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Numcxx with CodeBlocks

» CodeBlocks support has been added to numcxx-build:

> numcxx-build --codeblocks hello.cxx creates a subdirectory
hello.codeblocks which contains the codeblocks project file
hello.cbp

> Configure and then start codeblocks:

$ numcxx-build --codeblocks hello.cxx
$ codeblocks hello.codeblocks/hello.cbp

> Or start codeblocks immediately after configuring

$ numcxx-build --codeblocks --execute hello.cxx

> In Codeblocks, instead of "all” select target "hello” or "hello/fast”,
then Build & Run as usual.



Homework assessment



General

> Please apologize terse answers - on the bright side of this | found
time to reply to all individually

> please stick to the filename scheme, this makes it easier for me to
give feedback to all of you

» Good style with zip files is that they unpack into subdir with the
same name. E.g. abc.zip unpacks into directory abc.

» Mac users: try to pack your stuff without the __MACOSX and
.DS_Store subdirectories

» No need to include binaries

> Always try to calculate errors if exact data is available (I should have
been more specific in assignment text)



Code style

>

Try to specify datatypes in constants: 0.1f for float, 0.1l for long

double and avoid mixing of datatypes in expressions. In particular
write x/2.0 instead of x/2 if you do division of a double number.

(There are reasonable automatic conversion rules, but things are

clearer if they are explicit).

Cast ints to double explicitely in floating point expressions. This
ensures that you don't accidentally create an integer intermediate
result. ( 1/i*i was the reason of many overflow errors in your codes)

Math headers: use <cmath> instead of <math.h>. In particular, this
gives you long double version of functions if needed.

Infinity is a special floating point number which marks the result
of an overflow in an operation. In no way it can be used like co.

NaN is a special floating point number which marks the result e.g. of
a division by zero

Use type aliases instead of #define:
using double as real;



Machine epsilon

» Smallest floating point number € such that 1+ € > 1 in floating point
arithmetic

» In exact math it is true that from 1 4+ ¢ =1 it follows that 0 +& =0
and vice versa. In floating point computations this is not true

» Many of you used the right algorithm and used the first value or
which 14 & =1 as the result. This is half the desired quantity.

» Some did not divide start with 1.0 but by other numbers. E.g. 0.1 is
not represented exactly in floating point arithmetic

» Recipe for calculation:

Set € = 1.0;
while 1.0 +¢/2.0 > 1.0 do
| e=¢/2.0

end



Floating point representation

» Scientific notation of floating point numbers: e.g. x = 6.022 - 10%
> Representation formula:

x =4 i diB='e
i=0

> B EN,B >2: base
> di € N,0 < d; < B: mantissa digits
> e €7 : exponent

> Representation on computer:

-1
x =+ tz diB~' B¢
i=0

p=2

t: mantissa length, e.g. t = 53 for IEEE double

L<e< U, eg —1022 < e <1023 (10 bits) for IEEE double
do # 0 = normalized numbers, unique representation

vvyyy




Normalized floating point number

» IEEE 754 32 bit floating point number — normally the same as C++
float
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» Storage layout for a normalized number (dy = 1)

94 e5 EG

> bit 0: sign,0 >+, 1— —

» bit 1...8: r = 8 exponent bits, value e +2""! — 1 = 127 is stored
= no need for sign bit in exponent

> bit 9...31: t = 23 mantissa bits d; ... dx
» do = 1 not stored = "hidden bit"”

» Examples
1 0_01111111_00000000000000000000000 e = 0, stored 127
2 0_10000000_00000000000000000000000 e =1, stored 128
0.5 0_01111110_00000000000000000000000 e = —1, stored 126
0.1 0_.01111011_10011001100110011001101 infinite periodic
0 0_00000000_00000000000000000000000

» Numbers which are exactly represented in decimal system may not be
exactly represented in binary system.



How Additition 1+¢ works 7

» 1. Adjust exponent of number to be added:

» Until both exponents are equal, add one to exponent, shift mantissa
to right by one bit

» 2. Add both numbers
» 3. Normalize result

We have at maximum t bit shifts of normalized mantissa until mantissa
becomes 0, so € = 27¢.



