Advanced Topics from Scientific Computing TU Berlin Winter 2022/23 Notebook 12 ((*)) Treated Jürgen Fuhrmann

Partial Differential Equations

Notations

Given: domain $\Omega \subset \mathbb{R}^d$ $(d=1,2,3\ldots)$

- Dot product: for $ec{x}, ec{y} \in \mathbb{R}^d$, $ec{x} \cdot ec{y} = \sum_{i=1}^d x_i y_i$
- Bounded domain $\Omega \subset \mathbb{R}^d$, with piecewise smooth boundary
- Scalar function $u: \Omega \to \mathbb{R}$
- Vector function $\vec{v} = \begin{pmatrix} \vdots \\ \vdots \\ v_d \end{pmatrix} : \Omega \to \mathbb{R}^d$ • Partial derivative $\partial_i u = \frac{\partial u}{\partial x_i}$
- Second partial derivative $\partial_{ij} u = \frac{\partial^2 u}{\partial x_i x_j}$
- Gradient of scalar function $u:\Omega \to \mathbb{R}$:

$$ext{grad} = ec
abla = egin{pmatrix} \partial_1 \ dots \ \partial_d \end{pmatrix}: u\mapsto ec
abla u = egin{pmatrix} \partial_1 u \ dots \ \partial_d u \end{pmatrix}$$

- Divergence of vector function $ec{v}=\Omega o \mathbb{R}^d$:

$$\operatorname{div} = \nabla \cdot : \vec{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} \mapsto \nabla \cdot \vec{v} = \partial_1 v_1 + \dots + \partial_d v_d$$

- Laplace operator of scalar function $u:\Omega
ightarrow \mathbb{R}$

 $\mathrm{div} \cdot \mathrm{grad} =
abla \cdot ec
abla \ = \Delta : u \mapsto \Delta u = \partial_{11} u + \dots + \partial_{dd} u$

Lipschitz domains

Definition: A connected open subset $\Omega \subset \mathbb{R}^d$ is called *domain*. If Ω is a bounded set, the domain is called *bounded*.

Definition

- Let $D \subset \mathbb{R}^n$. A function $f: D \to \mathbb{R}^m$ is called *Lipschitz continuous* if there exists c > 0 such that $||f(x) f(y)|| \le c||x y||$ for any $x, y \in D$
- A hypersurface in \mathbb{R}^n is a graph if for some k it can be represented on some domain $D \subset \mathbb{R}^{n-1}$ as

$x_k=f(x_1,\ldots,x_{k-1},x_{k+1},\ldots,x_n)$

• A domain $\Omega \subset \mathbb{R}^n$ is a *Lipschitz domain* if for all $x \in \partial\Omega$, there exists a neigborhood of x on $\partial\Omega$ which can be represented as the graph of a Lipschitz continuous function.

Standard PDE calculus happens in Lipschitz domains

- Boundaries of Lipschitz domains are continuous
- Polygonal domains are Lipschitz
- Boundaries of Lipschitz domains have no cusps (e.g. the graph of $y=\sqrt{|x|}$ has a cusp at x=0)

Divergence theorem (Gauss' theorem)

루 nb12-pde.jl — Pluto.jl

Theorem: Let $\Omega\subset \mathbb{R}^d$ be a bounded Lipschitz domain and $ec{v}:\Omega o\mathbb{R}^d$ be a continuously differentiable vector function. Let $ec{n}$ be the outward normal to Ω . Then,

$$\int_{\Omega} \nabla \cdot \vec{v} \, d\vec{x} = \int_{\partial \Omega} \vec{v} \cdot \vec{n} \, ds.$$

This is a generalization of the Newton-Leibniz rule of calculus:

Let d = 1, $\Omega = (a, b)$. Then:

$$\begin{array}{l} \cdot & n_a = (-1) \\ \cdot & n_b = (1) \\ \cdot & \nabla \cdot v = v' \\ & \int_{\Omega} \nabla \cdot \vec{v} \, d\vec{x} = \int_a^b v'(x) \, dx = v(b) - v(a) = v(a)n_a + v(b)n_b \end{array}$$

