Scientific Computing WS 2017/2018

Lecture 29

Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de

Iterative solver complexity I

▶ Solve linear system iteratively until $||e_k|| = ||(I - M^{-1}A)^k e_0|| \le \epsilon$

$$\begin{split} & \rho^k \mathsf{e}_0 \leq \epsilon \\ & k \ln \rho < \ln \epsilon - \ln \mathsf{e}_0 \\ & k \geq k_\rho = \left\lceil \frac{\ln \mathsf{e}_0 - \ln \epsilon}{\ln \rho} \right\rceil \end{split}$$

- Assume $\rho < \rho_0 < 1$ independent of h resp. N, A sparse and solution of Mv = r has complexity O(N).
 - \Rightarrow Number of iteration steps $k_{
 ho}$ independent of N
 - \Rightarrow Overall complexity O(N).

Iterative solver complexity II

- Assume $\rho = 1 h^{\delta} \Rightarrow \ln \rho \approx -h^{\delta}$
- $k = O(h^{-\delta})$
- d: space dimension, then $h \approx N^{-\frac{1}{d}} \Rightarrow k = O(N^{\frac{\delta}{d}})$
- ► Assume O(N) complexity of one iteration step \Rightarrow Overall complexity $O(N^{\frac{d+\delta}{d}})$
- ▶ Jacobi: $\delta = 2$, something better with at least $\delta = 1$?

dim	$\rho = 1 - O(h^2)$	ho = 1 - O(h)	LU fact.	LU solve
1	$O(N^3)$	$O(N^2)$	O(N)	O(N)
2	$O(N^2)$	$O(N^{\frac{3}{2}})$	$O(N^{\frac{3}{2}})$	$O(N \log N)$
3	$O(N^{\frac{5}{3}})$	$O(N^{\frac{4}{3}})$	$O(N^2)$	$O(N^{\frac{4}{3}})$

- ▶ In 1D, iteration makes not much sense
- ▶ In 2D, we can hope for parity
- ▶ In 3D, beat sparse matrix solvers with $\rho = 1 O(h)$?

Multigrid: Iterative solver with O(N) complexity

Idea: combine classical preconditioners with coarse grid correction

- Assume embedded finite element spaces $V_0 \dots V_l$ such tha $V_0 \subset V_1 \subset \dots V_l$
- V_k is produced from V_{k-1} by subdividing each triangle into four. Alternative: finite difference refinement
- ightharpoonup \Rightarrow interpolation operator $I_{k-1}^k:V_{k-1} o V_k$
- ightharpoonup \Rightarrow restriction operator $R_{k-1}^k = (I_{k-1}^k)^T : V_k \to V_{k-1}$
- ▶ Discretization matrix A_k on each level k = 0...I
- ▶ "Smoother" (Jacobi, ILU, ...) M_k on each level k = 1...
- ▶ Number of smoothig steps n_s
- Coarse grid solver
- lacktriangle Number of coarse grid correction steps γ

Multigrid Algorithm

```
Procedure Multigrid (I, u_l, f_l)
    if l = 0 then
       u_0 = A_0^{-1} f_0
                                               // coarse grid solution
    else
        for i = 1, n_s do
        u_{l} = u_{l} - M_{l}^{-1}A_{l}(u_{l} - f_{l})
                                                         // pre-smoothing
       end
        f_{l-1} = R_{l-1}^l (A_l u_l - f_l)
                                                            // restriction
        u_{l-1} = 0
        for i=1, \gamma do
            Multigrid(I - 1, u_{l-1}, f_{l-1})
                                                  // coarse grid corr.
        end
        u_{l} = u_{l} - I_{l-1}^{l} u_{l-1}
                                                         // interpolation
        for i = 1, n_s do
        u_{l} = u_{l} - M_{l}^{-1}A_{l}(u_{l} - f_{l})
                                                       // post-smoothing
        end
    end
```