Data of IEEE 754 floating point representations

size t r €

long double | 128 | 63 | 15 | 1.0842021724855044e-19

float | 32 | 23 | 8 | 1.1920928955078125e-07
double | 64 | 53 | 11 | 2.2204460492503131e-16

>

Floating point format not standardized by language but by IEEE
comitee

Implementation of long double varies, may even be the same as
double, or may be significantly slower

long double in gcc on x86_64 uses 79 of 128 bits (based on 80 bit
internal arithmetic)

Information in header <limits>: std: :numeric_limits
Still more to the picture:
» Optimization not always guaranteed to give the same result

> Internal precision of calculations in may be larger than memory size =
register operations have increased accuracy



Basel sum code

>
S § oo 1 LZ
n=1 n? 6
> Intended answer: sum in reverse order. Start with adding up many
small values which would be cancelled out if added to an already large
sum value.
> Results for float:
n forward sum forward sum error reverse sum reverse sum error
10 1.5497677326202392e+00 9.51664447784423828e-02 1.54976773262023925e+00 9.51664447784423828e-02
100 1.6349840164184570e+00 9.95016098022460937e-03 1.63498389720916748e+00 9.95028018951416015e-03
1000 1.6439348459243774e+00 9.99331474304199218e-04 1.64393448829650878e+00 9.99689102172851562e-04
10000 1.6447253227233886e+00 2.08854675292968750e-04 1.64483404159545898e+00 1.00135803222656250e-04
100000 1.6447253227233886e+00 2.08854675292968750e-04 1.64492404460906982e+00 1.01327896118164062e-05
1000000 1.6447253227233886e+00 2.08854675292968750e-04 1.6449329: 0578613e+00 1.19209289550781250e-06
10000000 1.6447253227233886e+00 2.08854675292968750e-04 1.64493393898010253e+00 2.384185791015662500e-07
100000000 1.6447253227233886e+00 2.08854675292968750e-04 1.64493405818939208e+00 1.19209289550781250e-07
» No gain in accuracy for forward sum for n > 10000
» long double mostly not a good option




Recap from last time



The Gershgorin Circle Theorem (Semyon Gershgorin,1931)

(everywhere, we assume n > 2)

Theorem (Varga, Th. 1.11) Let A be an n x n (real or complex) matrix.

Let
= > lal
j=l...n
J#i
If X is an eigenvalue of A then there exists r, 1 < r < n such that
|>\ - arr| S /\r
Proof Assume ) is eigenvalue, x a corresponding eigenvector, normalized
such that max;—1._,|x;| = |x,] = 1. From Ax = Ax it follows that
Cabi= Y apg
j=l...n
j#i
N=arl=1 > apx| < D lagllgl < D lagl =A
j=1...n Jj=1...n Jj=1l...n
J#r J#r J#r




Gershgorin Circle Corollaries

Corollary: Any eigenvalue of A lies in the union of the disks defined by
the Gershgorin circles

A€ U {MEVI|/L*3,‘,‘|S/\,‘}

i=1...n
Corollary:
n
pA) < max S Jag] = [|Al|oc
=Lon &
n
p(A) < max 3" Jay| = Al
e
Proof

n
l—ail <A = ul SN+ ail =) lag)
j=1

Furthermore, o(A) = o(AT).




Gershgorin circles: heat example |

B=(I-D7tA) =
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Gershgorin circles: heat example Il
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Reducible and irreducible matrices

Definition A is reducible if there exists a permutation matrix P such that

T (A A
PAP _< o

A'is irreducible if it is not reducible.
Directed matrix graph:

» Nodes: N = {N;}i=1..n

> Directed edges: £ = {WMM # 0}

Theorem (Varga, Th. 1.17): Ais irreducible < the matrix graph is
connected, i.e. for each ordered pair (N;, N;) there is a path consisting of
directed edges, connecting them.

Equivalently, for each i, j there is a sequence of nonzero matrix entries
Aiky s Akykoy+ vy ak,j'




Taussky theorem (Olga Taussky, 1948)

Theorem (Varga, Th. 1.18) Let A be irreducible. Assume that the
eigenvalue \ is a boundary point of the union of all the disks

Aeod U {peC:lu—a; <N}

i=1...n

Then, all n Gershgorin circles pass through A, i.e. for i =1...n,

A —aii| = A;




Consequences for heat example from Taussky

B=1-D"tA
1

We had b; =0, A; = {2’

) = estimate |\;| <1
1 i=2...n-1

Assume |A;| = 1. Then ); lies on the boundary of the union of the
Gershgorin circles. But then it must lie on the boundary of both circles
with radius % and 1 around 0.

Contradiction = |\;| < 1, p(B) < 1!




