Scientific Computing WS 2017/2018

Lecture 9

Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de

Numcxx with CodeBlocks

- CodeBlocks support has been added to numcxx-build:
 - numcxx-build --codeblocks hello.cxx creates a subdirectory hello.codeblocks which contains the codeblocks project file hello.cbp
 - Configure and then start codeblocks:

```
$ numcxx-build --codeblocks hello.cxx
```

- \$ codeblocks hello.codeblocks/hello.cbp
- Or start codeblocks immediately after configuring

```
$ numcxx-build --codeblocks --execute hello.cxx
```

In Codeblocks, instead of "all" select target "hello" or "hello/fast", then Build & Run as usual.

Homework assessment

General

- Please apologize terse answers on the bright side of this I found time to reply to all individually
- please stick to the filename scheme, this makes it easier for me to give feedback to all of you
- Good style with zip files is that they unpack into subdir with the same name. E.g. abc.zip unpacks into directory abc.
- Mac users: try to pack your stuff without the __MACOSX and .DS Store subdirectories
- ▶ No need to include binaries
- ▶ Always try to calculate errors if exact data is available (I should have been more specific in assignment text)

Code style

- ▶ Try to specify datatypes in constants: 0.1f for float, 0.1l for long double and avoid mixing of datatypes in expressions. In particular write x/2.0 instead of x/2 if you do division of a double number. (There are reasonable automatic conversion rules, but things are clearer if they are explicit).
- Cast ints to double explicitely in floating point expressions. This
 ensures that you don't accidentally create an integer intermediate
 result. (1/i*i was the reason of many overflow errors in your codes)
- ▶ Math headers: use <cmath> instead of <math.h>. In particular, this gives you long double version of functions if needed.
- ▶ Infinity is a special floating point number which marks the result of an overflow in an operation. In no way it can be used like ∞ .
- NaN is a special floating point number which marks the result e.g. of a division by zero
- ▶ Use type aliases instead of #define:

```
using double as real;
```

Machine epsilon

- \blacktriangleright Smallest floating point number ϵ such that $1+\epsilon>1$ in floating point arithmetic
- In exact math it is true that from $1+\varepsilon=1$ it follows that $0+\varepsilon=0$ and vice versa. In floating point computations this is not true
- Many of you used the right algorithm and used the first value or which $1 + \varepsilon = 1$ as the result. This is half the desired quantity.
- ► Some did not divide start with 1.0 but by other numbers. E.g. 0.1 is not represented exactly in floating point arithmetic
- ► Recipe for calculation:

Set
$$\epsilon=1.0$$
; while $1.0+\epsilon/2.0>1.0$ do $\mid \ \epsilon=\epsilon/2.0$ end

Floating point representation

- ▶ Scientific notation of floating point numbers: e.g. $x = 6.022 \cdot 10^{23}$
- ► Representation formula:

$$x = \pm \sum_{i=0}^{\infty} d_i \beta^{-i} \beta^e$$

- ▶ $\beta \in \mathbb{N}, \beta \geq 2$: base
- ▶ $d_i \in \mathbb{N}, 0 \leq d_i \leq \beta$: mantissa digits
- $ightharpoonup e \in \mathbb{Z}$: exponent
- Representation on computer:

$$x = \pm \sum_{i=0}^{t-1} d_i \beta^{-i} \beta^e$$

- β = 2
- \blacktriangleright t: mantissa length, e.g. t = 53 for IEEE double
- ▶ $L \le e \le U$, e.g. $-1022 \le e \le 1023$ (10 bits) for IEEE double
- $d_0 \neq 0 \Rightarrow$ normalized numbers, unique representation

Normalized floating point number

▶ IEEE 754 32 bit floating point number – normally the same as C++ float

```
 \begin{vmatrix} 0 & | & 1 & | & 2 & | & 3 & | & 4 & | & 5 & | & 6 & | & 7 & | & 8 & | & 9 & | & 10 & | & 11 & | & 12 & | & 13 & | & 4 & | & 5 & | & 6 & | & 6 & | & 7 & | & 8 & | & 9 & | & 10 & | & 11 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 & | & 2 &
```

- ▶ Storage layout for a normalized number $(d_0 = 1)$
 - ▶ bit 0: sign, $0 \rightarrow +$, $1 \rightarrow -$
 - ▶ bit 1...8: r = 8 exponent bits, value $e + 2^{r-1} 1 = 127$ is stored \Rightarrow no need for sign bit in exponent
 - ▶ bit 9...31: t = 23 mantissa bits $d_1 ... d_{23}$
 - $d_0 = 1$ not stored \equiv "hidden bit"
- Examples

 - $0.1 \quad 0_01111011_10011001100110011001101 \quad infinite \ periodic$
- Numbers which are exactly represented in decimal system may not be exactly represented in binary system.

