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Species balance over an REV

|

>

|

Let u(x,t): Q x [0, T] — R be the local amount of some species.
Assume representative elementary volume w C Q
Subinterval in time (to, t1) C (0, T)

—0Vu - n describes the flux of these species trough dw, where § is
some transfer coefficient

Let f(x,t) be some local source of species. Then the flux through the
boundary is balanced by the change of the amount of species in w
and the source strength.

O:/w(u(x,tl)—u(x71_‘o))dx—/t1 , (5Vu~ndsdt—/:/wf(x,t)ds

to Ow
t1 t1 ty
:/ /atu(x,t)dxdt—/ /V~(6Vu)dxdt—/ /f(x,t)ds
to w to w to w

True for all w C €, (t, t1) C (0, T) = parabolic second order PDE

Oru(x, t) — V- (6Vu(x,t)) = f(x,t)




Time dependent Robin boundary value problem
» Choose final time T > 0. Regard functions (x, t) — R.

Ou—V-kVu=1f inQx][0,T]
kVu-ii+a(u—g)=0 ondQ x|[0,T]
u(x,0) = up(x) InQ

» This is an initial boundary value problem

» This problem has a weak formulation in the Sobolev space
L2 ([0, T], H(R)), which then allows for a Galerkin approximation in
a corresponding subspace

» We will proceed in a simpler manner: first, perform a finite difference
discretization in time, then perform a finite element (finite volume)
discretization in space.

> Rothe method: first discretize in time, then in space

> Method of lines: first discretize in space, get a huge ODE system,
then apply perfom discretization



Time discretization

» Choose time discretization points 0 =ty < t;--- <ty =T

> let =t — ti_1
Fori=1...N, solve
M—V-mVue:f in 2 x [0, T]
Ti

kVug-i+alupg—g)=0 ondQx|[0,T]

where ug = Qu; + (1 — 0)u;—1

» 0 = 1: backward (implicit) Euler method
Solve PDE problem in each timestep

> 0= %: Crank-Nicolson scheme
Solve PDE problem in each timestep

» 0 = 0: forward (explicit) Euler method
This does not involve the solution of a PDE problem. What do we
have to pay for this ?



Weak formulation of time step problem

» Weak formulation: search u € H}(2) such that Vv € H}(Q)

1
—/ u;vdx—l—G(/ nVu,-Vvdx—i—/ aupv ds) =
Ti JQ Q aQ
l/ ui—vdx +(1—0) (/ /{Vu,-,1Vvdx+/ Qui_1v ds)
Ti Ja Q o0
+/fvdx—|—/ agv ds
Q Flo)

» Matrix formulation (in case of constant coefficents, A; = A)

1 1
—Mu; + 0A;u; = —Mu;_1 + (]. — H)A,-u,-_l + F
) Ti

Ti

» M: mass matrix, A= Ag + D , Ag: stiffness matrix, D: boundary
contribution



Mass matrix properties
» Mass matrix M = (m;):

mjj = /Q¢i¢j dx

> Self-adjoint, coercive bilinear form = M is symmetric, positiv definite

» For a family of quasi-uniform, shape-regular triangulations, for every
eigenvalue i one has the estimate

ch? <p<oh?
T = condition number (M) bounded by constant independent of h:
k(M) <c
» How to see this 7 Let up = vazl Uipi, and p an eigenvalue
(positive,real!) Then
[lunll§ = (U, MU)gw = (U, U)gw = pl[U| [
From quasi-uniformity we obtain
euh(| Ul < [[unl 3 < c2h|| U2

and conclude



Mass matrix M-Property (P1 FEM) ?

> For P-finite elements, all integrals m;; = [, ¢;¢; dx are zero or
positive, so we get positive off diagonal elements.

» No M-Property!



Mass matrix lumping (P1 FEM)

» Local mass matrix for P1 FEM on element K
(calculated by 2nd order exact edge midpoint quadrature rule):

R
Mk = |K] % g 1§
12 12 6

» Lumping: sum up off diagonal elements to main diagonal, set off
diagonal entries to zero

] Lo o
Mk =|K[ |0 3 0
00 %

> Interpretation as change of quadrature rule to first order exact vertex
based quadrature rule

» Loss of accuracy, gain of stability



Stiffness matrix condition number + row sums (FEM)
» Stiffness matrix Ay = (aj):

a,-j = a(gi),-, gb_,) = LVQﬁ;V(Zﬁj dx

> bilinear form a(-,-) is self-adjoint, therefore Ay is symmetric, positive
definite

