
10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 1/11

Advanced Topics from Scienti�c Computing
TU Berlin Winter 2022/23
Notebook 08

 Jürgen Fuhrmann

Iterative methods for linear systems

Let be equipped with the inner product . Let be an nonsingular matrix.

Solve iteratively. For this purpose, two components are needed:

Preconditioner: a matrix "approximating" the matrix but with the property that the
system is easy to solve

Iteration scheme: algorithmic sequence using and which updates the solution step by
step

Simple iteration scheme

Assume we know the exact solution : .

Then it must ful�ll the identity

 iterative scheme: put the "old" value on the right hand side and the ""new" value on the le�t hand
side:

Obviously, if , the process would be stationary.

Otherwise it leads to a sequence of approximations

Implementation: solve with tolerance :

�. Choose initial value , set
�. Calculate residuum
�. Test convergence: if set , �nish
�. Calculate update: solve
�. Update solution: , set , repeat with step 2.

General convergence theorem

Let be the solution of .

Let be the error of the -th iteration step. Then:

resulting in

So when does converge to zero for ?
Denote

De�nition The spectral radius is the largest absolute value of any eigenvalue of :
.

Su��cient condition for iterative method convergence:

http://creativecommons.org/licenses/by-sa/4.0/

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 2/11

Asymptotic convergence factor can be estimated via the spectral radius:

Depending on , the rate may be faster, though

Convergence estimate for symmetric positive
de�nite A,M

Matrix preconditioned Richardson iteration: , spd.

Scaled Richardson iteration with preconditioner

Spectral equivalence estimate

 optimal parameter

 convergence rate with optimal parameter: where

Regular splittings

De�niton

 is a regular splitting if
 is nonsingular

, are element-wise nonnegative

Just remark that in this case , and that we don't assume symmetry.

Theorem: Assume is nonsingular, , and is a regular splitting. Then
.

With this theory we cannot say much about the value of the convergence rate, but we have a
comparison theorem:

Theorem: Let , and be regular splittings.

If , then .

What can we say about inverse nonnegative matrices ?

De�nition Let be an real matrix. is called M-Matrix if

(i) for
(ii) is nonsingular
(iii)

De�nition A square matrix is reducible if there exists a permutation matrix (re-ordering
of equations) such that

 is irreducible if it is not reducible.

An M-Matrix is inverse positive, i.e. if and only if it is irreducible

Irreducibility is easy to check.

De�ne a directed graph from the nonzero entries of a matrix :

Nodes:

Directed edges:
Matrix entries weights of directed edges

 1:1 equivalence between matrices and weighted directed graphs

Theorem : is irreducible the matrix graph is strongly connected, i.e. for each ordered pair
 there is a path consisting of directed edges, connecting them.

Create a bidirectional graph (digraph) from a matrix in Julia. Create edge labels from o�f-diagonal
entries and node labels combined from diagonal entries and node indices.

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 3/11

Use ExtendableSparse.fdrand to create test matrices like the heatmatrix in the previous lecture:

fdrand(, nx)
fdrand(, nx, ny)
fdrand(, nx, ny, nz; matrixtype, update, rand, symmetric)
fdrand(nx)

Create matrix for a mock �nite di�ference operator for a di�fusion problem with random coe��cients
on a unit hypercube . with if nx>1 && ny==1 && nz==1 , if nx>1 && ny>1 &&
nz==1 and if nx>1 && ny>1 && nz>1 . In the symmetric case it corresponds to

The matrix is irreducibly diagonally dominant, has positive main diagonal entries and nonpositive o�f-
diagonal entries, hence it has the M-Property. Therefore, its inverse will be a dense matrix with
positive entries, and the spectral radius of the Jacobi iteration matrix .

Moreover, in the symmetric case, it is positive de�nite.

