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Recap (Finite Elements)



Heat conduction revisited: Derivation of weak formulation

+- Sobolev space theory provides the necessary framework to formulate existence
and uniqueness of solutions of PDEs.

» Heat conduction equation with homogeneous Dirichlet boundary conditions:

V- AXNVu=7finQ
u=0o0n 0

Multiply and integrate with an arbitrary test function from C5°(Q):

—/V~/\Vuvdx: fv dx
Q

/)\VUVV dx = fv dx
Q
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Weak formulation of homogeneous Dirichlet problem
> Search u € H}(Q) such that

/)\Vqudx = / fvdx Vv € Hy(Q)
Q

Q
» Then,

a(u,v) = / AVuVv dx
Q
is a self-adjoint bilinear form defined on the Hilbert space Hg(%).

It is bounded due to Cauchy-Schwarz:

|a(u, v)| = \MI/VqudXI < Hullbz) - VIl
Q

> f(v) = fQ fv dx is a linear functional on H}(f2). For Hilbert spaces V the
dual space V' (the space of linear functionals) can be identified with the
space itself.



The Lax-Milgram lemma

Let V be a Hilbert space. Let a: V x V — R be a self-adjoint bilinear form,
and f a linear functional on V. Assume a is coercive, i.e.

o> 0:Vue V,a(u,u) > al|ul}.

Then the problem: find u € V such that

a(u,v) =f(v)VvevVv

admits one and only one solution with an a priori estimate

1
llullv < =[]y
«



Heat conduction revisited

Let A > 0. Then the weak formulation of the heat conduction problem: search
u € H}(Q) such that

/)\Vqudx: / fv dx Vv € Hp(Q)
Q

Q

has an unique solution.

Proof: a(u, v) is cocercive:

a(u,v) = / AVuVudx = /\”u"i/é(ﬂ)
Q
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Weak formulation of inhomogeneous Dirichlet problem

V- AVu=finQ
u=gond

If g is smooth enough, there exists a lifting uy, € H'(Q) such that ug|aq = g.
Then, we can re-formulate:

—V - AV(u—ug)=Ff+ V- AV inQ
u—ug=0o0n 09N

» Search u € H'(Q) such that

u=tug+¢
/)\V(;SVvdx:/fvder/)\Vung Vv € Hy(Q)
Q Q Q

Here, necessarily, ¢ € Hy(Q) and we can apply the theory for the
homogeneous Dirichlet problem.



Weak formulation of Robin problem

-V -AVu=finQ
AVu-n+a(u—g)=00n9Q

Multiply and integrate with an arbitrary test function from CZ°(Q):

—/(V~)\Vu)vdx:/fvdx
Q Q
/AVUVde—!—/ (/\Vu~n)vds:/fvdx
Q a0 Q

/AVqudx—i—/ auvds:/fvdx+/ agv ds
Q aQ Q aQ
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Weak formulation of Robin problem Il

> Let

a®(u,v) ::/AVUVde—}—/ auv ds
Q

a0
fR(v) ::/fvdx—l—/ agv ds
Q Folo)

The integrals over 9Q must be understood in the sense of the trace space
H2(09).
» Search u € H'(Q) such that
a®(u,v) = FR(v) Vv € H}(Q)

> If A\ >0 and a > 0 then a”(u, v) is cocercive.
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Neumann boundary conditions
Homogeneous Neumann:

AVu-n=0o0n09N

Inhomogeneous Neumann:

AVu-n=gondQ

Weak formulation:

> Search u € H'(Q) such that

/Vqudx:/ gvds Vv € H'(Q)
w o0

Not coercive due to the fact that we can add an arbitrary constant to u and
a(u, u) stays the same!
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Further discussion on boundary conditions

» Mixed boundary conditions:
One can have differerent boundary conditions on different parts of the
boundary. In particular, if Dirichlet or Robin boundary conditions are
applied on at least a part of the boundary of measure larger than zero, the
binlinear form becomes coercive.

» Natural boundary conditions: Robin, Neumann
These are imposed in a “natural” way in the weak formulation

» Essential boundary conditions: Dirichlet
Explicitely imposed on the function space

» Coefficients A\, «... can be functions.
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The Dirichlet penalty method
» Robin problem: search u, € H'(Q) such that

/)\VuaVvdx+/ AUy V ds:/fvdx+/ agvdvaeHl(Q)
Q a9 Q 9

» Dirichlet problem: search u € H*(Q) such that

u=uz+¢ whereuglon =g
//\vwvdx = / fvdXJr/)\Vung Vv € Hy(Q)
Q Q Q

> Penalty limit:

lim ua =u
a—r 00
> Formally, the convergence rate is quite low
> Implementing Dirichlet boundary conditions directly leads to a number of
technical problems
» Implementing the penalty method is technically much simpler
» Proper way of handling the parameter leads to exact fulfillment of Dirichlet
boundary condition in the floating point precision



The Galerkin method |

» Weak formulations “live” in Hilbert spaces which essentially are infinite
dimensional

» For computer representations we need finite dimensional approximations

» The finite volume method provides one possible framework which in many
cases is close to physical intuition. However, its error analysis is hard.

