonsingular matrix.
Solve Au = b iteratively

I Preconditioner: a matrix M ≈ A “approximating” the matrix A but with the
property that the system Mv = f is easy to solve

I Iteration scheme: algorithmic sequence using M and A which updates the
solution step by step



Lecture 5 Slide 42

Simple iteration with preconditioning

Idea: Aû = b ⇒

û = û −M−1(Aû − b)

⇒ iterative scheme

uk+1 = uk −M−1(Auk − b) (k = 0, 1 . . . )

1. Choose initial value u0, tolerance ε, set k = 0
2. Calculate residuum rk = Auk − b
3. Test convergence: if ||rk || < ε set u = uk , finish
4. Calculate update: solve Mvk = rk

5. Update solution: uk+1 = uk − vk , set k = i + 1, repeat with step 2.



Lecture 5 Slide 43

The Jacobi method

I Let A = D − E − F , where D: main diagonal, E : negative lower triangular
part F : negative upper triangular part

I Preconditioner: M = D, where D is the main diagonal of A ⇒

uk+1,i = uk,i − 1
aii

(∑

j=1...n

aij uk,j − bi

)
(i = 1 . . . n)

I Equivalent to the succesive (row by row) solution of

aii uk+1,i +
∑

j=1...n,j 6=i

aij uk,j = bi (i = 1 . . . n)

I Already calculated results not taken into account
I Alternative formulation with A = M − N:

uk+1 = D−1(E + F )uk + D−1b
= M−1Nuk + M−1b

I Variable ordering does not matter



Lecture 5 Slide 44

The Gauss-Seidel method

I Solve for main diagonal element row by row
I Take already calculated results into account

aii uk+1,i +
∑

j<i

aij uk+1,j +
∑

j>i

aij uk,j = bi (i = 1 . . . n)

(D − E)uk+1 − Fuk = b

I May be it is faster
I Variable order probably matters
I Preconditioners: forward M = D − E , backward: M = D − F
I Splitting formulation: A = M − N

forward: N = F , backward: M = E
I Forward case:

uk+1 = (D − E)−1Fuk + (D − E)−1b
= M−1Nuk + M−1b



Lecture 5 Slide 45

Gauss an Gerling I

http://gdz.sub.uni-goettingen.de/



Lecture 5 Slide 46

Gauss an Gerling II

http://gdz.sub.uni-goettingen.de/



Lecture 5 Slide 47

SOR and SSOR

I SOR: Successive overrelaxation: solve ωA = ωB and use splitting

ωA = (D − ωE)− (ωF + (1− ωD))

M = 1
ω

(D − ωE)

leading to

(D − ωE)uk+1 = (ωF + (1− ωD))uk + ωb

I SSOR: Symmetric successive overrelaxation

(D − ωE)uk+ 1
2

= (ωF + (1− ωD))uk + ωb

(D − ωF )uk+1 = (ωE + (1− ωD))uk+ 1
2

+ ωb

I Preconditioner:

M = 1
ω(2− ω) (D − ωE)D−1(D − ωF )

I Gauss-Seidel and symmetric Gauss-Seidel are special cases for ω = 1.



Lecture 5 Slide 48

Block methods

I Jacobi, Gauss-Seidel, (S)SOR methods can as well be used block-wise,
based on a partition of the system matrix into larger blocks,

I The blocks on the diagonal should be square matrices, and invertible
I Interesting variant for systems of partial differential equations, where

multiple species interact with each other



Lecture 5 Slide 49

Convergence

I Let û be the solution of Au = b.
I Let ek = uj − û be the error of the k-th iteration step

uk+1 = uk −M−1(Auk − b)
= (I −M−1A)uk + M−1b

uk+1 − û = uk − û −M−1(Auk − Aû)
= (I −M−1A)(uk − û)
= (I −M−1A)k (u0 − û)

resulting in

ek+1 = (I −M−1A)k e0

I So when does (I −M−1A)k converge to zero for k →∞ ?



