
Lecture 1 Slide 1

Scientific Computing WS 2018/2019

Lecture 1

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

Lecture 1 Slide 2

Me

I Name: Dr. Jürgen Fuhrmann (no, not Prof.)
I Affiliation: Weierstrass Institute for Applied Analysis and Stochastics, Berlin

(WIAS);
Deputy Head, Numerical Mathematics and Scientific Computing

I Contact: juergen.fuhrmann@wias-berlin.de
I Course homepage:

http://www.wias-berlin.de/people/fuhrmann/teach.html

I Experience/Field of work:
I Numerical solution of partial differential equations (PDEs)
I Development, investigation, implementation of finite volume discretizations

for nonlinear systems of PDEs
I Ph.D. on multigrid methods
I Applications: electrochemistry, semiconductor physics, groundwater. . .
I Software development:

I WIAS code pdelib (http://pdelib.org)
I Languages: C, C++, Python, Lua, Fortran, Julia
I Visualization: OpenGL, VTK

http://www.wias-berlin.de/people/fuhrmann/teach.html
http://pdelib.org

Lecture 1 Slide 3

Admin stuff

I Lectures: Tue 10-12 FH 311, Thu 10-12 MA269
I Consultation: Thu 12-13 MA269, more at WIAS on appointment
I There will be coding assignments, mostly in C++

I Unix pool
I Linux, MacOSX+ Homebrew, Windows+Cygwin on your own PC/laptop

I Access to examination
I Attend ≈ 80% of lectures
I Return assignments (≈ 4-5, but yet to be determined)
I General activity during course

I Slides will be online, a script is being developed from the slides.

Lecture 1 Slide 4

UNIX Pool: Thursday lectures in MA269

https://www.math.tu-berlin.de/iuk/lehrrechnerbereich/v_menue/
lehrrechnerbereich/

I Working groups of two students per account/computer
I Please sign up to the account list provided by the admins
I Please check and correct the attendance list, enter your WIR account

number
I All examples during this course will be available on UNIX pool systems
I All homework can be done on UNIX pool machines as well (Room MA241

outside of course hours)
I Please find yourself in groups of two and fill in the list of accounts for the

UNIX pool (on Thursday)
I Once the administrators open the accounts, you will be able to log in and

enter a new password

https://www.math.tu-berlin.de/iuk/lehrrechnerbereich/v_menue/lehrrechnerbereich/
https://www.math.tu-berlin.de/iuk/lehrrechnerbereich/v_menue/lehrrechnerbereich/

Lecture 1 Slide 5

Literature

I Numerical methods
I Y. Saad: Iterative methods for sparse linear systems

http://www-users.cs.umn.edu/˜saad/IterMethBook_2ndEd.pdf
I V. Eijkhout: Introduction to High-Performance Scientific Computing

https://bitbucket.org/VictorEijkhout/hpc-book-and-course/
I C/C++: look for resources on the standard C++11

I B. Stroustrup: The C++ Programming Language, 4th Edition
I P. Gottschling: Discovering Modern C++: An Intensive Course for Scientists,

Engineers, and Programmers (C++ In-Depth)
I http://www.cplusplus.com/
I https://isocpp.org/get-started
I http://en.cppreference.com/w/

I Python: look for resources on Python3
I https://www.python.org/
I https://docs.python.org/3/tutorial/
I H.P. Langtangen (� 2016): A Primer on Scientific Programming with Python

https://hplgit.github.io/primer.html/doc/pub/half/book.pdf

http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
https://bitbucket.org/VictorEijkhout/hpc-book-and-course/
http://www.cplusplus.com/
https://isocpp.org/get-started
http://en.cppreference.com/w/
https://www.python.org/
https://docs.python.org/3/tutorial/
https://hplgit.github.io/primer.html/doc/pub/half/book.pdf

Lecture 1 Slide 6

Introduction

Lecture 1 Slide 7

There was a time when “computers” were humans

Harvard Computers, circa 1890
By Harvard College Observatory - Public Domain

https://commons.wikimedia.org/w/index.php?curid=

10392913

It was about science – astronomy

Computations of course have been performed since ancient times. One can trace
back the termin “computer” applied to humans at least until 1613.

The “Harvard computers” became very famous in this context. Incidently, they
were mostly female. They predate the NASA human computers of recent movie
fame.

https://commons.wikimedia.org/w/index.php?curid=10392913
https://commons.wikimedia.org/w/index.php?curid=10392913

Lecture 1 Slide 8

Does this scale ?

