
27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 1/12

Advanced Topics from Scienti�c Computing
TU Berlin Winter 2022/23
Notebook 09

 Jürgen Fuhrmann

ODE and DAE Solvers

Literature:

E. Hairer, S.P. Nørsett, G. Wanner: Solving Ordinary Di�ferential Equations I. Nonsti�f Problems
E. Hairer, G. Wanner: Solving Ordinary Di�ferential Equations II. Sti�f and Di�ferential Algebraic
Problems
P. Kunkel, V. Mehrmann: Di�ferential-Algebraic Equations. Analysis and Numerical Solution

Further sources used:

TU Chemnitz lecture notes by A. Naumann (in German)
HU Berlin course "Numerik gewöhnlicher Di�ferentialgleichungen I" (implementation of Explicit
Runge-Kutta)

While this course focuses on the solution of partial di�ferential equations which describe coupled
processes in space and time, we �rst talk about the solution of ordinary di�ferential equations,
providing methods for discretization in time.

Look for be a time dependent, di�ferentiable function such that it ful�lls the initial
value problem for the ordinary di�ferential equation (ODE) system:

with .

Here, is a k-vector of parameters.

The system is called autonomous if does not depend on .

Subdivide into intervals of time step size . Let and let
.

Explicit Euler method
The simplest way of discretizing in time is to equate the �nite di�ference in time to the right hand side
value calculated in the last timestep.

We implement this explicit Euler method such that we describe the right hand side du=f(u,p,t) via a
mutating function f!(du,u,p,t) . It returns a vector of solution vectors and the choosen time values.

Test problem

Let us �rst look at the equation

begin
 using LinearAlgebra
 using ForwardDiff ,DiffResults ,NLsolve ,RecursiveArrayTools
 using RungeKutta
 using DifferentialEquations
 using DiffEqDevTools
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

function explicit_euler(f!::F, # ODE right hand side
 p; # Parameters
 u0=[0.0], # vector of initial values
 dt=0.1, # time step size
 tspan=[0.0, 1.0] # time interval
) where F
 u=[u0]
 t=Float64[tspan[1]]
 du=zeros(length(u0))
 while t[end]<tspan[end]
 uold=u[end]
 told=t[end]
 f!(du,uold,p,told)
 unew=uold+dt*du
 tnew=told+dt
 push!(u,unew)
 push!(t,tnew)
 end
 u,t
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

f_test!(du,u,λ,t)= du[1]=λ*u[1];⋅

http://creativecommons.org/licenses/by-sa/4.0/
https://www.tu-chemnitz.de/mathematik/part_dgl/teaching/WS2020_Numerik_von_ODEs/WS2020_Numerik_ODEs_st.pdf

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 2/12

The exact solution is given by .

For , this equation e.g. describes radioactive decay with half value time

p_test -5 =

 -0.5

0.0 2.5 5.0 7.5 10.0

−0.5

0.0

0.5

1.0 numerical

exact

t

so
lu

tio
n

Obviously we may have a problem with the step size, and we may try to �nd other methods.

θ- and �unge-Kutta methods

Main theorem of calculus gives

Approximate the integral using a quadrature rule with points and weights :

Using some simple quadratures leads to

: explicit Euler method
: implicit Euler method
: implicit midpoint method

Unless θ=0 (explicit Euler method) we need to solve an equation or a system of equations in each
timestep. Here we implement this for general θ.

θ method: implementation

This implementation is slightly more general:

if linear=true , instead of Newton's method to solve the implicit equations it performs just one
Newton step (assuming the time step size is small enough). This results in a linear implicit
method (linear implict Euler or linear implicit midpoint)
it implements the solution of a slightly more general problem: for a matrix M (unit matrix by
default), solve

exact_test(u0,p,t)=u0*exp(p*t);⋅

p_test=-5⋅

u_test,t_test= explicit_euler(f_test!,p_test; u0=[1.0],dt=10^logdt_test,tspan=
(0,10));

⋅

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 3/12

So let us use this for our test example:

θ= log(τ)= 0.0 -0.5

0.0 2.5 5.0 7.5 10.0

−0.5

0.0

0.5

1.0 numerical

exact

so
lu

tio
n

�unge-Kutta methods

A generalization of the the choice of internal stages in the quadrature based method starting
with

chooses another quadrature rule with the points and weights :

This Ansatz gives s-stage Runge-Kutta methods.

