
Lecture 22 Slide 1

Scientific Computing WS 2017/2018

Lecture 22

Jürgen Fuhrmann
juergen.fuhrmann@wias-berlin.de



Lecture 22 Slide 2

Convergence + stability tests
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P1 FEM, homogeneous Dirichlet

I Problem:

−∆u = f in Ω
u = 0 on ∂Ω

I Exact solution + rhs:

u(x , y) = sin(πx) sin(πy)
f (x , y) = 2π sin(πx) sin(πy)
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P1 FEM: error plot

I As expected:

||u − uh||L2 ≤ Ch2

||u − uh||H1 ≤ Ch
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P1 FEM:timing plot

I
asm: Assembly
gen: Mesh generation
luf: LU factorization
lus: LU solution

I For large problems,
tluf > tasm > tgen > tlus

I tluf = O(N 3
2 )
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FVM: error plot

I As with P1 FEM

||u − uh||L2 ≤ Ch2

||u − uh||H1 ≤ Ch
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Time dependent Robin boundary value problem
I Choose final time T > 0. Regard functions (x , t)→ R.

∂tu −∇ · κ∇u = f in Ω× [0,T ]
κ∇u · ~n + α(u − g) = 0 on ∂Ω× [0,T ]

u(x , 0) = u0(x) inΩ

I This is an initial boundary value problem
I This problem has a weak formulation in the Sobolev space

L2 ([0,T ],H1(Ω)
)
, which then allows for a Galerkin approximation in

a corresponding subspace
I We will proceed in a simpler manner: first, perform a finite difference

discretization in time, then perform a finite element (finite volume)
discretization in space.

I Rothe method: first discretize in time, then in space
I Method of lines: first discretize in space, get a huge ODE system,

then apply perfom discretization
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Time discretization
I Choose time discretization points 0 = t0 < t1 · · · < tN = T
I let τi = ti − ti−1

For i = 1 . . .N, solve
ui − ui−1

τi
−∇ · κ∇uθ = f in Ω× [0,T ]

κ∇uθ · ~n + α(uθ − g) = 0 on ∂Ω× [0,T ]

where uθ = θui + (1− θ)ui−1

I θ = 1: backward (implicit) Euler method
Solve PDE problem in each timestep

I θ = 1
2 : Crank-Nicolson scheme

Solve PDE problem in each timestep
I θ = 0: forward (explicit) Euler method

This does not involve the solution of a PDE problem. What do we
have to pay for this ?
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Weak formulation of time step problem

I Weak formulation: search u ∈ H1(Ω) such that ∀v ∈ H1(Ω)

1
τi

∫

Ω
uiv dx + θ

(∫

Ω
κ∇ui∇v dx +

∫

∂Ω
αuiv ds

)
=

1
τi

∫

Ω
ui−1v dx + (1− θ)

(∫

Ω
κ∇ui−1∇v dx +

∫

∂Ω
αui−1v ds

)

+
∫

Ω
fv dx +

∫

∂Ω
αgv ds

I Matrix formulation (in case of constant coefficents, Ai = A)

1
τi

Mui + θAiui = 1
τi

Mui−1 + (1− θ)Aiui−1 + F

I M: mass matrix, A = A0 + D , A0: stiffness matrix, D: boundary
contribution
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Mass matrix properties
I Mass matrix M = (mij):

mij =
∫

Ω
φiφj dx

I Self-adjoint, coercive bilinear form ⇒ M is symmetric, positiv definite
I For a family of quasi-uniform, shape-regular triangulations, for every

eigenvalue µ one has the estimate
c1hd ≤ µ ≤ c2hd

T ⇒ condition number κ(M) bounded by constant independent of h:
κ(M) ≤ c

I How to see this ? Let uh =
∑N

i=1 Uiφi , and µ an eigenvalue
(positive,real!) Then

||uh||20 = (U,MU)RN = µ(U,U)RN = µ||U||2RN

From quasi-uniformity we obtain
c1hd ||U||2RN ≤ ||uh||20 ≤ c2hd ||U||2RN

and conclude
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Mass matrix M-Property (P1 FEM) ?