Parameters+ default values:

Parameter + default vale Description
nx Number of unknowns in x direction
ny Number of unknowns in y direction
nz Number of unknowns in z direction

matrixtype = SparseMatrixCSC Matrix type
update = (A,v,i,j)-> A[i,j]+=v Element update function

rand =()-> rand() Random number generator
symmetric=true Whether to create symmetric matrix or not

The sparsity structure is �xed to an orthogonal grid, resulting in a 3, 5 or 7 diagonal matrix depending
on dimension. The entries are random unless e.g. rand=()->1 is passed as random number generator.
Tested for Matrix, SparseMatrixCSC, ExtendableSparseMatrix, Tridiagonal, SparseMatrixLNK and :COO

A2 25×25 SparseMatrixCSC{Float64, Int64} with 105 stored entries:
⠻⣦⡈⠢⡀⠀⠀⠀⠀⠀⠀⠀⠀
⠢⡈⠱⣦⡈⠢⡀⠀⠀⠀⠀⠀⠀
⠈⠢⡈⠛⣤⡈⠢⡀⠀⠀⠀⠀
⠀⠀⠈⠢⡈⠻⢆⡈⠢⡀⠀⠀
⠀⠀⠀⠀⠈⠢⡈⠻⣦⠈⠢⡀
⠀⠀⠀⠀⠀⠀⠈⠢⡀⠻⣦⡀
⠀⠀⠀⠀⠀⠀⠀⠀⠈⠀⠈⠁

 =

-0.264

-0.982

-0.0569
-0.103

-0.093

-0.217
-0.223

-0.0873

-0.262
-0.477

-0.509

-0.408

-0.382
-0.501

-0.131

-0.277

-0.36

-0.214
-0.753

-0.508

-0.0774

-0.361
-0.342

-0.23

-0.742

-0.66
-0.632

-0.33

-0.965

-0.936

-1.09
-0.471

-0.477

-0.431

-0.394

-0.356
-0.318

-0.215

-0.421

-0.359
-0.296

-0.154

-0.0627

-0.0594
-0.0458

-0.0498

-1.01

-0.332

-0.28
-0.454

-0.349

-0.472

-0.109

-0.125
-0.0656

-0.277

-0.173

-0.166
-0.339

-0.547

-0.146

-0.177
-0.0778

-0.408

-0.161

-0.111

-0.152
-0.429

-0.226

-0.607

-0.195
-0.693

-0.554

-0.808
-0.221

-0.458

-0.128
-0.246

-0.0771

-0.159

1
1.532

0.293
0.6054

1.325
0.883

6
0.9557

1.848
1.019

2.3610
3.17

11
1.5312

1.2813
1.2314

0.21815
1.77

16
1.31

17
0.57518

1.2319
0.80920

0.525

21
0.803

22
1.6123

1.6624
0.86125

0.304

Let be an matrix.

 is diagonally dominant if for ,

 is strictly diagonally dominant (sdd) if for ,

 is irreducibly diagonally dominant (idd) if
�. is irreducible
�. is diagonally dominant: for ,

�. for at least one , ,

function create_graph(matrix)
 @assert size(matrix,1)==size(matrix,2)
 n=size(matrix,1)
 g=Graphs.SimpleDiGraph(n)
 elabel=[]
 nlabel=Any[]
 for i in 1:n
 push!(nlabel,"""$(i) \n $(round(matrix[i,i],sigdigits=3))""")
 for j in 1:n
 if i!=j && matrix[i,j]!=0
 add_edge!(g,i,j)
 push!(elabel,round(matrix[i,j],sigdigits=3))
 end
 end
 end
 g,nlabel,elabel
end;

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

A2=fdrand(5,5,symmetric=false)⋅

graph2,nlabel2,elabel2=create_graph(A2);⋅

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 4/11

rowdiff (generic function with 1 method)

(-2.22045e-16, 0.280427)

1.52685 -0.264271 0.0 0.0 0.0 -0.982148 0.0 0.0

-0.0569214 0.289605 -0.103476 0.0 0.0 0.0 -0.0929528 0.0

0.0 -0.216704 0.605017 -0.223252 0.0 0.0 0.0 -0.0

0.0 0.0 -0.262253 1.31654 -0.477198 0.0 0.0 0.0

0.0 0.0 0.0 -0.407609 0.883214 0.0 0.0 0.0

-0.501379 0.0 0.0 0.0 0.0 0.954898 -0.130856 0.0

0.0 -0.360187 0.0 0.0 0.0 -0.213942 1.83561 -0.