» The Galerkin method and its modifications provide a general scheme for the
derivation of finite dimensional appoximations



The Galerkin method Il

> Let V be a Hilbert space. Let a: V x V — R be a self-adjoint bilinear
form, and f a linear functional on V. Assume a is coercive with coercivity
constant «, and continuity constant ~.

» Continuous problem: search u € V such that
a(u,v)=f(v)Vv eV

» Let V), C V be a finite dimensional subspace of V

» “Discrete” problem = Galerkin approximation:
Search up € V}, such that

a(uh, Vh) = f(Vh) Vv, € V,

By Lax-Milgram, this problem has a unique solution as well.



Céa’s lemma

» What is the connection between v and up, ?
> Let v, € V), be arbitrary. Then

IN

allu— up|* < a(u — up, u— up)  (Coercivity)

a(u— up,u—vy) + a(u — un, v — up)

a(u— up,u—vy) (Galerkin Orthogonality)

IN

Y||lu — upl| - ||u— va|] (Boundedness)
> As a result
lu—wll <L inf [ju— v

Q vyeV),

» Up to a constant, the error of the Galerkin approximation is the error of the
best approximation of the solution in the subspace V.
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From the Galerkin method to the matrix equation

> Let ¢1...¢, be a set of basis functions of V.
> Then, we have the representation up = )" | uj¢;
» In order to search up € V}, such that

a(uh, Vh) = f(vh) Yvp, € V)

it is actually sufficient to require
a(un, ¢i) = f(¢1) (i=1...n)

a (Z Uj¢j7¢f> =f(¢i)(i=1...n)
Za(d)jvd)i)uj =f(¢:))(i=1...n)
AU=F

with A = (aj), ay = a(¢i, ¢;), F = (f), i = F(¢:), U= ().

» Matrix dimension is n X n. Matrix sparsity ?
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Obtaining a finite dimensional subspace

> Let Q= (a,b) CR!
> Let a(u,v) = fn A(x)VuVvdx.

> Analysis | provides a finite dimensional subspace: the space of sin/cos
functions up to a certain frequency = spectral method

» Ansatz functions have global support = full n x n matrix
» OTOH: rather fast convergence for smooth data
» Generalization to higher dimensions possible

» Big problem in irregular domains: we need the eigenfunction basis of some
operator. ..

> Spectral methods are successful in cases where one has regular geometry
structures and smooth/constant coefficients — e.g. “Spectral Einstein Code
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The finite element idea

Choose basis functions with local support. In this case, the matrix becomes
sparse, as only integrals of basis function pairs with overlapping support
contribute to the matrix.

Linear finite elements in Q = (a, b) C R:
Partition a=x1 < x <---<x,=0b

Basis functions (for i =1...n)

::i);_—ll’ i> 1,X S (X,',l,X,')
p— Xj. —X .
di(x) = ﬁv i< n,x € (xi,xis1)
0, else

Any function uy € Vi, = span{¢i ... ¢n} is piecewise linear, and the
coefficients in the representation uy = | | uj¢; are the values up(x;).

Fortunately, we are working with a weak formulation, and weak derivatives
are well defined !



1D matrix elements

(A =1, xiz1 — xi = h) - The integrals are nonzero for i = j,i+1=ji—1=j
Letj=i+1

Xit1 X+ q
aj = a(¢i, pit1) = / V§iVejdx = / ViVedx = _/ ﬁdx
Q x %

i i

= %dx

Similarly, a(¢,,¢,71) — _%

For1<i<N:
Xi+1 Xi+1 1
dij = a(gb,‘,d),') /qu,'Vd);dX = / V¢;V¢;dx = / ﬁdX
Q Xi—1 Xi—1
= %dx

Fori=1ori=N, a(¢i, ¢:) = 7
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1D matrix elements Il

Adding the boundary integrals yields

ot} -}
1 2 _1
h h h
_1 2 _1
h h h
A: -
_1 2 _1
h h h
_1 2
h _hl
h

. the same matrix as for the finite volume method. ..

Bl

==



Finite Elements in higher dimensions

(after Ern/Guermond)



Definition of a Finite Element (Ciarlet)

Triplet {K, P, X} where

» K C R? compact, connected Lipschitz domain with non-empty interior

> P: finite dimensional vector space of functions p : K — R™ (mostly,
m=1m=d)

> ¥ ={o01...0:} C L(P,R): set of linear forms defined on P called local
degrees of freedom such that the mapping

/\2 P> R
p = (o1(p)---os(p))
is bijective, i.e. X is a basis of L(P,R).