Lecture 5 Slide 50

Jordan canonical form of a matrix A

I λi (i = 1 . . . p): eigenvalues of A
I σ(A) = {λ1 . . . λp}: spectrum of A
I µi : algebraic multiplicity of λi :

multiplicity as zero of the characteristic polynomial det(A− λI)
I γi geometric multiplicity of λi : dimension of Ker(A− λI)
I li : index of the eigenvalue: the smallest integer for which

Ker(A− λI)li +1 = Ker(A− λI)li

I li ≤ µi

Theorem (Saad, Th. 1.8) Matrix A can be transformed to a block diagonal
matrix consisting of p diagonal blocks, each associated with a distinct eigenvalue
λi .

I Each of these diagonal blocks has itself a block diagonal structure
consisting of γi Jordan blocks

I Each of the Jordan blocks is an upper bidiagonal matrix of size not
exceeding li with λi on the diagonal and 1 on the first upper diagonal.



Lecture 5 Slide 51

Jordan canonical form of a matrix II

X−1AX = J =




J1
J2

. . .
Jp




Ji =




Ji,1
Ji,2

. . .
Ji,γi




Ji,k =




λi 1
λi 1

. . . 1
λi




Each Ji,k is of size li and corresponds to a different eigenvector of A.



Lecture 5 Slide 52

Spectral radius and convergence

Definition The spectral radius ρ(A) is the largest absolute value of any
eigenvalue of A: ρ(A) = maxλ∈σ(A) |λ|.

Theorem (Saad, Th. 1.10) lim
k→∞

Ak = 0 ⇔ ρ(A) < 1.

Proof, ⇒: Let ui be a unit eigenvector associated with an eigenvalue λi . Then

Aui = λi ui

A2ui = λi Ai ui = λ2ui

...
Ak ui = λk ui

therefore ||Ak ui ||2 = |λk |
and lim

k→∞
|λk | = 0

so we must have ρ(A) < 1



Lecture 5 Slide 53

Spectral radius and convergence II

Proof, ⇐: Jordan form X−1AX = J . Then X−1Ak X = Jk .
Sufficient to regard Jordan block Ji = λi I + Ei where |λi | < 1 and E li

i = 0.
Let k ≥ li . Then

Jk
i =

li−1∑

j=0

(
k
j

)
λk−j E j

i

||Ji ||k ≤
li−1∑

j=0

(
k
j

)
|λ|k−j ||Ei ||j

One has
(

k
j

)
= k!

j!(k−j)! =
∑j

i=0

[
j
i

]
k i

j! is a polynomial of degree j in k

where the Stirling numbers of the first kind are given by[ 0
0
]

= 1,
[ j

0
]

=
[ 0

j
]

= 0,
[ j+1

i
]

= j
[ j

i
]

+
[ j

i−1
]
.

Thus,
(

k
j

)
|λ|k−j → 0 (k →∞) as exponential decay beats polynomial growth

�.



Lecture 5 Slide 54

Corollary from proof

Theorem (Saad, Th. 1.12)

lim
k→∞

||Ak || 1
k = ρ(A)

�



Lecture 5 Slide 55

Back to iterative methods

Sufficient condition for convergence: ρ(I −M−1A) < 1.



Lecture 5 Slide 56

Convergence rate
Assume λ with |λ| = ρ(I −M−1A) < 1 is the largest eigenvalue and has a single
Jordan block of size l . Then the convergence rate is dominated by this Jordan
block, and therein by the term with the lowest possible power in λ which due to
E l = 0 is

λk−l+1
(

k
l − 1

)
E l−1

||(I −M−1A)k (u0 − û)|| = O
(
|λk−l+1|

(
k

l − 1

))

and the “worst case” convergence factor ρ equals the spectral radius:

ρ = lim
k→∞

(
max

u0

||(I −M−1A)k (u0 − û)||
||u0 − û||

) 1
k

= lim
k→∞

||(I −M−1A)k || 1
k

= ρ(I −M−1A)

Depending on u0, the rate may be faster, though