0.0 0.0 -0.0774368 0.0 0.0 0.0 -0.360917 1.01

0.0 0.0 0.0 -0.742497 0.0 0.0 0.0 -0.6

0.0 0.0 0.0 0.0 -0.964817 0.0 0.0 0.0

1
2
3
4
5
6
7
8
9

10

more

Given some matrix, we now have some nice recipies to establish nonsingularity and iterative
method convergence:

Check if the matrix is irreducible.
This is mostly the case for elliptic and parabolic PDEs and can be done by
checking the graph of the matrix

Check if the matrix is strictly or irreducibly diagonally dominant.
If yes, it is in addition nonsingular.

Check if main diagonal entries are positive and o�f-diagonal entries are nonpositive.
If yes, in addition, the matrix is an M-Matrix, its inverse is nonnegative, and
elementary iterative methods based on regular splittings converge.

These critera do not depend on the symmetry of the matrix!

Preconditioners

Jacobi preconditioner

Jacobi method: M=D, the diagonal of A

Theorem: If A is an M-Matrix, then the Jacobi preconditioner leads to a regular splitting.

Incomplete LU factorization

Idea (Varga, Buleev, : derive a preconditioner not from an additive decomposition but from
the LU factorization.

LU factorization has large �ll-in. For a preconditioner, just limit the �ll-in to a �xed pattern.
Apply the standard LU factorization method, but calculate only a part of the entries, e.g. only
those which are larger than a certain threshold value, or only those which correspond to certain
prede�ned pattern.
Result: incomplete LU factors , , remainder :
What about zero pivots which prevent such an algoritm from being computable ?

Theorem (Saad, Th. 10.2): If is an M-Matrix, then the algorithm to compute the incomplete
LU factorization with a given pattern is stable, i.e. does not detriorate due to zero pivots (main
diagonal elements) Moreover, where and is a
regular splitting.

Column1 Column2 Column3 Column4 Column5 Column6 Column7 Co

function rowdiff(A)
 [abs(A[i,i])-sum(abs,A[i,1:i-1])-sum(abs,A[i,i+1:end]) for i=1:size(A,1)]
end

⋅
⋅
⋅

extrema(rowdiff(A2))⋅

using Tables ⋅

Tables.table(A2)⋅

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 5/11

Generally better convergence properties than Jacobi, though we cannot apply the comparison
theorem for regular splittings to cpmpare between them
Block variants are possible
ILU Variants:

ILUM: ("modi�ed"): add ignored o�f-diagonal entries to main diagonal
ILUT: ("threshold"): zero pattern calculated dynamically based on drop tolerance
ILU0: Drop all �ll-in
Incomplete Cholesky: symmetric variant of ILU

Dependence on ordering
Can be parallelized using graph coloring
Not much theory: experiment for particular systems and see if it works well
I recommend it as the default initial guess for a sensible preconditioner

Further preconditioners

Multigrid methods
Domain decomposition
Block variants of Jacobi, ILU...

Krylov subspace methods

So far we considered simple iterative schemes, perhaps with preconditioners
Krylov subspace methods are more sophisticateand and in many cases yield faster convergence
than simple iterative schemes
Reading material:

M. Gutknecht A Brief Introduction to Krylov Space Methods for Solving Linear Systems
J. Shewchuk Introduction to the Conjugate Gradient Method Without the Agonizing Pain
E.Carson, J.Liesen, Z. Strakoš: 70 years of Krylov subspace methods: The journey continues

De�nition: Let be nonsingular, let . The -th Krylov subspace
generated from by is de�ned as

De�nition: Let be nonsingular, let . An iterative method such that

where is a polynomial of degree is called Krylov subspace method.