If A is strictly lower triangular, the method is explicit, i.e. it does only involve the evaluation of , no
solution of a system of equations involving .

Otherwise, it is implicit, and it involves the solution of one or more, possibly coupled systems of
equations of dimension . As a consequence, implicit Runge-Kutta methods are hard to use for
large systems.

function θmethod(f!::F, # right hand side function
 p; # Parameters
 u0=[0.0], # Initial value
 dt=0.1, # time step size
 tspan = (0,1), # time intetval
 θ=0, # θ parameter
 linear=false, # switch between linear method and newton solver
 M=nothing, # Mass matrix
 tol=1.0e-10, # Newton method tolerance
) where F
 # Start arrays for the result
 u=[u0]
 t=Float64[tspan[1]]
 uold=u[end]
 told=t[end]

 # If no mass matrix is given as parameter, let it be the unit matrix of
 # appropriate size
 if M==nothing
 M=Diagonal(ones(length(u0)))
 end

 # Each timestep involves the solution of F(unew)=0
 # Here, unew is the current iteration and F is the result
 function fstep!(F,unew)
 f!(F, θ*unew+(1-θ)*uold, p, told+θ*dt)
 F.=M*(unew .- uold)./dt .- F
 end

 if linear
 # Handle differentiation results
 diffresult=DiffResults.JacobianResult(u0)
 y=zero(u0)
 cfg = ForwardDiff.JacobianConfig(fstep!,y, u0)
 end

 while t[end]<tspan[2]
 # Loop over the timesteps
 told=t[end]
 uold=u[end]
 if linear
 # Perform one Newton step
 ForwardDiff.jacobian!(diffresult, fstep!,y,uold,cfg)
 unew=uold-DiffResults.jacobian(diffresult)\DiffResults.value(diffresult)
 else
 # Solve time step problem and check for convergence
 result=nlsolve(fstep!,uold; autodiff = :forward, xtol=tol)
 !converged(result) && throw("convergence error")
 unew=result.zero
 end
 # Extend solution arrays
 push!(u,unew)
 push!(t,told+dt)
 end
 # Return the solution as DiffEqArray
 # from RecursiveArrayTools.jl (easy to plot)
 DiffEqArray(u,t)
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

uθ_test=θmethod(f_test!,p_test; u0=[1.0],dt=10^logdtx,tspan=(0,10),θ=θx);⋅

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 4/12

Runge-Kutta methods thus are described by the points , the weights
and the matrix . Usually these are arranged into Butcher tableaus:

 c | A
 ──┼────
 | b

These tableaus can be conveniently manages using the RungeKutta.jl package.

The θ method is a Runge-Kutta method:

Runge-Kutta Tableau explicit_euler with 1 stages and order 1:

0//1 │ 0//1
──────┼──────
 │ 1//1

Runge-Kutta Tableau implicit_euler with 1 stages and order 1:

1//1 │ 1//1
──────┼──────
 │ 1//1

Runge-Kutta Tableau implicit_midpoint with 1 stages and order 2:

1//2 │ 1//2
──────┼──────
 │ 1//1

The classical Runge-Kutta method is "RK4":

Runge-Kutta Tableau erk4 with 4 stages and order 4:

 0.0 │ 0.0 0.0 0.0 0.0
 0.5 │ 0.5 0.0 0.0 0.0
 0.5 │ 0.0 0.5 0.0 0.0
 1.0 │ 0.0 0.0 1.0 0.0

──────────┼──
 │ 0.166667 0.333333 0.333333 0.166667

With RungeKutta.jl, one can e.g. de�ne the Dormand-Prince tableau:

