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Partial Differential Equations

Notations

Given: domain Q@ Cc R d=1,2,3...)

Dot product: for 2,5 € R%, & - § = E;Ll TiYi
Bounded domain © C RY, with piecewise smooth boundary

Scalar functionu : @ — R
vy

Vector function¥= | : | : 2 — R4

Vd,
Partial derivative 8;u = i

. — 0%
Second partial derivative dyju = By

Gradient of scalar functionu : 2 — R:

() O1u
grad =V = : tum Vu=
8,1 8.{'11

Divergence of vector function ¥ = § — R%:

div=V-:9=|: | » V- 8=08v+--+84uq

Vd,

Laplace operator of scalar functionu : & - R

div-grad =V -V
=A:u— Au=0pu+---+ 4u

Lipschitz domains

Definition: A connected open subset @ C R% is called domain. If € is a bounded set, the
domain is called bounded.

Definition:

« Let. D C R™ Afunction f : D — R™ s called Lipschitz continuous if there exists ¢ > 0
such that || f(z) — f(¥)I| < ell — 3| forany z,y € D

« Ahypersurface in R" is a graph if for some k it can be represented on some domain
DcR*las

T = f(1,+ 0 s Tho1, Tl 15+ -+ Tn)

« Adomain Q C R" is a Lipschitz domain if for all £ € 8, there exists a neigborhood of

@ on O which can be represented as the graph of a Lipschitz continuous function.

Standard PDE calculus happens in Lipschitz domains

« Boundaries of Lipschitz domains are continuous

« Polygonal domains are Lipschitz

« Boundaries of Lipschitz domains have no cusps (e.g. the graph of y = 4/ |a:| has a cusp
atz =0)

Divergence theorem (Gauss' theorem)
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Theorem: Let © C R? be a bounded Lipschitz domain and ¥ :  — R? be a continuously
differentiable vector function. Let 7 be the outward normal to . Then,

/v-m&:/ 7.7 ds.
Q an

This is a generalization of the Newton-Leibniz rule of calculus:

Letd =1,Q = (a,b). Then:

< ng=(-1)
= (1)
« Vv=2

b
/ V.5dd— / (z) de = v(b) — v(a) = v(@)na + v(B)ms
1] a

Species evolution in a domain Q

Let

« Q: domain, (0, T"): time evolution interval

- u(Z,t) : Q x [0,T] — R: time dependent local amount of species (aka species concentration)
« f(&,t) : Q x [0,T] — R: species sources/sinks

« 3(®,) : 2 x [0,T] = R% vector field of the species flux

Representative Elementary Volume (REV)
Letw C : be a representative elementary volume (REV) Define averages:
- J@) = faw_-i(i, t) - 7t ds: flux of species trough 8w at moment ¢

- U(t) = [, u(Z,t) dZ: amount of species in w at moment £
- F(t) = [, f(Z,t) d: rate of creation/destruction at moment ¢

Species conservation

Let (tg, £1) C (0, T'). The Change of the amount of species in w during (£g, t1) is proportional to the

sum of the amount transported through boundary and the amount created/destroyed
t iy
Ult) —Utte)+ [ J(t) dt = / F(t) dt
ty ty

Using the definitions of U,F], we get

L (W@, t1) — u(@ to)) d + /: faw}’(?c‘,t)-ﬁdadt= /‘0 " /w £(3,8)ds

Causs' theorem gives
ty iy . 2
/ /a,u(a,t)dde/ /V-j(:b’,t)d:’c‘dt:/ /f(fé,t)ds
ty Jw ty Jw ty Jw

Continuity equation
The above is true for all w C Q, (to,t1) C (0,T) =
(@) +V 3@ 1) = fE 0 max[,T]

« While this sounds obvious, mathematical reasoning about this is more complex

« Whenever one encounters the divergence operator, chances are that it describes a conservation
law for certain species. This physical meaning is very concrete and, if possible should be
preserved during the process of discretizing PDEs.

Flux expressions

As a rule, species flux is proportional to the negative gradient of the species concentration:

_-1:(53, t) ~ —eu(i, t). This corresponds to the direction of steepest descend.

- =
Therefore we set § = —§Vu, where § > 0 can be constant, space/time dependent or even depend on
u. For simplicity, we assume & to be constant, unless stated otherwise.

Heat conduction

« u =T temperature
« &= A: heat conduction coefficient
« f:heatsource

. j= — VT Fourier law
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Diffusion of molecules in a given medium (for low
concentrations)

« u = ¢:concentration

«+ § = D: diffusion coefficient

« f: species source (e.g due to reactions)
. __7:= —DVe: Fick's law

Flow in a saturated porous medium:

« U = p: pressure
« & = k: permeability

cJj= —kep: Darcy's law
Electrical conduction

« u = (: electric potential
« & = o electric conductivity

. 3 = —o‘%ga = current density: Ohms's law

Electrostatics in a constant magnetic field:

« u = (: electric potential
« § = &: dielectric permittivity

. BE= Ws electric field

__7: =D=cE= Eﬁtp: electric displacement field: Gauss's Law
« f = p: charge density

Second order partial differential equations
(PDEs)

Combine continuity equation with flux expression:
du— V- (6Vu) = f.
This type of PDEs is called parabolic.
Assuming stationarity - i.e. independence of time results in 83 = 0 and the elliptic PDE

-V-(6Vu) = f.

Boundary conditions

So far, we cared about the species balance of an REV in the interior of the domain. How about the
species balance between Q and its exterior ? This is described by boundary conditions.

Assume OQ = ufjlr,» is the union of a finite number of non-intersecting subsets I'; which are locally
Lipschitz.

Define boundary conditions on each of I';

Dirichlet boundary conditions
letg; : Ty =+ R
u(Z,t) = gi(@,t) forZel;

« fixed solution at the boundary
« also called boundary condition of first kind

« called homogeneous for g; = 0

Neumann boundary conditions
letg; : s — R.
—i(@,8) B =g:(@,1) forZel;

« fixed boundary normal flux
« also called boundary condition of second kind

« called homogeneous for g; = 0
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Robin boundary conditions

leta; >0,g;: Ty =R

—3(3,1) - B+ (@, D)u(@, t) = g:(F,t) forFeTy

« Boundary flux proportional to solution

« also called third kind boundary condition

Generalizations

« d maydepend on &, u, |§u| ...=> equations become nonlinear
« Coefficients can depend on other processes
o temperature can influence conductvity
o source terms can describe chemical reactions between different species
o chemical reactions can generate/consume heat
o Electric current generates heat (" “Joule heating")

o wue

= coupled PDEs

« Convective terms: 3 — —6Vu ~+ u® where ¥ is a convective velocity

« PDEs for vector unknowns
o Momentum balance => Navier-Stokes equations for fluid dynamics
o Elasticity
o Maxwell's electromagnetic field equations
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