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Iterative solver complexity |

> Solve linear system iteratively until ||ex|| = ||(/ — M7 A) eo|| < ¢

pkeoge
kinp <Ine—Ine

k> k= ’7|ne0—|ne—‘
Inp
> Assume p < po < 1 independent of h resp. N, A sparse and solution of
Mv = r has complexity O(N).
= Number of iteration steps k, independent of N
= Overall complexity O(N).




Iterative solver complexity Il
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Assume p=1—h = Inp~ —h°
k= 0(h™?)
d: space dimension, then ha N~ = k = O(N%)

Assume O(N) complexity of one iteration step
= Overall complexity O(N#)

Jacobi: § = 2, something better with at least § =1 7

dim p=1-0(h) p=1-0(h) LUfact. LU solve
1 O(N®) O(\?) O(N) O(N)
2 O(N?) O(N?) O(N?)  O(Nlog N)
3 O(N3) O(N3) O(N?) O(N?%)

In 1D, iteration makes not much sense
In 2D, we can hope for parity

In 3D, beat sparse matrix solvers with p =1 — O(h) ?




Multigrid: Iterative solver with O(N) complexity

Idea: combine classical preconditioners with coarse grid correction

>

Assume embedded finite element spaces Vj ...V, such tha
VsCcViC...V

Vi is produced from V) _; by subdividing each triangle into four.
Alternative: finite difference refinement

= interpolation operator I,’(Ll Vi1 — Vi

= restriction operator Rf_; = (15 )7 : Vi — Vi1
Discretization matrix A, on each level k =0.../
“Smoother” (Jacobi, ILU, ...) M on each level k =1.../
Number of smoothig steps ns

Coarse grid solver

Number of coarse grid correction steps ~y



Multigrid Algorithm

Procedure Multigrid(/, u;, f;)

if / =0 then
‘ ug = Ao_lfo // coarse grid solution
else
for i=1,ns do
‘ u = u — MflA,(u/ - 1) // pre-smoothing
end
fi_1= R/_I(A,u/ —f) // restriction
u_i1 = 0
fori=1,vdo
‘ Multigrid(/ —1,u/_1,f_1) // coarse grid corr.
end
U= u — I,’_lu,_l // interpolation
for i =1,ns do
‘ U= u — M,_lAl(u/ —f) // post-smoothing
end
end

end



Multigrid remarks

» Use as a preconditioner in CG methods
» First development in early 60ies by Bakhvalov, Fedorenko

» Works well for hierarchically embedded grid systems and smooth
problem coefficients: O(N) solution complexity

» Other variant can use embedding of FEM spaces of growing
polynomial degree

> “Algebraic multigrid”: define coarse grid, interpolations in an
algebraic way by choosing coarse grid points and an interpolation
from matrix entries

» Hybrid variant: structured grid, matrix dependent transfer operators
for problems with strongly varying coefficients (my PhD. thesis)



Final remarks



Rear view
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| Architectures and Languages
> C+4+, a bit of Python
Il Linear Algebra
> Sparse matrices, iterative methods, some theory behind
Il Finite elements+ Finite volumes on triangular grids
Heat/Diffusion equation (stationary + time dependent)
Stationary convection diffusion
Nonlinear diffusion
Triangulations
Finite elements + convergence rate estimates
Finite volumes
Structural properties discretized systems
IV Parallelization
> Shared/Distributed memory, GPU
» Threads, OpenMP, MPI
Four separate A4 printable pdfs now on course page
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Where to go from here: problem classes

v

Systems of PDEs
» Elasticity: deformation of bodies under external forces
> Stokes/Navier Stokes equations of fluid mechanics
> Maxwell equations of electrodynamics
» Charge transport in self-consistent electric field
> Reaction-Diffusion systems (we have seen one)
Coupling between them
Models and discretizations consistent to basic thermodynamic
principles
> Energy conservation
> Entropy production (second law of thermodynamics)
Optimization
Uncertainty quantification
Reduced order methods



Where to go from here: discretization methods

» Finite differences (not covered intentionally. .. )

» Discontinuous Galerkin methods

> Finite volume methods on general grids

» Precise and oscillation free discretizations for convection-diffusion
» Linear implicit time discretization for nonlinear problems

» Spectral methods

> Isogeometric finite elements (NURBS based)

» Boundary elements

» Criteria

» Convergence
> Matrix structures
> Structural consistency (to basic physical /thermodynamical principles)



Where to go from here: meshing

» 3D meshing with anisotropic resolution of boundary layers



Where to go from here: efficient linear solution methods

» Domain decomposition methods



Where to go from here: languages + code
» Legacy: Fortran + C

Future (?7): JIT based

v

> Julia
> Python/Numba

v

Visualization

» MathGL
> vtk/paraview

v

Parallel programming environments

> PetsC
> Trilinos

» Open Source FEM environments

> Deal Il
» DUNE
» FENics

Commercial

» COMSOL

-~ ANICNVC /'CILIICNT
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Where to go from here: something completely different

. but Scientific computing as well
» Molecular dynamics, density functional theory

» Machine learning, neuronal networks (?)



Exams
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Room: MA379
Consultations: This Thursday 10:00-12:00 MA269

v

v

Focus questions on course page

v

Please do not forget your Priifungsanmeldung

Beisitzer:

v

» Rene Kehl
» Olivier Seté

» Prof. Nabben



Examination dates

2018-02-26 10:00 Ntokas Konstantin
10:30 Raabe Dominik
11:00 Blaschke Lana
2018-03-05 10:00 Bender Wilhelm
10:30 Masuku Amanda
11:00 Rominger Marvin
11:30 Zhu Ruidong
2018-03-12 10:00 Beddig Rebekka
10:30 Beersing-Vasavez Kiran
11:00 Cejudo José Eduardo
11:30 Samad Azlaan Mustafa
12:00 Sheriff Waseem
12:30 Sun Peng
2018-03-14 10:00 Anker Felix
10:30 Abdel Dilara
11:00 Deinert Hendrik
11:30 Eleftheriadou loanna Iro
12:00 Ozge Sahin
13:30 Palacios Joaquin
14:00 Scharton Anton
14:30 Siedler Frederik
15:00 Vasalakis Matthas
15:30 Weltsch André
2018-03-26 10:00 Bartels Tinko
10:30 Baumann Felix
11:00 Bolz Marie
11:30 Gabrysch Sven
12:00 Meyer Sybille
12:30 Riegger Franziska
13:00 Runge Daniel