Runge-Kutta Tableau DoPri5 with 7 stages and order 5:

 0.0 │ 0.0 0.0 0.0 0.0 0.0 0.0 0 ⋯
 0.2 │ 0.2 0.0 0.0 0.0 0.0 0.0 0 ⋯
 0.3 │ 0.075 0.225 0.0 0.0 0.0 0.0 0 ⋯
 0.8 │ 0.977778 -3.73333 3.55556 0.0 0.0 0.0 0 ⋯
 0.888889 │ 2.9526 -11.5958 9.82289 -0.290809 0.0 0.0 0 ⋯
 1.0 │ 2.84628 -10.7576 8.90642 0.278409 -0.273531 0.0 0 ⋯
 1.0 │ 0.0911458 0.0 0.449236 0.651042 -0.322376 0.130952 0 ⋯

───────────┼──
 │ 0.0911458 0.0 0.449236 0.651042 -0.322376 0.130952 0 ⋯

 1 column omitted

TableauDP (generic function with 4 methods)

The Radau IIA method is an implicit Runge-Kutta method:

Runge-Kutta Tableau RadauIIA(3) with 3 stages and order 5:

 0.155051 │ 0.196815 -0.0655354 0.023771
 0.644949 │ 0.394424 0.292073 -0.0415488
 1.0 │ 0.376403 0.512486 0.111111

────────────┼────────────────────────────────────
 │ 0.376403 0.512486 0.111111

Implementation of the explicit Runge-Kutta scheme:

TableauExplicitEuler(Rational)⋅

TableauImplicitEuler(Rational)⋅

TableauImplicitMidpoint(Rational)⋅

TableauRK4(Float64)⋅

TableauDP(Float64,5)⋅

TableauRadauIIA(3)⋅

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 5/12

explicit_rk (generic function with 1 method)

 -0.8

0.0 2.5 5.0 7.5 10.0
0.00

0.25

0.50

0.75

1.00 numerical

exact

so
lu

tio
n

Once again we see that for a "decent" solution, the time step size should be not too large. We need to
discuss two phenomena:

What about the "wiggles" which destroy the overall quality of solutions stability
How good is the approximation approximation order

Stability
Let us discuss aspects of stability (resp. instability).

Accidentally, the test problem chosen here is also called Dahlquist test equation. It is used to
judge the stability of ODE methods.

A-Stability

De�nition: An ODE method is called unconditionally A-stable if for with , the
approximate solution of the Dahlquist test equation ful�lls .

The method is called conditionally A stable if is ful�lled for ,
where is called stability region.

In order to investigate A-Stability, it is useful to de�ne the stability function R such that

For the θ-methods this gives:

For generic Runge-Kutta methods, we have:

function explicit_rk(f!::F, # ODE right hand side
 p; # Parameters
 tableau=TableauRK4(),
 u0=[0.0], # vector of initial values
 dt=0.1, # time step size
 tspan=(0,1), # time interval
) where F
 u=[u0]
 t=Float64[tspan[1]]
 a=tableau.a
 b=tableau.b
 c=tableau.c
 m=length(u0)
 s=length(b)
 du=zeros(m)
 z=zeros(m,s)
 while t[end]<tspan[end]
 z.=0
 for j = 1 : s
 du.=0
 for k = 1 : j-1
 @views du .+= z[:,k] * a[j,k]
 end
 @views f!(z[:,j], u[end] .+ dt * du, p, t[end] + c[j]*dt)
 end
 du.=0
 for j = 1 : s
 @views du.+= b[j] * z[:,j]
 end
 u_new=u[end]+dt*du
 t_new=t[end]+dt
 push!(u,u_new)
 push!(t,t_new)
 end
 DiffEqArray(u,t)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

tableau=TableauRK4();⋅

urk_test= explicit_rk(f_test!,p_test; u0=[1.0], tableau, dt=10^logdt_rk,tspan=(0,10));⋅

R_0(z)=1+z;⋅

R_05(z)=(1+z/2)/(1-z/2);⋅

R_1(z)=1/(1-z);⋅

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 6/12

L-Stability

An A-stable one-step method is called L-stable if for all with , the solution of
the Dahlquist test problem ful�ls

independent of the stepsize τ.