Local shape functions

» Due to bijectivity of Ax, for any finite element {K, P, X}, there exists a
basis {6:...6s} C P such that

oi(0)) =065 (1<i,j<s)

» Elements of such a basis are called local shape functions
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Unisolvence

» Bijectivity of Ay is equivalent to the condition

V(ai...as) € R° Jlp € Psuch thatoi(p) = a; (1 <i<5s)

i.e. for any given tuple of values a = (o ... as) there is a unique
polynomial p € P such that As(p) = a.
» Equivalent to unisolvence:

dmP=1X|=s
VpeP: oi(p)=0(i=1...s) = p=0
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Lagrange finite elements

> A finite element {K, P, X} is called Lagrange finite element (or nodal finite
element) if there exist a set of points {a1...as} C K such that

oi(p) =p(ai) 1<i<s
> {a1...as}: nodes of the finite element

> *nodal basis: {#:...6s} C P such that

Oi(ar) =65 (1<1i,j<s)
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Hermite finite elements

> All or a part of degrees of freedoms defined by derivatives of p in some
points
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Local interpolation operator

> Let {K,P,X} be a finite element with shape function bases {61 ...0s. Let
V(K) be a normed vector space of functions v : K — R™ such that

> PC V(K)
> The linear forms in X can be extended to be defined on V/(K)

> Jlocal interpolation operator

K V(K) = P
Vi ZU;(V)@,-
i=1

> P is invariant under the action of Zx, i.e. Vp € P,Zk(p) = p:
> Let p= Z;:I a;j0;j Then,

Ik(p) = Zm(p)9 = ZZ‘W’ (6;)0;

i=1 j=1

SR B

i=1 j=1
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Local Lagrange interpolation operator

> Let V(K) = (C°(K))"

Ix : V(K) = P

s

V = IKV = Z v(a,-)@,—

i=1



Simplices

> Let {ag...aqs} C RY such that the d vectors a; — ag ... a4 — ao are linearly
independent. Then the convex hull K of a ... aq is called simplex, and
ao ... aq are called vertices of the simplex.

> Unit simplex: ap = (0...0),a, = (0,1...0)...a4 = (0...0,1).

d
K= XGRd:X,-EO(i:I...d)and Zx,-gl
i=1

> A general simplex can be defined as an image of the unit simplex under
some affine transformation

» F;: face of K opposite to a;

» n;: outward normal to F;



Barycentric coordinates

> Let K be a simplex.
» Functions \; (i =0...d):

AR SR

(X — a,-) - n;
x—=Aix)=1—- —%—

(aj — a,-) -n;

where a; is any vertex of K situated in F;.
» For x € K, one has
1_ (x—a,-)~n,- _ (aj—a;)~n;—(x—a;)~n;
(aj —ai) - ni (aj —ai) - ni

(aj —x)-n;  dist(x, F)
- (aj —ai)-n; - dist(aj, )
dist(x, F7)|Fi|/d
~ dist(a;, F)|Fil/d
_ dist(x, F;)|Fi
- K|
i.e. \i(x) is the ratio of the volume of the simplex Ki(x) made up of x and
the vertices of F; to the volume of K.
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Barycentric coordinates |l

> Ai(a) = 6

> \i(x)=0Vx € F

» 37 Ai(x) =1Vx € R
(just sum up the volumes)

> 3 A(x)(x — ar) = 0 Vx € R?
(due to > Ai(x)x = x and D Aja; = x as the vector of linear coordinate
functions)

> Unit simplex:

> )\o(X) =1- 27:1 Xj
> )\,-(x):x,-forlgigd
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Polynomial space Py

» Space of polynomials in xi ... x4 of total degree < k with real coefficients
Qiy..ig*

P =< p(x) = Z oz,-l,,,,-a,xlf1 ...X"f

0<iy...ig<k
i1t tig <k
» Dimension:
k+1, d=1
. _(d+ k) _ 1 _
dimP, = K = 2(k+1)(k+2), d=2
T(k+1)(k+2)(k+3), d=3
3, d=1
dimP, =¢6, d=2
10, d=3

32
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Py simplex finite elements

» K: simplex spanned by a...aq in R?