How Additition $1+\epsilon$ works ?

- ▶ 1. Adjust exponent of number to be added:
 - Until both exponents are equal, add one to exponent, shift mantissa to right by one bit
- ▶ 2. Add both numbers
- ▶ 3. Normalize result

We have at maximum t bit shifts of normalized mantissa until mantissa becomes 0, so $\epsilon = 2^{-t}$.

Data of IEEE 754 floating point representations

	size	t	r	ϵ
float	32	23	8	1.1920928955078125e-07
double	64	53	11	2.2204460492503131e-16
long double	128	63	15	1.0842021724855044e-19

- Floating point format not standardized by language but by IEEE comitee
- Implementation of long double varies, may even be the same as double, or may be significantly slower
- ▶ long double in gcc on x86_64 uses 79 of 128 bits (based on 80 bit internal arithmetic)
- ▶ Information in header imits>: std::numeric_limits
- Still more to the picture:
 - Optimization not always guaranteed to give the same result
 - ► Internal precision of calculations in may be larger than memory size ⇒ register operations have increased accuracy

Basel sum code

- \blacktriangleright
- $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$
- ▶ Intended answer: sum in reverse order. Start with adding up many small values which would be cancelled out if added to an already large sum value.
- Results for float:

```
n forward sum forward sum error reverse sum reverse sum error 10 1.54976773262023925000 9.51664447784423828-02 1.54976773262023925000 9.51664447784423828-02 1.54976773262023925000 9.551664447784423828-02 1.54976773262023925000 9.551664447784423828-02 1.001 1.6349840164148570000 9.950280189514160150-03 1.63493389720916748000 9.950280189514160150-03 1.000 1.6437253227233886000 2.088546752929687500-04 1.64493448829650878000 1.00135803226552500-04 1.00447253227233886000 2.088546752929687500-04 1.644924046090698200 1.013278961181640620-05 1000000 1.6447253227233886000 2.088546752929687500-04 1.644924046090698200 1.192092895507812500-06 10000000 1.6447253227233886000 2.088546752929687500-04 1.6449340581893920800 2.384185791015625000-07 10000000 1.6447253227233886000 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.644725322723388600 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.644725322723388600 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.6447253227233886000 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.644725322723388600 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.644725322723388600 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.6447253227233886000 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.644725322723386000 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.6447253227233886000 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.644725322723386000 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.6447253227233886000 2.088546752929687500-04 1.6449340581893920800 1.192092895507812500-07 10000000 1.6447253227233886000 2.088546752929687500-04 1.6449340581893920800 1.19209289507812500-07 10000000 1.6447253227233886000 2.088546752929687500-04 1.6449340581893920800 1.19209289507812500-07 1
```

- ▶ No gain in accuracy for forward sum for n > 10000
- ▶ long double mostly not a good option

Recap from last time

The Gershgorin Circle Theorem (Semyon Gershgorin, 1931)

(everywhere, we assume $n \ge 2$)

Theorem (Varga, Th. 1.11) Let A be an $n \times n$ (real or complex) matrix. Let

$$\Lambda_i = \sum_{\substack{j=1\dots n\\ j\neq i}} |a_{ij}|$$

If λ is an eigenvalue of A then there exists r, $1 \le r \le n$ such that

$$|\lambda - a_{rr}| \leq \Lambda_r$$

Proof Assume λ is eigenvalue, \mathbf{x} a corresponding eigenvector, normalized such that $\max_{i=1...n} |x_i| = |x_r| = 1$. From $A\mathbf{x} = \lambda \mathbf{x}$ it follows that

$$(\lambda - a_{ii})x_i = \sum_{\substack{j=1...n\\j\neq i}} a_{ij}x_j$$
$$|\lambda - a_{rr}| = |\sum_{\substack{j=1...n\\j\neq r}} a_{rj}x_j| \le \sum_{\substack{j=1...n\\i\neq r}} |a_{rj}||x_j| \le \sum_{\substack{j=1...n\\i\neq r}} |a_{rj}| = \Lambda_r$$