The idea of the GMRES method

Search the new iterate

such that is minimized. This results in the Generalized Minimum Residual
(GMRES) method.

In order to �nd a good solution of this problem, we need to �nd an orthogonal basis of
run an orthogonalization algorithm at each step
One needs to store at least vectors simultaneously usually, the iteration is restarted a�ter a
�xed number of iteration steps to keep the dimension of limited
There are preconditioned variants
For symmetric matrices, one gets short three-term recursions, and there is no need to store a full
Krylov basis. This results in the MINRES method
Choosing such that we get short recursions always will sacri�ce some of the convergence
estimates for GMRES. Nevertheless, this appraoch is tried quite o�ten, resuling in particular in
the BiCGstab and CGS methods.

Conjugated Gradients

This method assumes that the A and M are symmetric, positive de�nite.

http://www.sam.math.ethz.ch/~mhg/pub/biksm.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
https://arxiv.org/abs/2211.00953

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 6/11

The convergence rate (error reduction in a norm de�ned by M and A) can be estimated via

 where . In fact, the distribution of the eigenvalues is important for
convergence as well.

CG is a Krylov subspace method as well.

Complexity estimates

Solve linear system iteratively, for the error norm, assume . Iterate until . Estimate
the necessary number of iteration steps:

 we need at least iteration steps to reach accuracy

The ideal iterative solver:

 independent of resp. independent of .
 sparse matrix-vector multiplication has complexity

Solution of has complexity .

 Number of iteration steps independent of Each iteration step has complexity
 Overall complexity

Typical situation with second order PDEs and e.g. Jacobi or ILU preconditioners:

Mean square error of approximation , in the simplest case .

Back of the envelope complexity estimate

Simple iteration () or preconditioned CG ():

: space dimension:

 complexity of one iteration step (e.g. Jacobi, ILU0)

 Overall complexity =
Typical scaling for simple iteration scheme: (Jacobi, ILU0)
Estimate for preconditioned CG (PCG) gives

Overview on complexity estimates

Sparse direct solvers, tridiagonal solvers are asymptotically optimal
Non-ideal iterative solvers signi�cantly worse than optimal

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 7/11

Sparse direct solvers better than simple nonideal iterative solvers
Sparse direct solvers on par preconditioned CG

Sparse LU factorization is expensive: going from to increases by a factor of 8
and operation count by a factor of 64!
Sparse LU solve on par preconditioned CG

Examples

Implementation of a Jacobi preconditioner: we need at least a constructor and ldiv! methods.

Implement an LU preconditoner:

begin
 # Data structure: we store the inverse of the main diagonal
 struct JacobiPreconditioner
 invdiag::Vector
 end

 # Constructor:
 function JacobiPreconditioner(A::AbstractMatrix)
 n=size(A,1)
 invdiag=zeros(n)
 for i=1:n
 invdiag[i]=1.0/A[i,i]
 end
 JacobiPreconditioner(invdiag)
 end

 # Solution of preconditioning system Mu=v
 # Method name and signature are compatible to IterativeSolvers.jl
 function LinearAlgebra.ldiv!(u,precon::JacobiPreconditioner,v)
 invdiag=precon.invdiag
 n=length(invdiag)
 for i=1:n
 u[i]=invdiag[i]*v[i]
 end
 u
 end

 # In-place solution of preconditioning system
 LinearAlgebra.ldiv!(precon::JacobiPreconditioner,v)=ldiv!(v,precon,v)
 end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 8/11

Implement a simple iteration scheme

simple (generic function with 1 method)

Test problem

N 10000 =

begin
 # Data structure: we store the inverse of a modfied main diagonal
 # and a pointer to the main diagonal entry of each column
 struct ILU0Preconditioner{Tv,Ti}
 A::SparseMatrixCSC{Tv,Ti}
 xdiag::Vector{Tv}
 idiag::Vector{Ti}
 end

 function ILU0Preconditioner(A)
 n=size(A,1)
 colptr=A.colptr
 rowval=A.rowval
 nzval=A.nzval
 idiag=zeros(Int64,n)
 xdiag=zeros(n)