» Condition number estimate for P! finite elements on quasi-uniform
triangulation:
r(Ag) < ch™

» Row sums:

N N N
jzzla,-j:;/ﬂw,wj dx:/QVq’),-V (;dy) dx

Z/V¢;V(1) dx
Q
=0



Stiffness matrix entry signs (P1 FEM)

Local stiffness matrix Sk

Sij

| 2

>

K v
= / VAV dx = 7‘2 (Vid1 = Yivos Xit2 — Xit1) Vi1 Y2
K 2|K|

Xj+2 — Xj+1

Main diagonal entries are be positive

Local contributions from element stiffness matrices: Scalar products
of vectors orthogonal to edges. These are nonpositive if the angle
between the edges are < 90°

weakly acute triangulation: all triangle angles are less than < 90°
In fact, for constant coefficients, in 2D, Delaunay is sufficient!
All row sums are zero = Ay is singular

Matrix becomes irreducibly diagonally dominant if we add at least one
positive value to the main diagonal, e.g. from Dirichlet BC or lumped
mass matrix = A = Ag + D: M-Matrix

Adding a mass matrix which is not lumped yields a positive definite
matrix and thus nonsingularity, but destroys M-property unless the
absolute values of its off diagonal entries are less than those of Ay.



Back to time dependent problem

Assume M diagonal, A= Ap + D where Ay is the stiffness matrix, and D
is a nonnegative diagonal matrix. We have

(Aou); E a,JuJ—a,,u,+§ ajju;

i#j
= (— D ap)ui+ Y agy;

i#j i#j

=) —au

i#j



Forward Euler

1 1
—Mu;j = —Mu;_1 + Ajuj—1
: -

Ti

ui=ui_1 +TiM A1 = (I +7M D+ M7t Ag)ui_y

» Entries of TM~1A are of order % and so we can expect an h
independent estimate of u; via u;_1 resp. ug only if 7 balances % i.e.

T < CH?

» This is the CFL (Courant-Friedrichs-Lewy) condition



Backward Euler

1 1
*MU,‘ + AU,’ = *MU,'_l
Ti Ti

(/ + T,'M_lA)U,' = Uj_1
up = (I + T;MilA)ilu;_l

But here, we can estimate that

(I +7MPA) Y| < 1



Backward Euler Estimate
Theorem: Assume Ag = (aj;) has the sign pattern of an M-Matrix with
row sum zero, and D is a nonnegative diagonal matrix. Then
(1 + D+ Ag) oo < 1

Proof: Assume that ||(/ + Ag) "}l > 1. We know that (/ + Ag)~! has
positive entries. Then for a;; being the entries of (/ + Ag) %,

n
maxjL, E aj > 1.
j=1

Let k be a row where the maximum is reached. Let e = (1...1)". Then
for v.= (I + Ap) e we have that v > 0, vx > 1 and v, > v; for all j # k.
The kth equation of e = (I 4+ Ag)v then looks like

L=vi+ vy lagl =D layly,

7k J#k
> Vi + sz lai| — Z EP

7k J#k
=v>1

This contradiction enforces ||(/ + Ag) ~!||oo < 1.



Backward Euler Estimate Il

I+A=I+D+ A
=(I+D)(I + D) (I + D + Ao)
=(I+ D)(I + Apo)

with Apg = (I 4+ D)~1Ag has row sum zero Thus

101+ A) " |oo =[/(/ + Apo) "2(I + D) |
<|I(1+ D) *]oo
<1,

because all main diagonal entries of | + D are greater or equal to 1. [J



Backward Euler Estimate [l

We can estimate that

I+7MPA=1+7M D+ 7mM A
and obtain
11+ 7M1 A) o < 1
» We get this stability independent of the time step.

» Another theory is possible using L2 estimates and positive definiteness

» Assuming v > 0 we can conclude u > 0.



Discrete maximum principle
1 1
~Mu+ (D+ Ag)u = =My
T T

1 1
(;mi + di)u;i + ajjiu; = —miv; + > (—ay)y;

i#j
1 1
uip = —m;v; + —ajj)uj
T a5 (a) 7 2

%m,-v,- + Zi;ﬁj(_aij)uj
B %m,- +di + Zi;ﬁj(*aij)
< max({vi} U {u;}jzi)
» Provided, the right hand side is zero, the solution in a given node is

bounded by the value from the old timestep, and by the solution in
the neigboring points.

max({vi} U{u;}jxi)

» No new local maxima can appear during time evolution

» There is a continuous counterpart which can be derived from weak
solution

» Sign pattern is crucial for the proof.