Gershgorin Circle Corollaries

Corollary: Any eigenvalue of A lies in the union of the disks defined by the Gershgorin circles

$$\lambda \in \bigcup_{i=1...n} \{ \mu \in \mathbb{V} : |\mu - a_{ii}| \le \Lambda_i \}$$

Corollary:

$$\rho(A) \leq \max_{i=1...n} \sum_{j=1}^n |a_{ij}| = ||A||_{\infty}$$

$$\rho(A) \leq \max_{j=1...n} \sum_{i=1}^{n} |a_{ij}| = ||A||_{1}$$

Proof

$$|\mu - a_{ii}| \le \Lambda_i \quad \Rightarrow \quad |\mu| \le \Lambda_i + |a_{ii}| = \sum_{i=1}^n |a_{ij}|$$

Furthermore, $\sigma(A) = \sigma(A^T)$.

cture 8 Slide 17

Gershgorin circles: heat example I

$$A = \begin{pmatrix} \frac{2}{h} & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & & \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & & \\ & \ddots & \ddots & \ddots & \ddots & \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} & \\ & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \end{pmatrix}$$

$$B = (I - D^{-1}A) = \begin{pmatrix} 0 & \frac{1}{2} & & & & \\ \frac{1}{2} & 0 & \frac{1}{2} & & & & \\ & \frac{1}{2} & 0 & \frac{1}{2} & & & \\ & & & \frac{1}{2} & 0 & \frac{1}{2} & \\ & & & \frac{1}{2} & 0 & \frac{1}{2} & \\ & & & \frac{1}{2} & 0 & \frac{1}{2} & \\ & & & \frac{1}{2} & 0 & \frac{1}{2} & \\ & & & \frac{1}{2} & 0 & \frac{1}{2} & \\ & & & & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & \\ & & & \frac{1}{2} & 0 & \frac{1}{2} & \frac{1}{2} & \\ & & & \frac{1}{2} & 0 & \frac{1}{2} &$$

We have $b_{ii}=0$, $\Lambda_i=egin{cases} rac{1}{2}, & i=1,n \ 1 & i=2\dots n-1 \end{cases}$ \Rightarrow estimate $|\lambda_i|\leq 1$

Gershgorin circles: heat example II

$$n=11, h=0.1$$

$$\lambda_i = \cos\left(\frac{ih\pi}{1+2h}\right) \quad (i=1\dots n)$$

Reducible and irreducible matrices

Definition A is *reducible* if there exists a permutation matrix P such that

$$PAP^T = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$$

A is *irreducible* if it is not reducible.

Directed matrix graph:

- ▶ Nodes: $\mathcal{N} = \{N_i\}_{i=1...n}$
- ▶ Directed edges: $\mathcal{E} = \{\overrightarrow{N_k N_l} | a_{kl} \neq 0\}$

Theorem (Varga, Th. 1.17): A is irreducible \Leftrightarrow the matrix graph is connected, i.e. for each *ordered* pair (N_i, N_j) there is a path consisting of directed edges, connecting them.

Equivalently, for each i, j there is a sequence of nonzero matrix entries $a_{ik_1}, a_{k_1k_2}, \ldots, a_{k_rj}$.

Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the eigenvalue λ is a boundary point of the union of all the disks

$$\lambda \in \partial \bigcup_{i=1...n} \{ \mu \in \mathbb{C} : |\mu - a_{ii}| \le \Lambda_i \}$$

Then, all *n* Gershgorin circles pass through λ , i.e. for $i = 1 \dots n$,

$$|\lambda - a_{ii}| = \Lambda_i$$

Consequences for heat example from Taussky

$$B=I-D^{-1}A$$
 We had $b_{ii}=0$, $\Lambda_i=egin{cases} rac{1}{2}, & i=1,n \ 1 & i=2\dots n-1 \end{cases}$ \Rightarrow estimate $|\lambda_i|\leq 1$

Assume $|\lambda_i|=1$. Then λ_i lies on the boundary of the union of the Gershgorin circles. But then it must lie on the boundary of both circles with radius $\frac{1}{2}$ and 1 around 0.

Contradiction $\Rightarrow |\lambda_i| < 1$, $\rho(B) < 1$!