> P =Py, such that s = dim Py

> For0<ig...ig < k, io+ -+ ig = k, let the set of nodes be defined by
the points aj,...i,x with barycentric coordinates (2 ... ).
Define X by oiy._isi(p) = p(ai...izk)-
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Py simplex finite elements

vVvyVvyy

K: simplex spanned by ap ... aq in R

P =P, suchthats=d +1

Nodes = vertices

Basis functions = barycentric coordinates

A £

oo
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P, simplex finite elements

» K: simplex spanned by a...aq in R?
» P =P,, Nodes = vertices 4+ edge midpoints
» Basis functions:

Ai(2Ai —1),(0<i<d); 44X, (0<i<j<d) ("edge bubbles")
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Cuboids

> Given intervals I; = [¢;, di], i = 1...d such that ¢; < d;.
» Cuboid:
d
K= IT[C,'7 d,]
i=1
» Local coordinate vector (t1 ... ts) € [0,1]%
» Unique representation of x € K: x; = ¢ + ti(d; — ¢;) fori=1...d.

> Bijective mapping [0,1]¢ = K.
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Polynomial space Qy

v

Space of polynomials of degree at most k in each variable
d=1= Qk = Pk
d>1:

vy

Qk = {P(X) = Z O‘il-»-idxli1 "'Xcifd}

0<iy...ig<k

> dimQx = (k + 1)
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Qg cuboid finite elements

» K: cuboid spanned by intervals [¢;,di], i=1...d

> P=Q
> For 0 <ig...ig < k, let the set of nodes be defined by the points a;. i«

with local coordinates (2 ... ).

Define X by oj,...i;:(p) = p(ai...iik)-

Q Q2 Qs
. “‘.
.
A L] L] “
. .
L] L]




General finite elements

» Simplicial finite elements can be defined on triangulations of polygonal
domains. During the course we will stick to this case.

» A curved domain Q may be approximated by a polygonal domain €, which
is then triangulated. During the course, we will ignore this difference.

» As we have seen, more general elements are possible: cuboids, but and
T’"'? =T, \?also prismatic elements etc.

» Curved geometries are possible. Isoparametric finite elements use and
Tm\/F\ = T,,|/F\the polynomial space to define a mapping of some polyghedral
reference element to an element with curved boundary
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Conformal triangulations

> Let 7 be a subdivision of the polygonal domain Q C RY into
non-intersecting compact simplices K,, m=1...n.:

Ne
Q=[] Kn
m=1
» Each simplex can be seen as the image of a affine transormation of a
reference (e.g. unit) simplex K:
Km = Tm(K)

» We assume that it is conformal, i.e. if Ky, K, have a d — 1 dimensional
intersection F = K, N K, then there is a face F of K and renumberings of
the vertices of K,, Ky, such that F = T, (F) =T, ( )and Tol> = Tolx
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Conformal triangulations Il

» d =1: Each intersection F = K, N K, is either empty or a common vertex
» d = 2 : Each intersection F = K, N K, is either empty or a common vertex
or a common edge

» d = 3 : Each intersection F = K, N K, is either empty or a common vertex
or a common edge or a common face
» Triangulations corresponding to simplicial complexes are conformal

» Delaunay triangulations are conformal
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Reference finite element

Let {IAD, K, )E} be a fixed finite element

Let Tx be some affine transformation and K = TK(R)

There is a linear bijective mapping 1k between functions on K and
functions on K:

v

vy

Pi : V(K) = V(K)
fisfoTk

> Let
> K = Tk(K)$
> P ={vx'(p)ip € P},

> Yy ={okii=1...5:0ki(p) = 7i(¢¥k(p))} Then {K, Pk, Tk} is a finite
element.
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Commutativity of interpolation and reference mapping

> Ty ok = i o Lk,
i.e. the following diagram is commutative:

V(K) —2 v(K)

JIK lIk

Pc —2 s P

43 /46



Global interpolation operator 7,

> Let {K, Pk, Xk}keT;, be a triangulation of €.

» Domain:

D(Zy) = {v € (L*(R))™ such that VK € T, v|x € V(K)}
> For all v € D(Z4), define Z,v via

Ihle—IK V| ZO’K,(V|K)0K,VK€777,

i=1

Assuming 6 ; = 0 outside of K, one can write

Ihv = Z iGK,i(WK)@K,i,

KeTy i=1

mapping D(Z) to the approximation space

Wi = {vs € (L'(Q))" such that YK € T, vi|x € Pk}
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H'-Conformal approximation using Lagrangian finite elemenents

» Let V be a Banach space of functions on Q. The approximation space W,
is said to be V-conformal if W, C V.

» Non-conformal approximations are possible, we will stick to the conformal
case.

» Conformal subspace of W}, with zero jumps at element faces:

Vi = {vn € Wy : VY0, m, K 0 Ky # 0 = (Vi K ) Kk = (Vhl Ky ) Ko }

» Then: Vi, C HY(Q).
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Happy Holidays!

Next lecture: Jan. 5, 2017
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