TU Berlin Advanced Topics from Scientific Computing Winter Semester 2022/2023

Slide lecture 1

Jürgen Fuhrmann

juergen. fuhrmann @wias-berlin. de

- Name: Dr. Jürgen Fuhrmann (no, not Prof.)
- Affiliation: Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin;
 Deputy Head, Numerical Mathematics and Scientific Computing
- Email: juergen.fuhrmann@wias-berlin.de
- Course homepage: https://www.wias-berlin.de/people/fuhrmann/AdSciComp-WS2223/
- Experience/Field of work:
 - Numerical solution of partial differential equations (PDEs)
 - Development, investigation, implementation of finite volume discretizations for nonlinear systems of PDEs
 - Ph.D. on multigrid methods
 - Applications: electrochemistry, semiconductor physics, groundwater. . .
 - Software development:
 - WIAS code pdelib (http://pdelib.org)
 - Julia PDE solver package VoronoiFVM.jl (http://github.dom/j-fu/VoronoiFVM.jl) + package environment
 - Languages: C, C++, Python, Lua, Fortran, Julia
 - Visualization: OpenGL, VTK

Admin stuff

- Lectures will be recorded
- Lecture material will be available via https://www.wias-berlin.de/people/fuhrmann/AdSciComp-WS2223/
- All code examples and project assignments will be in Julia, either as notebooks or as Julia files. Things should work on Linux, MacOSX, Windows
- Assignments and course projects will given to groups of three
- Examinations will be based on coding projects

Intended aims and topics of this course

- Introduction to Julia as fresh approach to combine efficient computation with easy composability
- Focus on partial differential equation (PDE) solution
 - Solution of large linear systems of equations
 - Finite element and finite volume methods
 - Mesh generation
 - Nonlinear solvers
 - Automatic differentiation
 - Aspects of parallelization, Visualization
- Elements of Scientific Computing not covered:
 - Stochastic methods
 - Machine learning