Diagonally dominant matrices

Definition

► A is diagonally dominant if

(i) for
$$i=1\dots n$$
, $|a_{ii}| \geq \sum_{\substack{j=1\dots n \ i \neq i}} |a_{ij}|$

▶ A is strictly diagonally dominant (sdd) if

(i) for
$$i=1\dots n$$
, $|a_{ii}|>\sum_{\substack{j=1\dots n\\i\neq j}}|a_{ij}|$

- ▶ A is irreducibly diagonally dominant (idd) if
 - (i) A is irreducible
 - (ii) A is diagonally dominant for $i=1\dots n$, $|a_{ii}| \geq \sum_{\substack{j=1\dots n \ i \neq i}} |a_{ij}|$
 - (iii) for at least one $r,\ 1\leq r\leq n,\ |a_{rr}|>\sum_{j=1,\dots n\atop j\neq r}|a_{rj}|$

A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or irreducibly diagonally dominant. Then A is nonsingular.

If in addition, $a_{ii}>0$ for $i=1\dots n$, then all real parts of the eigenvalues of A are positive:

$$\operatorname{Re}\lambda_i > 0, \quad i = 1 \dots n$$

Heat conduction matrix

$$A = \begin{pmatrix} \alpha + \frac{1}{h} & -\frac{1}{h} \\ -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & \ddots & \ddots & \ddots & \ddots \\ & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{2}{h} & -\frac{1}{h} \\ & & & & -\frac{1}{h} & \frac{1}{h} + \alpha \end{pmatrix}$$

- ightharpoonup A is idd $\Rightarrow A$ is nonsingular
- ▶ diag A is positive real \Rightarrow eigenvalues of A have positive real parts
- ▶ A is real, symmetric $\Rightarrow A$ is positive definite

Perron-Frobenius Theorem (1912/1907)

Definition: A real *n*-vector **x** is

- **positive** (x > 0) if all entries of x are positive
- ▶ nonnegative ($x \ge 0$) if all entries of x are nonnegative

Definition: A real $n \times n$ matrix A is

- ightharpoonup positive (A > 0) if all entries of A are positive
- ▶ nonnegative $(A \ge 0)$ if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let $A \ge 0$ be an irreducible $n \times n$ matrix. Then

- (i) A has a positive real eigenvalue equal to its spectral radius $\rho(A)$.
- (ii) To $\rho(A)$ there corresponds a positive eigenvector $\mathbf{x} > 0$.
- (iii) $\rho(A)$ increases when any entry of A increases.
- (iv) $\rho(A)$ is a simple eigenvalue of A.

Proof: See Varga.

Theorem on Jacobi matrix

Theorem: Let A be sdd or idd, and D its diagonal. Then

$$\rho(|I - D^{-1}A|) < 1$$

Proof: Let $B = (b_{ij}) = I - D^{-1}A$. Then

$$b_{ij} = \begin{cases} 0, & i = j \\ -\frac{a_{ij}}{a_{ii}}, & i \neq j \end{cases}$$

If A is sdd, then for $i = 1 \dots n$,

$$\sum_{j=1...n} |b_{ij}| = \sum_{\substack{j=1...n \ i \neq i}} |\frac{a_{ij}}{a_{ii}}| = \frac{\Lambda_i}{|a_{ii}|} < 1$$

Therefore, $\rho(|B|) < 1$.

Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that $a_{ii}>0$ and $a_{ij}\leq 0$ for $i\neq j$. Then $\rho(I-D^{-1}A)<1$, i.e. the Jacobi method converges.

Proof In this case,
$$|B| = B$$

Regular splittings

- ightharpoonup A = M N is a regular splitting if
 - ► *M* is nonsingular
 - $ightharpoonup M^{-1}$, N are nonnegative, i.e. have nonnegative entries
- ▶ Regard the iteration $u_{k+1} = M^{-1}Nu_k + M^{-1}b$.
- We have $I M^{-1}A = M^{-1}N$.

Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, $A^{-1} \ge 0$, and A = M - N is a regular splitting. Then $\rho(M^{-1}N) < 1$.

Proof: Let $G = M^{-1}N$. Then A = M(I - G), therefore I - G is nonsingular.

In addition

$$A^{-1}N = (M(I - M^{-1}N))^{-1}N = (I - M^{-1}N)^{-1}M^{-1}N = (I - G)^{-1}G$$

By Perron-Frobenius, $\rho(G)$ is an eigenvalue with a nonnegative eigenvector ${\bf x}$. Thus,

$$0 \leq A^{-1} N \mathbf{x} = rac{
ho(G)}{1 -
ho(G)} \mathbf{x}$$

Therefore $0 \le \rho(G) \le 1$.