Diagonally dominant matrices
Definition
> A is diagonally dominant if
(i) fori=1...n |ai| > Y |ay|
j=l...n
#i
> A is strictly diagonally dominant (sdd) if
(i) fori=1...n |a;| > Y |ay]
j=1l...n
J#i
» Ais irreducibly diagonally dominant (idd) if
(i) A'is irreducible

(i) A is diagonally dominant —

fori=1...n, |a;| > Z |aj|

j=1l...n
J#i
(iii) for at least one r, 1 < r < n, |a,| > Z |ay]|
Jj=1l...n

J#r




A very practical nonsingularity criterion

Theorem (Varga, Th. 1.21): Let A be strictly diagonally dominant or
irreducibly diagonally dominant. Then A is nonsingular.

If in addition, a; > 0 for i = 1...n, then all real parts of the eigenvalues
of A are positive:

Re\; >0, i=1...n




Heat conduction matrix

>
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» Ais idd = A is nonsingular

» diagA is positive real = eigenvalues of A have positive real parts

> A is real, symmetric = A is positive definite




Perron-Frobenius Theorem (1912/1907)

Definition: A real n-vector x is

> positive (x > 0) if all entries of x are positive
» nonnegative (x > 0) if all entries of x are nonnegative

Definition: A real n x n matrix A is

> positive (A > 0) if all entries of A are positive
> nonnegative (A > 0) if all entries of A are nonnegative

Theorem(Varga, Th. 2.7) Let A > 0 be an irreducible n X n matrix. Then

(i) A has a positive real eigenvalue equal to its spectral radius p(A).
(ii) To p(A) there corresponds a positive eigenvector x > 0.
(iii) p(A) increases when any entry of A increases.

(iv) p(A) is a simple eigenvalue of A.

Proof: See Varga. ]




Theorem on Jacobi matrix
Theorem: Let A be sdd or idd, and D its diagonal. Then

p(ll - DA < 1

Proof: Let B= (b;) =/— D71A. Then

0, i=j
b’f:{—‘?’f i#]
aji’

If Aissdd, then fori=1...n,

2 A
ORI DRI A
j=1..n o1 i |aii]

J#i

Therefore, p(|B]) < 1.




Jacobi method convergence

Corollary: Let A be sdd or idd, and D its diagonal. Assume that a; > 0
and a; < 0 for i # j. Then p(I — D7A) < 1, i.e. the Jacobi method
converges.

Proof In this case, |B| = B 0.




Regular splittings

» A= M — N is a regular splitting if

» M is nonsingular
» M7, N are nonnegative, i.e. have nonnegative entries

» Regard the iteration ux 1 = M~ Nuy + M~1h.
» We have | — M~TA = M~1N.




Convergence theorem for regular splitting

Theorem: Assume A is nonsingular, A~1 >0, and A=M — N is a
regular splitting. Then p(M~IN) < 1.

Proof: Let G = M~IN. Then A= M(l — G), therefore I — G is
nonsingular.

In addition
AN = (MU = MINYIN=(-MIN)IMIN=(1-G)IG

By Perron-Frobenius, p(G) is an eigvenalue with a nonnegative eigenvector
x. Thus,

_ G)
0< A lNx= Lx
- 1-p(G)

Therefore 0 < p(G) < 1.
As | — G is nonsingular, p(G) < 1. O




Convergence rate comparison

Corollary: p(M~'N) = ;= where 7 = p(A~!N).

Proof: Rearrange 7 = 1f(p((;z;) O

Corollary: Let A>0, A= M; — Ny and A= M, — N, be regular
splittings. If Ny > Ny > 0, then 1 > p(My *Na) > p(M1Ny).

Proof: 7 = p(A7IN,) > p(A~INy) = 74, 5 is strictly increasing.




M-Matrix definition

Definition Let A be an n x n real matrix. A is called M-Matrix if
(i) aj <O0forij
(ii) Ais nonsingular

(i) A7t >0
Corollary: If A is an M-Matrix, then A~! > 0 < A is irreducible

Proof: See Varga.




Main practical M-Matrix criterion

Corollary: Let A be sdd or idd. Assume that a; > 0 and a; < 0 for i # ;.
Then A is an M-Matrix.

Proof:
» Let B=/— DA Then p(B) < 1, therefore | — B is nonsingular.
» We have for k > 0:
|- B =(I-B)(I+ B+ B> +---+ B
(I-B) Y -B"Y)Y=(+B+B*+---4 B

The left hand side for k — oo converges to (/ — B)™1, therefore

(I-B)'=) B*

k=0

As B >0, we have (I — B)™! = A=1D > 0. As D > 0 we must have
Afl 2 0. O




Application

Let A be an M-Matrix. Assume A=D — E — F.