Finite volumes for time dependent problem
Search function v : Q x [0, T] — R such that u(x,0) = up(x) and

Oru—V-AVu=0 inQ2x [0, T]
AVu-n+a(u—g)=0 onl x[0,T]

» Given control volume wy, integrate equation over space-time control

volume
1 1
0:/((u—v)—V-)\VU> dw = 7/(u—v)dw— / AVu - ngdy
T T
Wk Wk Owy
=— Z /)\Vu nydy — //\Vu ndy — — /(u —v)dw
IGNkU'kI

Wk Okl
~ Q(uk — i)+ Z u(uk — u) + | yklouk — gk)
T 1ENK ha

—D

—M
*}Ao

> Here, u = u(xk), gk = g(xk), fic = f(x«)
> .,%Mui + Au; = T%Mu,-_l where A= Ay + D



Finite volumes for time dependent problem ||

» The finite volume method provides the M-Property of the stiffness
matrix and immediately to a diagonal mass matrix M.

» = Unconditional stability of the implicit Euler method

» CFL condition for time step size for explicit Euler



More general problems: linear reaction-diffusion

» Assume additional process in each REV which produces or destroys
species depending on the amount of species present with given rate r.

Search function v : Q x [0, T] — R such that u(x,0) = up(x) and

Ou—V-AVu+ru=0 inQ2x][0,T]
AVu-n+a(u—g)=0 onl x [0, T]

» => additional, time step independent term in mass matrix

» Be careful about coercivity (guaranteed for R > 0 which means
species destruction)



More general problems: convection-diffusion

Search function v : Q x [0, T] — R such that u(x,0) = up(x) and

Oty —V(-DVu—uv) =0 inQ x [0, T]
AVu-n+a(u—g)=0 onl x[0,T]

> Here:
> u: species concentration
» D: diffusion coefficient
> v: velocity of medium (e.g. fluid)



Tentative examination dates

Tue Feb 27

Mon March 5
Wed March 7
Mon March 12
Tue March 13
Wed March 14
Mon March 26
Tue March 27

Time: 10:00-13:00 (6 slots per examination date)
Room: t.b.a. (MA, third floor)



Finite volumes for convection-diffusion

Wk Ok
u(Uk —vi) + Z ug(ulm ur) + [yicleuk — wi)
T 1eN Pra

1
Let viy = Toul fak,v~ ngdy



Finite volumes for convection - diffusion 1l

» Central difference flux:
1
g(u, ur) = D(ug — uy) — thE(Uk + ur)vig
1 1
= (D — Ehk/vk,)uk — (D + EthVkI)XUI

» M-Property (sign pattern) only guaranteed for h — 0 !
» Upwind flux:

hauvia, vig <0
hauvig,  vig >0

g(uk, U/) = D(uk — U/) + {

1
= (D + D)(Uk — U/) — hk/E(Uk + UI)VkI

> M-Property guaranteed unconditonally !
> Artificial diffusion D = 1 hyy|vi|



Finite volumes for convection - diffusion: exponential
fitting

Project equation onto edge xxx; of length h = hy,, integrate once -

q=—Vu
c+eq=j
C|0 = CK
clh=rc

Solution of the homogeneus problem:

' =—cq

cJc=—q
Inc=c¢y — gx

c = Kexp(—gx)



Exponential fitting Il

Solution of the inhomogeneous problem: set K = K(x):

K’ exp(—gx) — gK exp(—qx) + qK exp(—qx) = j
K' = jexp(gx)

1
K=K+ Ej exp(gx)
Therefore,

1.
c = Koexp(—gx) + a_/

1,

CKk = KQ —+ —J

q

1
c = Koexp(—gh) + 7



Exponential fitting Il

Use boundary conditions

Ck — CL
Ko= — KL
°7 1—exp(—qh)
_ Ck — CL 1.
KT exp(—qh) @
j=qek — ———(cx — 1)
1 — exp(—qgh)
1 q
= 1 — —
o= eXP(—qh))cK exp(—qh) — 1
_ . —exp(=gh) . q
N (1 — exp(—qh))CK exp(—qgh) — 1

S— - il c
exp(gh) — 1 K exp(—qgh) — 1 t
_ B(—gh)c, — B(gh)ck
h

where B(€) = exp(gﬁ: Bernoulli function



Exponential fitting IV

v

Upwind flux:

B( —Vghk/ )Uk _ B( ngw )Ul

g(Uk,U/):D h

v

Allen+Southell 1955

v

Scharfetter+Gummel 1969
Ilin 1969
Chang+Cooper 1970

v

v

v

Guaranteed M property!