L.F.Richardson 1922

64000 computers predicting weather
(1986 Illustration of L.F. Richard-
son’s vision by S. Conlin)

I This was about weather, not science in the first place
I Science and Engineering need computing

Lecture 1 Slide 9

Computing was taken over by machines

By Wgsimon - Own work, CC BY-SA 3.0 - Public Domain https://commons.wikimedia.org/w/index.php?curid=15193542

https://commons.wikimedia.org/w/index.php?curid=15193542

Lecture 1 Slide 10

Computational engineering

I Starting points: Nuclear weapons + rocket design, ballistic trajectories,
weather . . .

I Now ubiquitous:
I Structural engineering
I Car industry
I Oil recovery
I . . .

I Use of well established, verfied, well supported commercial codes
I Comsol
I ANSYS
I Eclipse
I . . .

Lecture 1 Slide 11

As soon as computing machines became available . . .

. . . Scientists “misused” them to satisfy their curiosity

“. . . Fermi became interested in the development and potentialities of the
electronic computing machines. He held many discussions [. . .] of the kind of
future problems which could be studied through the use of such machines.”

Fermi,Pasta and Ulam studied particle systems with nonlinear interactions

Calculations were done on the MANIAC-1 computer at Los Alamos

Lecture 1 Slide 12

And they still do. . .

Caltech/MIT/LIGO Lab

SXS, the Simulating eXtreme Spacetimes (SXS) project (http:

//www.black-holes.org)

Verification of the detection of gravitational waves by numerical solution of
Einstein’s equations of general relativity using the “Spectral Einstein Code”

Computations significantly contributed to the 2017 Nobel prize in physics

http://www.black-holes.org
http://www.black-holes.org

Lecture 1 Slide 13

Scientific computing

“The purpose of computing is insight, not numbers.”
(https://en.wikiquote.org/wiki/Richard_Hamming)

I Frontiers of Scientific Computing
I Insight into complicated phenomena not accessible by other methods
I Improvement of models to better fit reality
I Improvment of computational methods
I Generate testable hypothesis
I Support experimentation in other scientific fields
I Exploration of new computing capabilities
I Prediction, optimization of complex systems

I Good scientifc practice
I Reproducibility
I Sharing of ideas and knowledge

I Interdisciplinarity
I Numerical Analysis
I Computer science
I Modeling in specific fields

https://en.wikiquote.org/wiki/Richard_Hamming

Lecture 1 Slide 14

General approach

Hypothesis

Mathematical model

Algorithm

Code

Result

I Possible (probable) involvement of different persons, institutions
I It is important to keep interdisciplinarity in mind

Lecture 1 Slide 15

Scientific computing tools

Many of them are Open Source
I General purpose environments

I Matlab
I COMSOL
I Python + ecosystem
I R + ecosystem
I Julia (evolving)

I “Classical” computer languages + compilers
I Fortran
I C, C++

I Established special purpose libraries
I Linear algebra: LAPACK, BLAS, UMFPACK, Pardiso
I Mesh generation: triangle, TetGen, NetGen
I Eigenvalue problems: ARPACK
I Visualization libraries: VTK

I Tools in the “background”
I Build systems Make, CMake
I Editors + IDEs (emacs, jedit, eclipse)
I Debuggers
I Version control (svn, git, hg)

Lecture 1 Slide 16

Confusio Linguarum

”And the whole land was of one lan-
guage and of one speech. ... And
they said, Go to, let us build us a city
and a tower whose top may reach
unto heaven. ... And the Lord said,
behold, the people is one, and they
have all one language. ... Go to,
let us go down, and there confound
their language that they may not un-
derstand one another’s speech. So
the Lord scattered them abroad from
thence upon the face of all the earth.”
(Daniel 1:1-7)

Lecture 1 Slide 17

Once again Hamming

. . . of “Hamming code” and “Hamming distance” fame, who started his carrier
programming in Los Alamos:

“Indeed, one of my major complaints about the computer field is that whereas
Newton could say,”If I have seen a little farther than others, it is because I have
stood on the shoulders of giants,” I am forced to say, “Today we stand on each
other’s feet.” Perhaps the central problem we face in all of computer science is
how we are to get to the situation where we build on top of the work of others
rather than redoing so much of it in a trivially different way. Science is supposed
to be cumulative, not almost endless duplication of the same kind of things.”
(1968)

