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Stability tests



Time dependent Robin boundary value problem

» Choose final time T > 0. Regard functions (x,t) — R.

Ou—V-kVu=1f inQx][0,T]
kVu-ii+a(u—g)=0 ondQx|[0,T]
u(x,0) = up(x) inQ

» This is an initial boundary value problem

» This problem has a weak formulation in the Sobolev space
L ([0, T], H*(R)), which then allows for a Galerkin approximation in
a corresponding subspace

» We will proceed in a simpler manner: first, perform a finite difference
discretization in time, then perform a finite element (finite volume)
discretization in space.

> Rothe method: first discretize in time, then in space

» Method of lines: first discretize in space, get a huge ODE system,
then apply perfom discretization




Time discretization

» Choose time discretization points 0 = tg < t;--- <ty =T

> let Ti =1t —ti—1
Fori=1...N, solve
S0 Y kVup=f inQx[0,T]
Ti

kVug-fi+alug—g)=0 ondQx[0,T]

where ug = Ou; + (1 — 0)u;—1

» 0 = 1: backward (implicit) Euler method
Solve PDE problem in each timestep

> 0= %: Crank-Nicolson scheme
Solve PDE problem in each timestep

» 0 = 0: forward (explicit) Euler method
This does not involve the solution of a PDE problem. What do we
have to pay for this ?




Time discretization: stability test

> Influence of
» Forward/backward Euler
> Mass lumping

» Time vs space stepsize



The convection - diffusion equation

Search function u: Q x [0, T] — R such that u(x,0) = up(x) and

Ou—V - (DVu—uwv)=1f inQx][0,T]
(DVu—uwv) - n+a(u—w)=0 onl x[0,T]

u(x, t): species concentration, temperature
J = DVu — uv: species flux
D: diffusion coefficient
v(x, t): velocity of medium (e.g. fluid)
» Given analytically
> Solution of free flow problem (Navier-Stokes equation)
> Flow in porous medium (Darcy equation): v = —xVp where

vyvyyvYyy

-V - (kVp)=0

v

For constant density, the divergence conditon V - v = 0 holds.




Finite volumes for convection diffusion
Search function v : Q x [0, T] — R such that u(x,0) = up(x) and

Ou—V-j=0 inQx[0,T]
jn+a(lu—w)=0 onl x][0,T]

> Integrate time discrete equation over control volume

O=/(%(u—v)—v >dw— /(u—vdw—/] nedy

Wk Owy
f*Z/J ngdy — /J‘“d’Y*;/(U*V)dW
IEN"JM wi
~ %(Uk —vk)+ Z |hik/|gkl(uk7 ur) + | vkl (uk — gx)
/GNk\k_\/—/ D
—-M —Ag

> %Mu—&—Au: %Mv where A= Ay + D, Ay = (ay))




Central Difference Flux Approximation

> gy approximates normal convective-diffusive flux between control
volumes wy,w;: gu(uxk — u)) = —(DVu — uv) - ny

> Let vy = ﬁ f OV - Ngd~y approximate the normal velocity v - ng

» Central difference flux:
1
gt (i, uy) = D(ue — up) + hk/ﬁ(“k + up) v
1 1
= (D + Ehk,vk,)uk — (D — Ehlek/)Ul

» if vy is large compared to hy, the corresponding matrix (off-diagonal)
entry may become positive

» Non-positive off-diagonal entries only guaranteed for h — 0 !

» Otherwise, we can prove the discrete maximum principle




Simple upwind flux discretization

» Force correct sign of convective flux approximation by replacing
central difference flux approximation hk,%(uk + uy)vi by

hiugvig,  vie <0 1
({ > :hk,%(uk—i—u/)vk/-l— Ehk/‘vkl|

hyupv, Vi >0
kiU Vil kI K , )
Artificial Diffusion D

» Upwind flux:

haukvig,  vie >0

&t (g, up) = D(ue — up) +
’ hauvig,  vie <0

= 1
= (D+ D)(uk — U/) + hk/E(Uk + U/)Vkl

» M-Property guaranteed unconditonally !
» Artificial diffusion introduces error: second order approximation

replaced by first order approximation




Exponential fitting IV

> General case: Du' — uv = D(u' — uf)
» Upwind flux:

Vit hig

—vih
M)uka( 5 Yur)

&ui(ui, ur) = D(B(

» Allen+Southwell 1955

» Scharfetter+Gummel 1969
> llin 1969

» Chang+Cooper 1970

» Guaranteed sign pattern, M property!




Convection diffusion demo

» Influence of

> upwinding



Nonlinear problems: motivation

» Assume nonlinear dependency of some coefficients of the equation on
the solution. E.g. nonlinear diffusion problem

—V(-D(u)Vu)=f inQ
u = upondfd

» FE+FV discretization methods lead to large nonlinear systems of
equations




Nonlinear problems: caution!