L-Stability is ful�lled if and only if for all with ,

stabregion (generic function with 1 method)

Stability of the theta methods:

Explicit Euler Implicit Midpoint Implicit Euler
`

Conditionally A-stable A-stable A-stable
not L-stable not L-stable L-stable

−3 −2 −1 0 1 2 3
−3
−2
−1

0
1
2
3

−3 −2 −1 0 1 2 3
−3
−2
−1

0
1
2
3

−3 −2 −1 0 1 2 3
−3
−2
−1

0
1
2
3

Explicit Runge-Kutta methods are conditionally A stable:

RK4 DP4 DP5

−5.0 −2.5 0.0 2.5
−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5
−5.0

−2.5

0.0

2.5

5.0

−5.0 −2.5 0.0 2.5
−5.0

−2.5

0.0

2.5

5.0

Implicit Runge-Kutta methods are A-stable, some of them are L-stable like RadauIIA(5):

−3 −2 −1 0 1 2 3
−3
−2
−1

0
1
2
3

Approximation order
Approximation order can generally can be analysed using Taylor expansion to estimate the consistency
order. We only demonstrate the results here.

errortest (generic function with 3 methods)

10 −4 10 −3 10 −2

10 −20

10 −10 θ=0

θ=1

θ=0.5

RK4

DP4

DP5

O(dt)

O(dt^2)

O(dt^4)

O(dt^5)

dt

er
ro

r

Implicit Euler and explicit Euler exhibit �rst order of approximation
Implicit midpoint has second approximation order
Runge-Kutta methods can have higher order

function R_rk(z,tableau=TableauRK4())
 A=tableau.a
 b=tableau.b
 Ib=ones(length(b))
 1 + z*b'* inv(I-z*A)*Ib
end;

⋅
⋅
⋅
⋅
⋅
⋅

stabregion(z->R_rk(z,TableauRadauIIA(3)))⋅

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 7/12

These methods are one-step methods, which just involve two subsequent time steps. Multistep
methods (e.g. BDF - backward di�ferencing formula) achieve higher order by taking into account more
of the older time steps, however they have a problem to keep their order at the start.

An ODE system

We demonstate the Lotka-Volterra system describing predator-prey dynamics:

species x: prey whith growth rate being eaten with rate by the predators
species y: predators growing with rate by eating prey and dying with rate c

lotkavolterra! (generic function with 1 method)

The function V is constant along trajectories – it es easy to show that . Therefore in the phase-
space the trajectories are isolines of , and the solution must be periodic.

param (a = 2, b = 6, c = 1, d = 1) =

θ= log(dt)= linear= RK4= 0.5 -1.0

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

0 10 20 30 40
0

1

2

3

4

5

6 prey

predators

V

prey t

pr
ed

at
or

s

The implicit midpoint rule catches periodicity - surprisingly also for rather coarse time steps. The
reason is that it preserves more of the structure of the system. This is the simplest geometrical
integrator - a class of methods which exactly preserves certain invariants of the solution
The Runge-Kutta methods does a quite good job in catching periodicity
Implicit and explicit Euler are unable to catch the dynamics in the right way.
The linear implict approach works well

Sti� problems

Problems with a high ratio between the real parts of the largest and the smallest eigenvalues of
(spectral condition number κ for spd problems) are called sti�f.

This is e.g. the case with di�ferent time scales which may be due to fast and slow reactions, and for
systems arising from the discretization of PDEs, where the condition number increases with ,
where is the space discretization parameter.

Stability then depends on the stability constraint for the smallest timescale.

Unconditionally A-stable and L-stable methods are to be preferred if we want to guarantee stability for
sti�f problems.