I 2017 this is still a problem

Lecture 1 Slide 18

Intended aims and topics of this course

I Indicate a reasonable path within this labyrinth
I Relevant topics from numerical analysis
I Introduction to C++ (≈ 3 lectures) and Python (short, mostly for graphics

purposes)
I Provide technical skills to understand a part of the inner workings of the

relevant tools
I Focus on partial differential equation (PDE) solution

I Solution of large linear systems of equations
I Finite elements
I Finite volumes
I Mesh generation
I Nonlinear if time permits – so we can see some real action
I Parallelization
I Visualization

I Tools/Languages
I C++, Python
I Parallelization: Glances on OpenMP, MPI, C++ threads, GPU programming
I Visualization: Python, VTK

Lecture 1 Slide 19

Hardware aspects

With material from “Introduction to High-Performance Scientific Computing” by
Victor Eijkhout
(http://pages.tacc.utexas.edu/˜eijkhout/istc/istc.html)

http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html

Lecture 1 Slide 20

von Neumann Architecture

I Data and code stored in the same memory ⇒ encoded in the same way,
stored as binary numbers

I Instruction cycle:
I Instruction decode: determine operation and operands
I Get operands from memory
I Perform operation
I Write results back
I Continue with next instruction

Lecture 1 Slide 21

Contemporary CPU Architecture
I Multicore ⇒ parallelism
I Multiple operations simultaneously “in flight”
I Operands can be in memory, cache, register
I Results may need to be coordinated with other processing elements
I Operations can be performed speculatively

Modern CPU. From: https://www.hartware.de/review_1411_2.html

https://www.hartware.de/review_1411_2.html

Lecture 1 Slide 22

Modern CPU core functionality

I Clock: “heartbeat” of CPU
I Traditionally: one instruction per clock cycle
I Modern CPUs: Multiple floating point units, complex instructions, e.g. one

multiplication + one addition as single instructon
I Peak performance is several operations /clock cycle
I Only possible to obtain with highly optimized code

I Pipelining
I A single floating point instruction takes several clock cycles to complete:
I Subdivide an instruction:

I Instruction decode
I Operand exponent align
I Actual operation
I Normalize

I Pipeline: separate piece of hardware for each subdivision
I Like assembly line

Lecture 1 Slide 23

Memory Hierachy

I Main memory access is slow compared to the processor
I 100–1000 cycles latency before data arrive
I Data stream maybe 1/4 floating point number/cycle;
I processor wants 2 or 3

I Faster memory is expensive
I Cache is a small piece of fast memory for intermediate storage of data
I Operands are moved to CPU registers immediately before operation
I Memory hierarchy:

Registers in different cores
Fast on-CPU cache memory (L1, L2, L3)

Main memory

Lecture 1 Slide 24

Registers & Cache

Processor instructions operate on registers directly
I have assembly language names names like: eax, ebx, ecx, etc.
I sample instruction: addl %eax, %edx
I Separate instructions and registers for floating-point operations

Registers are filled with data from main memory via cache:
I L1 Cache: Data cache closest to registers
I L2 Cache: Secondary data cache, stores both data and instructions
I Data from L2 has to go through L1 to registers
I L2 is 10 to 100 times larger than L1
I Some systems have an L3 cache, ≈10x larger than L2

Lecture 1 Slide 25

Cache line

I The smallest unit of data transferred between main memory and the caches
(or between levels of cache)

I N sequentially-stored, multi-byte words (usually N=8 or 16).
I If you request one word on a cache line, you get the whole line

I make sure to use the other items, you’ve paid for them in bandwidth
I Sequential access good, “strided” access ok, random access bad

I Cache hit: location referenced is found in the cache
I Cache miss: location referenced is not found in cache

I triggers access to the next higher cache or memory

I Cache thrashing
I Two data elements can be mapped to the same cache line: loading the

second “evicts” the first
I Now what if this code is in a loop? “thrashing”: really bad for performance

I Performance is limited by data transfer rate
I High performance if data items are used multiple times

Lecture 1 Slide 26

High level computer languages

Lecture 1 Slide 27

Machine code

I Detailed instructions for the actions of the CPU
I Not human readable
I Sample types of instructions:

I Transfer data between memory location and register
I Perform arithmetic/logic operations with data in register
I Check if data in register fulfills some condition
I Conditionally change the memory address from where instructions are fetched
≡ “jump” to address

I Save all register context and take instructions from different memory location
until return ≡ “call”

I Instructions are very hard to handle, although programming started this
way...