As I - G is nonsingular, $\rho(G) < 1$.

Convergence rate comparison

Corollary:
$$\rho(M^{-1}N) = \frac{\tau}{1+\tau}$$
 where $\tau = \rho(A^{-1}N)$.

Proof: Rearrange
$$\tau = \frac{\rho(G)}{1-\rho(G)}$$

Corollary: Let $A \ge 0$, $A = M_1 - N_1$ and $A = M_2 - N_2$ be regular splittings. If $N_2 \ge N_1 \ge 0$, then $1 > \rho(M_2^{-1}N_2) \ge \rho(M_1^{-1}N_1)$.

Proof: $\tau_2 = \rho(A^{-1}N_2) \ge \rho(A^{-1}N_1) = \tau_1$, $\frac{\tau}{1+\tau}$ is strictly increasing.

M-Matrix definition

Definition Let A be an $n \times n$ real matrix. A is called M-Matrix if

- (i) $a_{ij} \leq 0$ for $i \neq j$
- (ii) A is nonsingular
- (iii) $A^{-1} \ge 0$

Corollary: If A is an M-Matrix, then $A^{-1} > 0 \Leftrightarrow A$ is irreducible.

Proof: See Varga.

Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that $a_{ii} > 0$ and $a_{ij} \le 0$ for $i \ne j$. Then A is an M-Matrix.

Proof:

- ▶ Let $B = I D^{-1}A$. Then $\rho(B) < 1$, therefore I B is nonsingular.
- We have for k > 0:

$$I - B^{k+1} = (I - B)(I + B + B^2 + \dots + B^k)$$
$$(I - B)^{-1}(I - B^{k+1}) = (I + B + B^2 + \dots + B^k)$$

The left hand side for $k \to \infty$ converges to $(I - B)^{-1}$, therefore

$$(I-B)^{-1} = \sum_{k=0}^{\infty} B^k$$

As $B \ge 0$, we have $(I - B)^{-1} = A^{-1}D \ge 0$. As D > 0 we must have $A^{-1} > 0$.

Lecture 8 Slide 3

Application

Let A be an M-Matrix. Assume A = D - E - F.

- ▶ Jacobi method: M = D is nonsingular, $M^{-1} \ge 0$. N = E + F nonnegative \Rightarrow convergence
- ▶ Gauss-Seidel: M = D E is an M-Matrix as $A \le M$ and M has non-positive off-digonal entries. $N = F \ge 0$. \Rightarrow convergence
- ▶ Comparison: $N_J \ge N_{GS} \Rightarrow$ Gauss-Seidel converges faster.
- ▶ More general: Block Jacobi, Block Gauss Seidel etc.

Intermediate Summary

- Given some matrix, we now have some nice recipies to establish nonsingularity and iterative method convergence:
- Check if the matrix is irreducible.
 This is mostly the case for elliptic and parabolic PDEs.
- Check if the matrix is strictly or irreducibly diagonally dominant.

If yes, it is in addition nonsingular.

- Check if main diagonal entries are positive and off-diagonal entries are nonpositive.
 - If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and elementary iterative methods converge.

Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

- ▶ fix a predefined zero pattern
- apply the standard LU factorization method, but calculate only those elements, which do not correspond to the given zero pattern
- ▶ Result: incomplete LU factors *L*, *U*, remainder *R*:

$$A = LU - R$$

▶ Problem: with complete LU factorization procedure, for any nonsingular matrix, the method is stable, i.e. zero pivots never occur. Is this true for the incomplete LU Factorization as well?

Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to compute the incomplete LU factorization with a given nonzero pattern

$$A = LU - R$$

is stable. Moreover, A = LU - R is a regular splitting.