Species evolution in a domain Ω

Let

- $\boldsymbol{\Omega}$: domain, $(\boldsymbol{0},\boldsymbol{T})$: time evolution interval
- $u(\vec{x},t): \Omega \times [0,T] \rightarrow \mathbb{R}$: time dependent local amount of species (aka species concentration)
- $f(\vec{x}, t) : \Omega \times [0, T] \rightarrow \mathbb{R}$: species sources/sinks
- + $\vec{j}(\vec{x},t): \Omega imes [0,T]
 ightarrow \mathbb{R}^{d}$: vector field of the species flux

Representative Elementary Volume (REV)

Let $\omega \subset \Omega$: be a representative elementary volume (REV) Define averages:

- $J(t) = \int_{\partial \omega} \vec{j}(\vec{x},t) \cdot \vec{n} \, ds$: flux of species trough $\partial \omega$ at moment t

• $U(t) = \int_{\omega} u(\vec{x}, t) d\vec{x}$: amount of species in ω at moment t• $F(t) = \int_{\omega} f(\vec{x}, t) d\vec{x}$: rate of creation/destruction at moment t

Species conservation

Let $(t_0, t_1) \subset (0, T)$. The Change of the amount of species in ω during (t_0, t_1) is proportional to the sum of the amount transported through boundary and the amount created/destroyed

$$U(t_1) - U(t_0) + \int_{t_0}^{t_1} J(t) \, dt = \int_{t_0}^{t_1} F(t) \, dt$$

Using the definitions of U,F,J, we get

$$\int_{\omega} (u(\vec{x},t_1) - u(\vec{x},t_0)) \, d\vec{x} + \int_{t_0}^{t_1} \int_{\partial \omega} \vec{j}(\vec{x},t) \cdot \vec{n} \, ds \, dt = \int_{t_0}^{t_1} \int_{\omega} f(\vec{x},t) \, ds$$

Gauss' theorem gives

$$\int_{t_0}^{t_1} \int_{\omega} \partial_t u(\vec{x},t) \, d\vec{x} \, dt + \int_{t_0}^{t_1} \int_{\omega} \nabla \cdot \vec{j}(\vec{x},t) \, d\vec{x} \, dt = \int_{t_0}^{t_1} \int_{\omega} f(\vec{x},t) \, ds$$

Continuity equation

The above is true for all $\omega\subset \Omega$, $(t_0,t_1)\subset (0,T)$ \Rightarrow

 $\partial_t u(ec{x},t) +
abla \cdot ec{j}(ec{x},t) = f(ec{x},t) \quad ext{in } \Omega imes [0,T]$

- While this sounds obvious, mathematical reasoning about this is more complex
- Whenever one encounters the divergence operator, chances are that it describes a conservation law for certain species. This physical meaning is very concrete and, if possible should be preserved during the process of discretizing PDEs.

Flux expressions

As a rule, species flux is proportional to the negative gradient of the species concentration: $ec{j}(ec{x},t)\sim-ec{
abla}u(ec{x},t)$. This corresponds to the direction of steepest descend.

Therefore we set $\vec{j}=-\delta ec{
abla} u$, where $\delta>0$ can be constant, space/time dependent or even depend on \boldsymbol{u} . For simplicity, we assume $\boldsymbol{\delta}$ to be constant, unless stated otherwise.