Let us consider a chemical reaction ("Robertson reaction" example from matlab)

fstiff! (generic function with 1 method)

For this problem, d can be seen as "sti�fness" parameter. The larger d the shorter the time scale of the
second equation.

function lotkavolterra!(du,u,p,t)
 (a,b,c,d)=p
 x,y=u[1],u[2]
 du[1]=a*x - b*x*y
 du[2]=-c*y + d*x*y
end

⋅
⋅
⋅
⋅
⋅
⋅

function V(x::Number,y::Number,param)
 a,b,c,d=param
 x=max(1.0e-15,x)
 y=max(1.0e-15,y)
 d*x - c*log(x) + b*y - a*log(y)
end;

⋅
⋅
⋅
⋅
⋅
⋅

param=(a=2,b=6,c=1,d=1)⋅

ulv=let
 rklv ? explicit_rk(lotkavolterra!,param; u0=[1.0,0.1],dt=10^logdtlv,tspan=

(0,40)) : θmethod(lotkavolterra!,param; u0=[1.0,0.1],dt=10^logdtlv,tspan=
(0,40),θ=θlv,linear=linlv)

end;

⋅
⋅

⋅

function fstiff!(du,u,p,t)
 k₁,k₂,k₃=p
 du[1]= -k₁*u[1] + k₃* u[2]*u[3]
 du[2]= k₁*u[1] - k₃* u[2]*u[3] - k₂*u[2]^2
 du[3]= k₂*u[2]^2
end

⋅
⋅
⋅
⋅
⋅
⋅

https://de.mathworks.com/help/simulink/ug/model-a-differential-algebraic-equation.html

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 8/12

probertson (k₁ = 10, k₂ = 10000.0, k₃ = 100) =

θ= log(dt)= linear=

Sti�fness log(a)=

1.0 -2.0

4.0

10 −2 10 −1 10 0 10 1 10 2
0.00

0.25

0.50

0.75

1.00 u[1]

u[2]

u[3]

Due to the fact that the implicit midpoint rule is not L-stable, we can have problems with large
sti��fness.

DAE problems

Di�ferential-algebraic equation (DAE) system:

Here, we will focus on mass matrix DAE systems (MMDAE):

M is a diagonal matrix, some entries may be zero. The correspondig equations in the system turn from
di�ferential equations to algebraic equations.

We can see a DAE as the "large sti�fness limit" case of an ODE system, so once again we want to use A-
stable an L-stable methods.

Here, we re-de�ne the Robertson example using the fact that the sum of all three reactants must be 1.

fdae! (generic function with 1 method)

M_DAE 3×3 Diagonal{Float64, Vector{Float64}}:
1.0 ⋅ ⋅
 ⋅ 1.0 ⋅
 ⋅ ⋅ 0.0

 =

θ= log(dt)= linear=

Sti�fness log(a)=

0.5 -2.0

4.0

10 −2 10 −1 10 0 10 1 10 2
0.00

0.25

0.50

0.75

1.00 u[1]

u[2]

u[3]

As for sti�f problems, we want implicit methods to solve DAE problems.

Multistep methods
Multistep methods attempt to take into account information from timesteps priot to .

BDF Methods

probertson=(k₁=10,k₂=10^loga,k₃=100)⋅

ustiff=θmethod(fstiff!,probertson; u0=[1.0,0.0, 0.0],dt=10^logdtx2,θ=θx2,
linear=lin2, tspan=(1.0e-2,100));

⋅

function fdae!(du,u,p,t)
 k₁,k₂,k₃=p
 du[1]= -k₁*u[1] + k₃* u[2]*u[3]
 du[2]= k₁*u[1] - k₃* u[2]*u[3] - k₂*u[2]^2
 du[3]= u[1] + u[2] + u[3] - 1
end

⋅
⋅
⋅
⋅
⋅
⋅

M_DAE=Diagonal([1.0,1,0])⋅

plot(udae, label=["u[1]" "u[2]" "u[3]"],size=
(600,300),linewidth=2,framestyle=:box,xscale=:log10)

⋅

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 9/12

For a given vector , and function values a Lagrange
polynomial interpolates the function f in the interval . It is given by

with

From the very de�nition we have . The interesting point is that we can hope that
 is a good approximation of . This idea gives another way to approximate the

derivative on the le�t hand side of the ODE, taking into account results from older timesteps.