Multigrid remarks

- Use as a preconditioner in CG methods
- ► First development in early 60ies by Bakhvalov, Fedorenko
- Works well for hierarchically embedded grid systems and smooth problem coefficients: O(N) solution complexity
- Other variant can use embedding of FEM spaces of growing polynomial degree
- "Algebraic multigrid": define coarse grid, interpolations in an algebraic way by choosing coarse grid points and an interpolation from matrix entries
- ► Hybrid variant: structured grid, matrix dependent transfer operators for problems with strongly varying coefficients (my PhD. thesis)

Final remarks

Rear view

- ▶ I Architectures and Languages
 - ► C++, a bit of Python
- ▶ II Linear Algebra
 - Sparse matrices, iterative methods, some theory behind
- ► III Finite elements+ Finite volumes on triangular grids
 - Heat/Diffusion equation (stationary + time dependent)
 - Stationary convection diffusion
 - Nonlinear diffusion
 - Triangulations
 - Finite elements + convergence rate estimates
 - Finite volumes
 - Structural properties discretized systems
- ▶ IV Parallelization
 - Shared/Distributed memory, GPU
 - Threads, OpenMP, MPI
- ► Four separate A4 printable pdfs now on course page

Where to go from here: problem classes

- Systems of PDEs
 - Elasticity: deformation of bodies under external forces
 - Stokes/Navier Stokes equations of fluid mechanics
 - Maxwell equations of electrodynamics
 - Charge transport in self-consistent electric field
 - Reaction-Diffusion systems (we have seen one)
- Coupling between them
- Models and discretizations consistent to basic thermodynamic principles
 - Energy conservation
 - Entropy production (second law of thermodynamics)
- Optimization
- Uncertainty quantification
- Reduced order methods

Where to go from here: discretization methods

- Finite differences (not covered intentionally...)
- Discontinuous Galerkin methods
- ▶ Finite volume methods on general grids
- ▶ Precise and oscillation free discretizations for convection-diffusion
- Linear implicit time discretization for nonlinear problems
- Spectral methods
- Isogeometric finite elements (NURBS based)
- Boundary elements
- Criteria
 - Convergence
 - Matrix structures
 - Structural consistency (to basic physical/thermodynamical principles)

Where to go from here: meshing

▶ 3D meshing with anisotropic resolution of boundary layers

Where to go from here: efficient linear solution methods

► Domain decomposition methods

Where to go from here: languages + code

- ► Legacy: Fortran + C
- ▶ Future (?): JIT based
 - Julia
 - Python/Numba
- Visualization
 - MathGL
 - vtk/paraview
- Parallel programming environments
 - PetsC
 - Trilinos
- Open Source FEM environments
 - Deal II
 - DUNE
 - FENics
- Commercial
 - COMSOL

Where to go from here: something completely different

- ... but Scientific computing as well
 - ▶ Molecular dynamics, density functional theory
 - ► Machine learning, neuronal networks (?)

Exams

- ► Room: MA379
- ► Consultations: This Thursday 10:00-12:00 MA269
- ► Focus questions on course page
- Please do not forget your Prüfungsanmeldung
- ► Beisitzer:
 - Rene Kehl
 - Olivier Seté
 - ► Prof. Nabben

Examination dates

2018-02-26	10:00	Ntokas Konstantin
	10:30	Raabe Dominik
	11:00	Blaschke Lana
2018-03-05	10:00	Bender Wilhelm
	10:30	Masuku Amanda
	11:00	Rominger Marvin
	11:30	Zhu Ruidong
2018-03-12	10:00	Beddig Rebekka
	10:30	Beersing-Vasavez Kiran
	11:00	Cejudo José Eduardo
	11:30	Samad Azlaan Mustafa
	12:00	Sheriff Waseem
	12:30	Sun Peng
2018-03-14	10:00	Anker Felix
	10:30	Abdel Dilara
	11:00	Deinert Hendrik
	11:30	Eleftheriadou Ioanna Iro
	12:00	Özge Sahin
	13:30	Palacios Joaquin
	14:00	Scharton Anton
	14:30	Siedler Frederik
	15:00	Vasalakis Matthas
	15:30	Weltsch André
2018-03-26	10:00	Bartels Tinko
	10:30	Baumann Felix
	11:00	Bolz Marie
	11:30	Gabrysch Sven
	12:00	Meyer Sybille
	12:30	Riegger Franziska
	13:00	Runge Daniel