Heat conduction

- u = T: temperature
- $\delta = \lambda$: heat conduction coefficient
- f: heat source
- $\vec{j} = -\lambda \vec{\nabla} T$: Fourier law

Diffusion of molecules in a given medium (for low concentrations)

- **u** = **c**: concentration
- δ = D: diffusion coefficient
 f: species source (e.g due to reactions)
- \cdot $\vec{j}=-Dec{
 abla}c$: Fick's law

Flow in a saturated porous medium:

- u = p: pressure
- $\delta = k$: permeability
- \cdot $ec{j}=-kec{
 abla}p$: Darcy's law

Electrical conduction

- + $u = \varphi$: electric potential
- $\delta = \sigma$: electric conductivity
- $\vec{j} = -\sigma \vec{\nabla} \varphi \equiv$ current density: Ohms's law

Electrostatics in a constant magnetic field:

- $u = \varphi$: electric potential
- + $\delta = \epsilon$: dielectric permittivity
- $ec{E} = ec{
 abla} \phi$: electric field
- $\vec{j} = \vec{D} = \varepsilon \vec{E} = \varepsilon \vec{\nabla} \varphi$: electric displacement field: *Gauss's Law*
- $f = \rho$: charge density

Second order partial differential equations (PDEs)

Combine continuity equation with flux expression:

 $\partial_t u - \nabla \cdot (\delta \nabla u) = f.$

This type of PDEs is called parabolic.

Assuming stationarity - i.e. independence of time results in $\partial_t u = 0$ and the *elliptic* PDE

 $-\nabla\cdot(\delta\nabla u)=f.$

Boundary conditions

So far, we cared about the species balance of an REV in the interior of the domain. How about the species balance between Ω and its exterior? This is described by *boundary conditions*.

Assume $\partial \Omega = \bigcup_{i=1}^{N_{\Gamma}} \Gamma_i$ is the union of a finite number of non-intersecting subsets Γ_i which are locally Lipschitz.

Define boundary conditions on each of Γ_i

Dirichlet boundary conditions

Let $g_i:\Gamma_i o \mathbb{R}$.

 $u(ec x,t)=g_i(ec x,t) \quad ext{for } ec x\in \Gamma_i$

- fixed solution at the boundary
- also called boundary condition of first kind
- called homogeneous for $g_i = 0$

Neumann boundary conditions

Let $g_i: \Gamma_i
ightarrow \mathbb{R}$.

 $-ec{j}(ec{x},t)\cdotec{n}=g_i(ec{x},t) \quad ext{for } ec{x}\in \Gamma_i$

- fixed boundary normal flux
- also called boundary condition of second kind
- called homogeneous for $g_i=0$

Robin boundary conditions

Let $\alpha_i > 0, g_i: \Gamma_i \to \mathbb{R}$

 $-ec{j}(ec{x},t)\cdotec{n}+lpha_i(ec{x},t)u(ec{x},t)=g_i(ec{x},t)\quad ext{for }ec{x}\in\Gamma_i$

- Boundary flux proportional to solution
- also called third kind boundary condition

Generalizations

- δ may depend on \vec{x} , u, $|\vec{\nabla}u| \dots \Rightarrow$ equations become nonlinear
- Coefficients can depend on other processes
 - temperature can influence conductvity
 - source terms can describe chemical reactions between different species
 - chemical reactions can generate/consume heat
 - Electric current generates heat (``Joule heating")
 - $\circ \dots$ \Rightarrow coupled PDEs
- Convective terms: $\vec{j} = -\delta \vec{\nabla} u + u \vec{v}$ where \vec{v} is a convective velocity
- PDEs for vector unknowns
 - $\circ~$ Momentum balance \Rightarrow Navier-Stokes equations for fluid dynamics
 - Elasticity
 - Maxwell's electromagnetic field equations

Table of Contents

Partial Differential Equations

Notations Lipschitz domains Divergence theorem (Gauss' theorem) Species evolution in a domain $\boldsymbol{\Omega}$ Representative Elementary Volume (REV) Species conservation Continuity equation Flux expressions Heat conduction Diffusion of molecules in a given medium (for low concentrations) Flow in a saturated porous medium: Electrical conduction Electrostatics in a constant magnetic field: Second order partial differential equations (PDEs) Boundary conditions Dirichlet boundary conditions Neumann boundary conditions Robin boundary conditions Generalizations