I For P1-finite elements, all integrals mij =
∫

Ω φiφj dx are zero or
positive, so we get positive off diagonal elements.

I No M-Property!
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Mass matrix lumping (P1 FEM)
I Local mass matrix for P1 FEM on element K

(calculated by 2nd order exact edge midpoint quadrature rule):

MK = |K |




1
6

1
12

1
121

12
1
6

1
121

12
1

12
1
6




I Lumping: sum up off diagonal elements to main diagonal, set off
diagonal entries to zero

M̃K = |K |




1
3 0 0
0 1

3 0
0 0 1

3




I Interpretation as change of quadrature rule to first order exact vertex
based quadrature rule

I Loss of accuracy, gain of stability
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Stiffness matrix condition number + row sums (FEM)
I Stiffness matrix A0 = (aij):

aij = a(φi , φj) =
∫

Ω
∇φi∇φj dx

I bilinear form a(·, ·) is self-adjoint, therefore A0 is symmetric, positive
definite

I Condition number estimate for P1 finite elements on quasi-uniform
triangulation:

κ(A0) ≤ ch−2

I Row sums:
N∑

j=1
aij =

N∑

j=1

∫

Ω
∇φi∇φj dx =

∫

Ω
∇φi∇

( N∑

j=1
φj

)
dx

=
∫

Ω
∇φi∇ (1) dx

= 0
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Stiffness matrix entry signs (P1 FEM)
Local stiffness matrix SK

sij =
∫

K
∇λi∇λj dx = |K |

2|K |2
(
yi+1 − yi+2, xi+2 − xi+1

)(yj+1 − yj+2
xj+2 − xj+1

)

I Main diagonal entries are be positive
I Local contributions from element stiffness matrices: Scalar products

of vectors orthogonal to edges. These are nonpositive if the angle
between the edges are ≤ 90◦

I weakly acute triangulation: all triangle angles are less than ≤ 90◦

I In fact, for constant coefficients, in 2D, Delaunay is sufficient!
I All row sums are zero ⇒ A0 is singular
I Matrix becomes irreducibly diagonally dominant if we add at least one

positive value to the main diagonal, e.g. from Dirichlet BC or lumped
mass matrix ⇒ A = A0 + D: M-Matrix

I Adding a mass matrix which is not lumped yields a positive definite
matrix and thus nonsingularity, but destroys M-property unless the
absolute values of its off diagonal entries are less than those of A0.
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Back to time dependent problem

Assume M diagonal, A = A0 + D where A0 is the stiffness matrix, and D
is a nonnegative diagonal matrix. We have

(A0u)i =
∑

j
aijuj = aiiui +

∑

i 6=j
aijuj

= (−
∑

i 6=j
aij)ui +

∑

i 6=j
aijuj

=
∑

i 6=j
−aij(ui − uj)
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Forward Euler

1
τi

Mui = 1
τi

Mui−1 + Aiui−1

ui = ui−1 + τiM−1Aiui−1 = (I + τM−1D + τM−1A0)ui−1

I Entries of τM−1A are of order 1
h2 , and so we can expect an h

independent estimate of ui via ui−1 resp. u0 only if τ balances 1
h2 , i.e.

τ ≤ Ch2

I This is the CFL (Courant-Friedrichs-Lewy) condition
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Backward Euler

1
τi

Mui + Aui = 1
τi

Mui−1

(I + τiM−1A)ui = ui−1

ui = (I + τiM−1A)−1ui−1

But here, we can estimate that

||(I + τiM−1A)−1||∞ ≤ 1
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Backward Euler Estimate
Theorem: Assume A0 = (aij) has the sign pattern of an M-Matrix with
row sum zero, and D is a nonnegative diagonal matrix. Then
||(I + D + A0)−1||∞ ≤ 1
Proof: Assume that ||(I + A0)−1||∞ > 1. We know that (I + A0)−1 has
positive entries. Then for αij being the entries of (I + A0)−1,

maxn
i=1

n∑

j=1
αij > 1.