In particular, for the case of three intrpolation points we get

Let

Setting gives

For gives rise to the BDF2 (Backward Di�ferencing Formula) scheme:

BDF schemes are implicit. Unlike the higher order pendants, BDF1 and BDF2 are A-stable, and thus
useful for sti�f problems. BDF2 has consistency order 2.

It is easy to see that this procedure can be adapted to varying step sizes. Further re�ned variants
ensure that under stepsize variations the coe��cient before stays unchanged (Fixed leading
coe��cient BDF in SUNDIALS; FBDF in Julia). More information is available via Scholarpedia.

A higher order correction of the BDF methods leads to the QNDF method (quasi constant timestep
numerical di�ferentiation formula) which is equivalent to the ode15s method implemented in the
matlab ODE suite. QNDF is the preferred default solver for sti�f systems in Julia

Adams methods
A similar interpolation approach can be applied to the right hand side of the ODE system, giving rise
e.g. to the explicit Adams-Bashforth methods.

Di�erentialEquations.jl

So far, we did our own implementations of some methods discussed These implementations miss a
number of points:

Time step adaptivity. A general approach to time step adaptivity considers the comparison
between two solutions of di�ferent consistency order to obtain an error estimate.
Multistage linear implicit methods (Rosenbrock methods). The simple methods of this class are
the linear implicit methods which replace the nonlinear solution by just one Newton step.
Higher order variants combine a �xed number of intermediate linear steps.

Julia provides a state of the art toolbox for the solution of systems of di�ferential equations:
Di�ferentialEquations.jl The overview on implemented methods is given in the documention:

http://sundials.wikidot.com/bdf-method
https://diffeq.sciml.ai/stable/solvers/dae_solve/#Multistep-Methods
http://www.scholarpedia.org/article/Backward_differentiation_formulas
https://epubs.siam.org/doi/abs/10.1137/s1064827594276424
https://sciml.ai/news/2021/05/24/QNDF/
https://diffeq.sciml.ai/stable/
https://diffeq.sciml.ai/stable/solvers/ode_solve/

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 10/12

g g g

Feagin12 - Feagin's 12th-order Runge-Ku�a method.

Feagin14 - Feagin's 14th-order Runge-Ku�a method.

Example usage:

Addi�onally, the following algorithms have a lazy interpolant:

BS5 - Bogacki-Shampine 5/4 Runge-Ku�a method. (lazy 5th order
interpolant).

Vern6 - Verner's "Most Efficient" 6/5 Runge-Ku�a method. (lazy 6th order
interpolant).

Vern7 - Verner's "Most Efficient" 7/6 Runge-Ku�a method. (lazy 7th order
interpolant).

Vern8 - Verner's "Most Efficient" 8/7 Runge-Ku�a method. (lazy 8th order
interpolant)

Vern9 - Verner's "Most Efficient" 9/8 Runge-Ku�a method. (lazy 9th order
interpolant)

These methods require a few extra steps in order to compute the high order
interpola�on, but these steps are only taken when the interpola�on is used.
These methods when lazy assume that the parameter vector p will be unchanged
between the moment of the interval solving and the interpola�on. If p is changed
in a Con�nuousCallback, or in a DiscreteCallback and the con�nuous solu�on is
used a�er the full solu�on, then set lazy=false.

alg = Tsit5()

solve(prob,alg)


This documenta�on is not for the latest stable release, but for either the
development version or an older release.

Click here to go to the documenta�on for the latest stable release.