This is a significantly more complex world:
» Possibly multiple solution branches
» Weak formulations in LP spaces
» No direct solution methods

» Narrow domains of definition (e.g. only for positive solutions)




Finite element discretization for nonlinear diffusion

» Find up € V), such that for all wy, € Vj:
/ D(up)Vup - Vwy dx = / fwy, dx
Q Q

» Use appropriate quadrature rules for the nonlinear integrals

» Discrete system
A(un) = F(un)




Finite volume discretization for nonlinear diffusion

0:/ (=V - D(u)Vu — F) dw
Wk
= —/ D(u)Vu-nkdfy—/ fdw (Gauss)
Owy Wk
== Z/ u)Vu - ngdy — / D(u)Vu-nd’y—/ fdw
LeN, Yk Wk
~ Z %Hgk/(uk, up) + |veloux — wi) — Jwlfe

LEN

with
DGk + ) (uk — )
g (U, ur) = {or 2D(uk) —D(u)

where D(u fo (&) d¢ (exact solution ansatz at discretization edge)

» Discrete system
A(uh) = F(u;,)




Iterative solution methods: fixed point iteration
> Let u € R".

> Problem: A(u) =

» Assume A(u) = M(u)u, where for each u, M(u) : R" — R" is a linear

operator.

> lteration schem:
Choose ug, i < 0;
while not converged do
Solve M(uj)ujy1 = f;
i+~ i+1;
end
» Convergence criteria:
> residual based: [|A(u) —f|| <€
> update based ||uit1 — uil| < e
» Large domain of convergence

» Convergence may be slow

» Smooth coefficients not necessary




[terative solution methods: Newton method

» Solve
A1(U1 e LI,,) f1
Ax(uy ... u,) H
A(u) = . = .| =f
A,,(ul..‘u,,) fn

> Jacobi matrix (Frechet derivative) for given u: A’(u) = (ax) with
0
gl = %Ak(ul . Un)

> lteration scheme:

Choose ug, i < 0;

while not converged do
Calculate residual r; = A(u;) — f;
Calculate Jacobi matrix A’(y;);
Solve update problem A’(u;)h; = r;;
Update solution: v+ = u; — hj;
i+~ i+1;

end




Newton method Il

» Convergence criteria: - residual based: ||r;|| < € - update based
[Ihil] < e

» Limited domain of convergence

» Slow initial convergence

» Fast (quadratic) convergence close to solution




Damped Newton method
» Remedy for small domain of convergence: damping

Choose ug, i + 0, damping parameter d < 1;
while not converged do
Calculate residual r; = A(y;) — f;
Calculate Jacobi matrix A’(y;);
Solve update problem A'(u;)h; = r;;
Update solution: uj11 = u; — dh;;
i+~ i+1;
end
» Damping slows convergence down from quadratic to linear
» Better way: increase damping parameter during iteration:

Choose ug, i + 0,damping d < 1, growth factor § > 1;
while not converged do
Calculate residual r; = A(y;) — f;
Calculate Jacobi matrix A’(y;);
Solve update problem A'(u;)h; = r;;
Update solution: u;11 = u; — dh;;
Update damping parameter: d; 11 = min(1,0d;) ;
i+~ i+1;
end




Newton demo



Newton method: further issues

» Even if it converges, in each iteration step we have to solve linear
system of equations

> Can be done iteratively, e.g. with the LU factorization of the Jacobi
matrix from first solution step

> lterative solution accuracy my be relaxed, but this may diminuish
quadratic convergence

» Quadratic convergence yields very accurate solution with no large
additional effort: once we are in the quadratic convergence region,
convergence is very fast

» Monotonicity test: check if residual grows, this is often an sign that
the iteration will diverge anyway.




Newton method: embedding

» Embedding method for parameter dependent problems.
> Solve A(ux,\) = f for A= 1.
» Assume A(up, 0) can be easily solved.

» Parameter embedding method:

Solve A(up,0) = f;

Choose initial step size §;

Set A =0;

while A < 1 do
Solve A(uxis, A+ 0) = 0 with initial valuel uy;
A AN+

end

» Possibly decrease stepsize if Newton's method does not converge,
increase it later

» Parameter embedding + damping + update based convergence
control go a long way to solve even strongly nonlinear problems!




Examination dates

Mon Feb 26 (not yet confirmed)
Mon March 5

Wed March 7

Mon March 12

Tue March 13

Wed March 14

Mon March 26

Tue March 27

Time: 10:00-13:00 (6 slots per examination date)
Room: MA 379

Please mark preferred dates in the list.