ILU(0)

- Special case of ILU: ignore any fill-in.
- Representation:

$$M = (\tilde{D} - E)\tilde{D}^{-1}(\tilde{D} - F)$$

- $ightharpoonup ilde{D}$ is a diagonal matrix (wich can be stored in one vector) which is calculated by the incomplete factorization algorithm.
- Setup:

```
for(int i=0;i<n;i++)
  d(i)=a(i,i)

for(int i=0;i<n;i++)
{
  d(i)=1.0/d(i)
  for (int j=i+1;j<n;j++)
  d(j)=d(j)-a(i,j)*d(i)*a(j,i)
}</pre>
```

ILU(0)

Solve Mu = v

```
for(int i=0;i<n;i++)</pre>
  double x=0.0;
  for (int j=0;j<i;i++)</pre>
       x=x+a(i,j)*u(j)
  u(i)=d(i)*(v(i)-x)
}
for(int i=n-1;i>=0;i--)
{
   doubl x=0.0
   for(int j=i+1; j<n; j++)</pre>
        x=x+a(i,j)*u(j)
   u(i)=u(i)-d(i)*x
}
```

ILU(0)

- ▶ Generally better convergence properties than Jacobi, Gauss-Seidel
- ▶ One can develop block variants
- ► Alternatives:
 - ▶ ILUM: ("modified"): add ignored off-diagonal entries to \tilde{D}
 - ▶ ILUT: zero pattern calculated dynamically based on drop tolerance
- Dependence on ordering
- Can be parallelized using graph coloring
- Not much theory: experiment for particular systems
- ▶ I recommend it as the default initial guess for a sensible preconditioner
- Incomplete Cholesky: symmetric variant of ILU

Preconditioners

- Leave this topic for a while now
- ► Hopefully, we well be able to discuss
 - ▶ Multigrid: gives O(n) complexity in optimal situations
 - Domain decomposition: Structurally well suited for large scale parallelization

~

More general iteration schemes

Generalization of iteration schemes

- Simple iterations converge slowly
- ▶ For most practical purposes, Krylov subspace methods are used.
- We will introduce one special case and give hints on practically useful more general cases
- ► Material after J. Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain"

Solution of SPD system as a minimization procedure

Regard Au=f ,where A is symmetric, positive definite. Then it defines a bilinear form $a:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$

$$a(u, v) = (Au, v) = v^{T}Au = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}v_{i}u_{j}$$

As A is SPD, for all $u \neq 0$ we have (Au, u) > 0.

For a given vector b, regard the function

$$f(u) = \frac{1}{2}a(u,u) - b^T u$$

What is the minimizer of f?

$$f'(u) = Au - b = 0$$

▶ Solution of SPD system \equiv minimization of f.

Method of steepest descent

- ▶ Given some vector u_i , look for a new iterate u_{i+1} .
- ▶ The direction of steepest descend is given by $-f'(u_i)$.
- ▶ So look for u_{i+1} in the direction of $-f'(u_i) = r_i = b Au_i$ such that it minimizes f in this direction, i.e. set $u_{i+1} = u_i + \alpha r_i$ with α choosen from

$$0 = \frac{d}{d\alpha} f(u_i + \alpha r_i) = f'(u_i + \alpha r_i) \cdot r_i$$

$$= (b - A(u_i + \alpha r_i), r_i)$$

$$= (b - Au_i, r_i) - \alpha (Ar_i, r_i)$$

$$= (r_i, r_i) - \alpha (Ar_i, r_i)$$

$$\alpha = \frac{(r_i, r_i)}{(Ar_i, r_i)}$$

Method of steepest descent: iteration scheme

$$r_{i} = b - Au_{i}$$

$$\alpha_{i} = \frac{(r_{i}, r_{i})}{(Ar_{i}, r_{i})}$$

$$u_{i+1} = u_{i} + \alpha_{i}r_{i}$$

Let \hat{u} the exact solution. Define $e_i=u_i-\hat{u}$, then $r_i=-Ae_i$ Let $||u||_A=(Au,u)^{\frac{1}{2}}$ be the *energy norm* wrt. A.

Theorem The convergence rate of the method is

$$||e_i||_A \le \left(\frac{\kappa-1}{\kappa+1}\right)^i ||e_0||_A$$

where $\kappa = \frac{\lambda_{max}(A)}{\lambda_{min}(A)}$ is the spectral condition number.

Method of steepest descent: advantages

- ▶ Simple Richardson iteration $u_{k+1} = u_k \alpha(Au_k f)$ needs good eigenvalue estimate to be optimal with $\alpha = \frac{2}{\lambda_{max} + \lambda_{min}}$
- ▶ In this case, asymptotic convergence rate is $\rho = \frac{\kappa 1}{\kappa + 1}$
- Steepest descent has the same rate without need for spectral estimate