534c 29e5 31db 48c1 fd03 4883 ec08 e85d
feff ff48 85ed 741e 0f1f 8400 0000 0000
4c89 ea4c 89f6 4489 ff41 ff14 dc48 83c3
0148 39eb 75ea 4883 c408 5b5d 415c 415d
415e 415f c390 662e 0f1f 8400 0000 0000
f3c3 0000 4883 ec08 4883 c408 c300 0000
0100 0200 4865 6c6c 6f20 776f 726c 6400
011b 033b 3400 0000 0500 0000 20fe ffff
8000 0000 60fe ffff 5000 0000 4dff ffff

Lecture 1 Slide 28

Assembler code

I Human readable representation of CPU instructions
I Some write it by hand . . .

I Code close to abilities and structure of the machine
I Handle constrained resources (embedded systems, early computers)

I Translated to machine code by a programm called assembler
.file "code.c"
.section .rodata
.LC0:
.string "Hello world"
.text
...
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6
subq $16, %rsp
movl %edi, -4(%rbp)
movq %rsi, -16(%rbp)
movl $.LC0, %edi
movl $0, %eax
call printf

Lecture 1 Slide 29

Compiled high level languages

I Algorithm description using mix of mathematical formulas and statements
inspired by human language

I Translated to machine code (resp. assembler) by compiler

#include <stdio.h>
int main (int argc, char *argv[])
{

printf("Hello world");
}

I “Far away” from CPU ⇒ the compiler is responsible for creation of
optimized machine code

I Fortran, COBOL, C, Pascal, Ada, Modula2, C++, Go, Rust, Swift
I Strongly typed
I Tedious workflow: compile - link - run

source3.c

source2.c

source1.c

source3.o

source2.o

source1.o

executable output

compile

compile

compile

link run as system executable

Lecture 1 Slide 30

Compiling. . .

. . . from xkcd

Lecture 1 Slide 31

Compiled languages in Scientific Computing

I Fortran: FORmula TRANslator (1957)
I Fortran4: really dead
I Fortran77: large number of legacy libs: BLAS, LAPACK, ARPACK . . .
I Fortran90, Fortran2003, Fortran 2008

I Catch up with features of C/C++ (structures,allocation,classes,inheritance,
C/C++ library calls)

I Lost momentum among new programmers
I Hard to integrate with C/C++
I In many aspects very well adapted to numerical computing
I Well designed multidimensional arrays

I C: General purpose language
I K&R C (1978) weak type checking
I ANSI C (1989) strong type checking
I Had structures and allocation early on
I Numerical methods support via libraries
I Fortran library calls possible

I C++: The powerful object oriented language
I Superset of C (in a first approximation)
I Classes, inheritance, overloading, templates (generic programming)
I C++11: Quantum leap: smart pointers, threads, lambdas, initializer lists in

standard
I With great power comes the possibility of great failure. . .

Lecture 1 Slide 32

High level scripting languages

I Algorithm description using mix of mathematical formulas and statements
inspired by human language

I Simpler syntax, less ”boiler plate”

print("Hello world")

I Need intepreter in order to be executed
I Very far away from CPU ⇒ usually significantly slower compared to

compiled languages
I Matlab, Python, Lua, perl, R, Java, javascript
I Less strict type checking, powerful introspection capabilities
I Immediate workflow: “just run”

I in fact: first compiled to bytecode which can be interpreted more efficiently

module1.py

module2.py

module3.py

main.py output
import run in interpreter

Lecture 1 Slide 33

JIT based languages

I Most interpreted language first compile to bytecode wich then is run in the
interpreter ⇒ perfomance bottleneck

I JIT: Just In Time compiler: compile to machine code “on the fly”
I V8 → javascript
I LLVM Compiler infrastructure → Python/NUMBA
I LuaJIT, Java, Smalltalk
I LLVM → Julia (v1.0 since August, 2018)

I Drawback over compiled languages: compilation delay at every start, can be
mediated by caching

I Potential advantage over compiled languages: simpler syntax, tracing JIT,
i.e. optimization at runtime

I Advantage over interpreted languages: performance of the code

Lecture 1 Slide 34

Summary

I Compiled languages important for high performance
I Fortran lost its momentum, but still important due to huge amount of

legacy libs
I C++ highly expressive, ubiquitous, significant improvements in C++11
I Julia to be watched closely