Let k be a row where the maximum is reached. Let e = (1 . . . 1)T . Then
for v = (I + A0)−1e we have that v > 0, vk > 1 and vk ≥ vj for all j 6= k.
The kth equation of e = (I + A0)v then looks like

1 = vk + vk
∑

j 6=k
|akj | −

∑

j 6=k
|akj |vj

≥ vk + vk
∑

j 6=k
|akj | −

∑

j 6=k
|akj |vk

= vk > 1
This contradiction enforces ||(I + A0)−1||∞ ≤ 1.
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Backward Euler Estimate II

I + A =I + D + A0

=(I + D)(I + D)−1(I + D + A0)
=(I + D)(I + AD0)

with AD0 = (I + D)−1A0 has row sum zero Thus

||(I + A)−1||∞ =||(I + AD0)−1(I + D)−1||∞
≤||(I + D)−1||∞
≤1,

because all main diagonal entries of I + D are greater or equal to 1. �
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Backward Euler Estimate III

We can estimate that

I + τiM−1A = I + τiM−1D + τiM−1A0

and obtain
||(I + τiM−1A)−1||∞ ≤ 1

I We get this stability independent of the time step.
I Another theory is possible using L2 estimates and positive definiteness
I Assuming v ≥ 0 we can conclude u ≥ 0.
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Discrete maximum principle
1
τ

Mu + (D + A0)u = 1
τ

Mv

( 1
τ

mi + di )ui + aiiui = 1
τ

mivi +
∑

i 6=j
(−aij)uj

ui = 1
1
τmi + di +

∑
i 6=j(−aij)

( 1
τ

mivi +
∑

i 6=j
(−aij)uj)

≤
1
τmivi +

∑
i 6=j(−aij)uj

1
τmi + di +

∑
i 6=j(−aij)

max({vi} ∪ {uj}j 6=i )

≤ max({vi} ∪ {uj}j 6=i )

I Provided, the right hand side is zero, the solution in a given node is
bounded by the value from the old timestep, and by the solution in
the neigboring points.

I No new local maxima can appear during time evolution
I There is a continuous counterpart which can be derived from weak

solution
I Sign pattern is crucial for the proof.
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Finite volumes for time dependent problem
Search function u : Ω× [0,T ]→ R such that u(x , 0) = u0(x) and

∂tu −∇ · λ∇u = 0 inΩ× [0,T ]
λ∇u · n + α(u − g) = 0 onΓ× [0,T ]

I Given control volume ωk , integrate equation over space-time control
volume

0 =
∫

ωk

(
1
τ

(u − v)−∇ · λ∇u
)

dω = 1
τ

∫

ωk

(u − v)dω −
∫

∂ωk

λ∇u · nkdγ

= −
∑

l∈Nk

∫

σkl

λ∇u · nkldγ −
∫

γk

λ∇u · ndγ − 1
τ

∫

ωk

(u − v)dω

≈ |ωk |
τ

(uk − vk)
︸ ︷︷ ︸

→M

+
∑

l∈Nk

|σkl |
hkl

(uk − ul )

︸ ︷︷ ︸
→A0

+ |γk |α(uk − gk)︸ ︷︷ ︸
→D

I Here, uk = u(xk), gk = g(xk), fk = f (xk)
I 1

τi
Mui + Aui = 1

τi
Mui−1 where A = A0 + D
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Finite volumes for time dependent problem II

I The finite volume method provides the M-Property of the stiffness
matrix and immediately to a diagonal mass matrix M.

I ⇒ Unconditional stability of the implicit Euler method
I CFL condition for time step size for explicit Euler
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