» Jacobi method: M = D is nonsingular, M1>0 N=E+F
nonnegative = convergence

» Gauss-Seidel: M = D — E is an M-Matrix as A < M and M has
non-positive off-digonal entries. N = F > 0. = convergence

» Comparison: N; > Ngs = Gauss-Seidel converges faster.

» More general: Block Jacobi, Block Gauss Seidel etc.




Intermediate Summary

» Given some matrix, we now have some nice recipies to establish
nonsingularity and iterative method convergence:

» Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs.

» Check if the matrix is strictly or irreducibly diagonally
dominant.
If yes, it is in addition nonsingular.

» Check if main diagonal entries are positive and off-diagonal
entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is
nonnegative, and elementary iterative methods converge.




Incomplete LU factorizations (ILU)

Idea (Varga, Buleev, 1960):

» fix a predefined zero pattern

> apply the standard LU factorization method, but calculate only those
elements, which do not correspond to the given zero pattern

» Result: incomplete LU factors L, U, remainder R:

A=LU-R

» Problem: with complete LU factorization procedure, for any
nonsingular matrix, the method is stable, i.e. zero pivots never occur.
Is this true for the incomplete LU Factorization as well ?



Stability of ILU

Theorem (Saad, Th. 10.2): If A is an M-Matrix, then the algorithm to
compute the incomplete LU factorization with a given nonzero pattern

A=LU-R

is stable. Moreover, A= LU — R is a regular splitting.



ILU(0)

» Special case of ILU: ignore any fill-in.
» Representation:

M= (D—-E)D~YD - F)

» D is a diagonal matrix (wich can be stored in one vector) which is
calculated by the incomplete factorization algorithm.

» Setup:

for(int i=0;i<n;i++)
d(i)=a(i,i)

for(int i=0;i<n;i++)
{
d(i)=1.0/d(i)
for (int j=i+1;j<n;j++)
d(j)=d(j)-a(i,j)*d(i)*a(j,i)
}



ILU(0)

Solve Mu =v
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ILU(0)

vy

vvyvyyy

Generally better convergence properties than Jacobi, Gauss-Seidel
One can develop block variants
Alternatives:

> ILUM: (“modified"): add ignored off-diagonal entries to D

> ILUT: zero pattern calculated dynamically based on drop tolerance
Dependence on ordering
Can be parallelized using graph coloring
Not much theory: experiment for particular systems
| recommend it as the default initial guess for a sensible preconditioner
Incomplete Cholesky: symmetric variant of ILU



Preconditioners

» Leave this topic for a while now
» Hopefully, we well be able to discuss
> Multigrid: gives O(n) complexity in optimal situations
» Domain decomposition: Structurally well suited for large scale
parallelization



More general iteration schemes



Generalization of iteration schemes

v

Simple iterations converge slowly

For most practical purposes, Krylov subspace methods are used.

We will introduce one special case and give hints on practically useful
more general cases

Material after J. Shewchuk: An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain"


http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Solution of SPD system as a minimization procedure

Regard Au = f ,where A is symmetric, positive definite. Then it defines a
bilinear form a: R" x R" — R

a(u,v) = (Au,v) = v Au = ZZaijv;uj

i=1 j=1

As A'is SPD, for all u # 0 we have (Au, u) > 0.

For a given vector b, regard the function

What is the minimizer of f ?

f'luy=Au—b=0

» Solution of SPD system = minimization of f.



Method of steepest descent

> Given some vector u;, look for a new iterate uji1.
> The direction of steepest descend is given by —f'(u;).

» So look for u;yq in the direction of —f'(u;) = r; = b — Au; such that
it minimizes f in this direction, i.e. set u;y1 = u; + ar; with « choosen
from

0= %f(u,- +ar) =f'(u+an)-r

=(b— A(u; +ar),n)

= (b— Auj,r;) — a(Ar, r)
= (ri,ri) — a(Ari, r;)
_ ()

(AI’,‘, I‘,')



Method of steepest descent: iteration scheme

r=>b— Au;
o (riari)
& = (AI’,’,I’,‘)

Uiy = Ui + Qi

Let & the exact solution. Define ¢; = u; — 1, then r; = —Ae;
Let [|u||a = (Au,u)? be the energy norm wrt. A.

Theorem The convergence rate of the method is

k—1\
leila < (257 ) Nl

where Kk = i’"a_x((f\‘)) is the spectral condition number.



Method of steepest descent: advantages

» Simple Richardson iteration ugy; = ux — a(Auk — f) needs good

eigenvalue estimate to be optimal with o = Sy -

> In this case, asymptotic convergence rate is p = '}2—;}

> Steepest descent has the same rate without need for spectral estimate



