
~
Starting on UNIX

Scientific Computing Winter 2016/2017

Lecture 5

Jürgen Fuhrmann

juergen.fuhrmann@wias-berlin.de

With material from from http://www.cplusplus.com/ and from “Introduction
to High-Performance Scientific Computing” by Victor Eijkhout
(http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html)

made wit pandoc

http://www.cplusplus.com/
http://pages.tacc.utexas.edu/~eijkhout/istc/istc.html

~

Recap from last time

Inheritance
I Classes in C++ can be extended, creating new classes which retain

characteristics of the base class.
I The derived class inherits the members of the base class, on top of which it

can add its own members.

class vector2d
{
private:

double *data;
vector2d<int> shape;
int size

public:
double & operator(int i, int j);
vector2d(int nrow, ncol);
~vector2d();template <t

}

class matrix: public vector2d
{

public:
apply(const vector1d& u, vector1d &v);
solve(vector1d&u, const vector1d&rhs);

}

I All operations which can be performed with instances of vector2d can be
performed with instances of matrix as well

I In addition, matrix has methods for linear system solution and
matrix-vector multiplication

Smart pointers

. . . with a little help from Timo Streckenbach from WIAS who introduced smart
pointers into our simulation code.

I Automatic book-keeping of pointers to objects in memory.
I Instead of the meory addres of an object aka. pointer, a structure is passed

around by value which holds the memory address and a pointer to a
reference count object. It delegates the member access operator -> and the
address resolution operator * to the pointer it contains.

I Each assignment of a smart pointer increases this reference count.
I Each destructor invocation from a copy of the smart pointer structure

decreses the reference count.
I If the reference count reaches zero, the memory is freed.
I std::shared_ptr is part of the C++11 standard

Smart pointer schematic

(this is one possibe way to implement it)

class C;

Stack Heap

C obj

ref=1

x1:
C* p_obj

int * p_ref

std::shared_ptr<C> x1= std::make_shared<C>();

x2:
C* p_obj

int * p_ref

std::shared_ptr<C> x2= x1;

x3:
C* p_obj

int * p_ref

std::shared_ptr<C> x3= x1;

Smart pointer schematic

(this is one possibe way to implement it)

class C;

Stack Heap

C obj

ref=2

x1:
C* p_obj

int * p_ref

std::shared_ptr<C> x1= std::make_shared<C>();

x2:
C* p_obj

int * p_ref

std::shared_ptr<C> x2= x1;

x3:
C* p_obj

int * p_ref

std::shared_ptr<C> x3= x1;

Smart pointer schematic

(this is one possibe way to implement it)

class C;

Stack Heap

C obj

ref=3

x1:
C* p_obj

int * p_ref

std::shared_ptr<C> x1= std::make_shared<C>();

x2:
C* p_obj

int * p_ref

std::shared_ptr<C> x2= x1;

x3:
C* p_obj

int * p_ref

std::shared_ptr<C> x3= x1;

C++ code using vectors, C-Style, with data on stack

File /net/wir/examples/part1/c-style-stack.cxx

#include <cstdio>

void initialize(double *x, int n)
{

for (int i=0;i<n;i++) x[i]= 1.0/(double)(1+n-i);
}

double sum_elements(double *x, int n)
{

double sum=0;
for (int i=0;i<n;i++) sum+=x[i];
return sum;

}

int main()
{

const int n=1.0e7;
double x[n];
initialize(x,n);
double s=sum_elements(x,n);
printf("sum=%e\n",s);

}

I Large arrays may not fit on stack
I C-Style arrays do not know their length

C++ code using vectors, C-Style, with data on heap
File /net/wir/examples/part1/c-style-heap.cxx

#include <cstdio>
#include <cstdlib>
#include <new>

// initialize vector x with some data
void initialize(double *x, int n)
{

for (int i=0;i<n;i++) x[i]= 1.0/(double)(1+n-i);
}

// calculate the sum of the elements of x
double sum_elements(double *x, int n)
{

double sum=0;
for (int i=0;i<n;i++) sum+=x[i];
return sum;

}

int main()
{

const int n=1.0e7;
try { x=new double[n]; // allocate memory for vector on heap }
catch (std::bad_alloc) { printf("error allocating x\n"); exit(EXIT_FAILURE); }
initialize(x,n);
double s=sum_elements(x,n);
printf("sum=%e\n",s);
delete[] x;

}

I C-Style arrays do not know their length
I Proper memory management is error prone

C++ code using vectors, (mostly) modern C++-style
File /net/wir/examples/part1/cxx-style-ref.cxx

#include <cstdio>
#include <vector>

void initialize(std::vector<double>& x)
{

for (int i=0;i<x.size();i++) x[i]= 1.0/(double)(1+n-i);
}

double sum_elements(std::vector<double>& x)
{

double sum=0;
for (int i=0;i<x.size();i++)sum+=x[i];
return sum;