 # calculate main diagonal indices
 for j=1:n
 for k=colptr[j]:colptr[j+1]-1
 i=rowval[k]
 if i==j
 idiag[j]=k
 break
 end
 end
 end

 # calculate modified inverse main diagonal
 for j=1:n
 xdiag[j]=1/nzval[idiag[j]]
 for k=idiag[j]+1:colptr[j+1]-1
 i=rowval[k]
 for l=colptr[i]:colptr[i+1]-1
 if rowval[l]==j
 xdiag[i]-=nzval[l]*xdiag[j]*nzval[k]
 break
 end
 end
 end
 end

 ILU0Preconditioner(A,xdiag,idiag)
 end

 # Solution of the preconditioning system
 function LinearAlgebra.ldiv!(u,precon::ILU0Preconditioner, v)
 A=precon.A
 colptr=A.colptr
 rowval=A.rowval
 n=size(A,1)
 nzval=A.nzval
 xdiag=precon.xdiag
 idiag=precon.idiag
 T=eltype(v)

 for j=1:n
 u[j]=xdiag[j]*v[j]
 end

 for j=n:-1:1
 for k=idiag[j]+1:colptr[j+1]-1
 i=rowval[k]
 u[i]-=xdiag[i]*nzval[k]*u[j]
 end
 end

 for j=1:n
 for k=colptr[j]:idiag[j]-1
 i=rowval[k]
 u[i]-=xdiag[i]*nzval[k]*u[j]
 end
 end
 u
 end

 LinearAlgebra.ldiv!(precon::ILU0Preconditioner,v)=ldiv!(v,precon,v)

end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

begin
 function simple!(u,A,b;tol=1.0e-10,log=true,maxiter=100,Pl=nothing)
 res=A*u-b # initial residual
 r0=norm(res) # residual norm
 history=[r0] # intialize history recording
 for i=1:maxiter
 u=u-ldiv!(Pl,res) # solve preconditioning system and update solution
 res=A*u-b # calculate residual
 r=norm(res) # residual norm
 push!(history,r) # record in history
 if (r/r0)<tol # check for relative tolerance
 return u,Dict(:resnorm => history)
 end
 end
 return u,Dict(:resnorm =>history)
 end

 simple(A,b;tol=1.0e-10, log=true,maxiter=100,Pl=nothing)=simple!
(zeros(length(b)),A,b,tol=tol,maxiter=maxiter,log=log,Pl=Pl)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅
⋅

N=10000⋅

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 9/11

true

n 22 =

b1

[0.00382312, 0.000782596, 0.00288277, 0.00280951, 0.00111274, 0.00377058, 0.00240034, 0.00

 =

tol 1.0e-10 =

Solve the test problem with the simple iterative solver:

Convergence simple+CG

maxiter 10010 =

(

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, more ,1.0]

Dict(:resnorm �� [0.0805066, 0.0651035, 0.0581066, 0.0543425, 0.0515648, more
)

1:

2:

(

[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, more ,1.0]

Dict(:resnorm �� [0.0805066, 0.0571623, 0.0506342, 0.0470401, 0.0445629, more
)

1:

2:

Solve the test problem with the CG iterative solver from IterativeSolvers.jl:

([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, more ,1.0], Converged after 197 iteration

([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, more ,1.0], Converged after 105 iteration

As we see, all CG variants converge within the given number of iterations steps.
Precoditioning helps
The better the preconditioner, the faster the iteration (though this also depends on the initial
value)
The behaviour of the CG residual is not monotone

Convergence: ILU + bicgstab

([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, more ,1.0], Converged after 30 iterations