We choose a subset of the methods implemented there and return to the example problems we
discussed:

diffeqmethods OrderedCollections.OrderedDict{String, Type}(
"Implicit Euler" �� ImplicitEuler
"Implicit Midpoint" �� ImplicitMidpoint
"RadauIIA3 (Implicit RK)" �� RadauIIA3
"RK4 (Explicit RK)" �� RK4
"Rosenbrock23 (Rosenbrock)" �� Rosenbrock23
"QNDF2" �� QNDF2
"FBDF" �� FBDF
)

 =

10 −6 10 −5 10 −4 10 −3 10 −2

10 −10

10 −5

Implicit Midpoint

RadauIIA3

RK4

Rosenbrock23

FBDF

QNDF2

O(N^2)

O(N^3)

O(N^4)

dt

Lotka-Volterra revisited

analyze (generic function with 1 method)

param2 (a = 2, b = 6, c = 1, d = 1) =

reltol=0.001

method: FBDF log10(reltol)/log10(dt): -3.0

(timesteps = 475, smallest = 8.5835e-7, largest = 0.21573)

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40
0

2

4

6
prey

predators

V

prey t

pr
ed

at
or

s

param2=(a=2,b=6,c=1,d=1)⋅

ulv_deq=let
 prob=ODEProblem(lotkavolterra!,[1.0,1.0],(0,40), param2)
 method=diffeqmethods[lvmethod]
 if method==ImplicitMidpoint
 dt = 10^logreltol
 @info "implicit midpoint: dt=$(dt)"
 solve(prob,method();dt);
 else
 reltol=10^logreltol
 @info "reltol=$(reltol)"
 solve(prob,method();reltol);
 end
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

analyze(ulv_deq)⋅

https://diffeq.sciml.ai/stable

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 11/12

Sti�ness + DAE revisited

(timesteps = 49, smallest = 9.999e-6, largest = 2.08807)

(timesteps = 44, smallest = 1.0e-6, largest = 2.01611)

Method: Rosenbrock23 (Rosenbrock)

Sti�fness log(d)= log(reltol): 4.0 -2.0

10 −2 10 −1 10 0
0.00

0.25

0.50

0.75

1.00 ustiff[1]

ustiff[2]

ustiff[3]

udae[1]

udae[2]

udae[3]

t

Conclusions

There is a whole world of ODE and DAE solvers. DifferentialEquations.jl covers a signi�cant
part of this world
ODE systems created from PDE discretizations are large and they are sti�f, i.e. they contain
strongly di�fering timescales
Stability of explicit methods is limited by that of the fastest timescale, they are not feasible for
sti�f problems
Explicit methods do not work for DAEs by construction
A- and L- stable methods are required for sti�f problems

The general advise when solving a particular problem is to use the capabilities of
Di�ferentialEquations.jl and to �nd out which methods work best

Helper cells

ODE and DAE Solvers
Explicit Euler method

Test problem
θ- and Runge-Kutta methods
θ method: implementation
Runge-Kutta methods

Stability
A-Stability
L-Stability

Approximation order
An ODE system
Sti�f problems
DAE problems
Multistep methods

BDF Methods
Adams methods

Di�ferentialEquations.jl
Lotka-Volterra revisited
Sti�fness + DAE revisited

Conclusions

ustiff_deq=let
 prob=ODEProblem(fstiff!,[1.0,0,0],(1.0e-2,10), (k₁=10,k₂=10^logst,k₃=100))
 solve(prob,diffeqmethods[stmethod]();reltol=10^logstreltol);
end;

⋅
⋅
⋅
⋅

udae_deq=let
 fdae=ODEFunction(fdae!,mass_matrix=Diagonal([1,1,0]))
 prob=ODEProblem(fdae,[1.0,0,0], (1.0e-2,10), (k₁=10,k₂=10^logst,k₃=100))
 solve(prob,diffeqmethods[stmethod]();reltol=10^logstreltol);
end;

⋅
⋅
⋅
⋅
⋅

Table of Contents

27.11.22, 21:47 🎈 nb09-ode-dae.jl — Pluto.jl

localhost:1234/edit?id=bcbd541c-6e53-11ed-137a-e5da5c76a50a# 12/12