}

int main()
{

const int n=1.0e7;
std::vector<double> x(n); // Construct vector with n elements

// Object "lives" on stack, data on heap
initialize(x);
double s=sum_elements(x);
printf("sum=%e\n",s);
// Object destructor automatically called at end of lifetime
// So data array is freed automatically

}

I Heap memory management controlled by object lifetime
I Recommended style if we can completely stay within C++

C++ code using vectors, (mostly) modern C++-style with smart pointers
File /net/wir/examples/part1/cxx-style-sharedptr.cxx

#include <cstdio>
#include <vector>
#include <memory>

void initialize(std::vector<double> &x)
{

for (int i=0;i<x.size();i++) x[i]= 1.0/(double)(1+n-i);
}

double sum_elements(std::vector<double> & x)
{

double sum=0;
for (int i=0;i<x.size();i++)sum+=x[i];
return sum;

}

int main()
{

const int n=1.0e7;
// call constructor and wrap pointer into smart pointer
auto x=std::make_shared<std::vector<double>>(n);
initialize(*x);
double s=sum_elements(*x);
printf("sum=%e\n",s);
// smartpointer calls desctrutor if reference count
// reaches zero

}

I Heap memory management controlled by smart pointer lifetime
I If method or function does not store the object, pass by reference ⇒ API

stays the same as for previous case.

Floating point representation

I Scientific notation of floating point numbers: e.g. x = 6.022 · 1023

I Representation formula:

x = ±
∞∑
i=0

diβ
−iβe

I β ∈ N, β ≥ 2: base
I di ∈ N, 0 ≤ di ≤ β: mantissa digits
I e ∈ Z : exponent

I Representation on computer:

x = ±
t−1∑
i=0

diβ
−iβe

I β = 2
I t: mantissa length, e.g. t = 53 for IEEE double
I L ≤ e ≤ U, e.g. −1022 ≤ e ≤ 1023 (10 bits) for IEEE double
I d0 6= 0 ⇒ normalized numbers, unique representation

Floating point limits

I symmetry wrt. 0 because of sign bit
I smallest positive normalized number: d0 = 1, di = 0, i = 1 . . . t − 1

xmin = βL

I smallest positive denormalized number: di = 0, i = 0 . . . t − 2, dt−1 = 1
xmin = β1−tβL

I largest positive normalized number: di = β − 1, 0 . . . t − 1
xmax = β(1− β1−t)βU

Machine precision

I Exact value x
I Approximation x̃
I Then: | x̃−x

x | < ε is the best accuracy estimate we can get, where
I ε = β1−t (truncation)
I ε = 1

2β
1−t (rounding)

I Also: ε is the smallest representable number such that 1+ ε > 1.
I Relative errors show up in partiular when

I subtracting two close numbers
I adding smaller numbers to larger ones

~

Starting on unix

Some shell commands in the terminal window

ls -l	list files in directory
	subdirectories are marked with ’d’
	in the first column of permission list
cd dir	change directory to dir
cd ..	change directory one level up in directory hierachy
cp file1 file2	copy file1 to file2
cp file1 dir	copy file1 to directory
mv file1 file2	rename file1 to file2
mv file1 dir	move file1 to directory
rm file	delete file
[cmd] *.o	perform command on all files with name ending with .o

Editors & IDEs

I Source code is written with text editors
(as compared to word processors like MS Word or libreoffice)

I Editors installed are
I gedit - text editor of gnome desktop (recommended)
I emacs - comprensive, powerful, a bit unusual GUI (my preferred choice)
I nedit - quick and simple
I vi, vim - the UNIX purist’s crowbar

(which I avoid as much as possible)
I Integrated development environments (IDE)

I Integrated editor/debugger/compiler
I eclipse (need to get myself used to it before teaching)

Command line instructions to control compiler

I By default, the compiler command performs the linking process as well
I Compiler command (Linux)

g++	GNU C++ compiler
clang++	CLANG compiler from LLVM project
g++-5	GNU C++ 5.x
icpc	Intel compiler

I Options (common to all of those named above, but not standardized)

-o name	Name of output file
-g	Generate debugging instructions
-O0, -O1, -O2, -O3	Optimization levels
-c	Avoid linking
-I<path>	Add <path> to include search path
-D<symbol>	Define preprocessor symbol
-std=c++11	Use C++11 standard

Obtaining and compiling the examples

I Copy files, creating subdirectory part1
I the . denotes the current directory

$ cp -r /net/wir/examples/part1 .

I Compile sources (for each of the .cxx files)

$ g++ --std=c++11 -o executable source.cxx

I Run executable

$./executable

How to copy stuff to your computer

I On Mac, Linux, use ssh:

$ scp -r wir-1xy@unixpool.math.tu-berlin.de:/wir/net/examples/part1 .

I On Windows
I install cygwin
I us WinSCP