([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, more ,1.0], Converged after 155 iteration

dim=3; symmetric=true⋅

n=Int(ceil(N^(1/dim)))⋅

A1=fdrand([n for i=1:dim]...;symmetric);⋅

b1=A1*ones(size(A1,1))⋅

A1Jacobi=JacobiPreconditioner(A1);⋅

A1ILU0=ILU0Preconditioner(A1);⋅

tol=1.0e-10⋅

maxiter=10010⋅

sol_simple_jacobi,hist_simple_jacobi=simple(A1,b1;tol,maxiter,log=true,Pl=A1Jacobi)⋅

sol_simple_ilu0,hist_simple_ilu0=simple(A1,b1;tol,maxiter,log=true,Pl=A1ILU0)⋅

sol_cg_jacobi,hist_cg_jacobi=cg(A1,b1; reltol=tol,log=true,maxiter,Pl=A1Jacobi)⋅

sol_cg_ilu0,hist_cg_ilu0=cg(A1,b1; reltol=tol,log=true,maxiter,Pl=A1ILU0)⋅

sol_bicgstab_ilu0,hist_bicgstab_ilu0=bicgstabl(A1,b1,reltol=tol,log=true,max_mv_produc
ts=2*maxiter,Pl=A1ILU0)

⋅

sol_gmres_ilu0,hist_gmres_ilu0=gmres(A1,b1;Pl=A1ILU0,reltol=tol,log=true,maxiter)⋅

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 10/11

Solution times

Compare Sparse direct solver, PCG and bicgstab:

BenchmarkTools.Trial: 140 samples with 1 evaluation.
Range (min … max): 34.411 ms … 41.491 ms ┊ GC (min … max): 0.00% … 3.50%
Time (median): 35.298 ms ┊ GC (median): 0.00%
Time (mean ± σ): 35.716 ms ± 1.157 ms ┊ GC (mean ± σ): 0.88% ± 1.64%

 ▁▇█ ▂
 ▄▃▅██████▇▇█▅▄▄▁▃▁▄▁▄▆▃▄▆▄▃▄▃▃▁▃▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▃▁▁▃ ▃
 34.4 ms Histogram: frequency by time 40.7 ms <

Memory estimate: 24.05 MiB, allocs estimate: 66.

BenchmarkTools.Trial: 182 samples with 1 evaluation.
Range (min … max): 26.992 ms … 32.119 ms ┊ GC (min … max): 0.00% … 0.00%
Time (median): 27.550 ms ┊ GC (median): 0.00%
Time (mean ± σ): 27.602 ms ± 412.222 μs ┊ GC (mean ± σ): 0.04% ± 0.52%

 ▂▅▄▆█▅▆▂▅ ▁
 ▃▃▁▃▁▁▄▁▁▁▃▄▅▆▆█████████▇█▇▃▃▄▃▁▄▁▁▃▁▁▁▁▃▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▄ ▃
 27 ms Histogram: frequency by time 28.7 ms <

Memory estimate: 417.19 KiB, allocs estimate: 338.

BenchmarkTools.Trial: 119 samples with 1 evaluation.
Range (min … max): 37.073 ms … 46.741 ms ┊ GC (min … max): 0.00% … 3.56%
Time (median): 42.495 ms ┊ GC (median): 0.00%
Time (mean ± σ): 42.278 ms ± 2.115 ms ┊ GC (mean ± σ): 1.91% ± 1.95%

 ▆ █ ▆▄▃▆ ▄ ▆▁ ▁
 ▄▆▁▆▁▁▁▄▄▆▁▄▆▄▄▁▆▁▆▆▆▄▄▁█▇█▆▇▁▇▁████▇▄▄█▆██▆▄▁▁▇▁▇█▁▆▁▆▁▄▁▄ ▄
 37.1 ms Histogram: frequency by time 46.6 ms <

Memory estimate: 28.11 MiB, allocs estimate: 586.

Final remarks

Iterative solvers are a combination of preconditioning and iteration scheme. Krylov
method based iteration schemes (CG, BiCGstab, GMRES...) provide signi�cant
advantages.
Iterative solvers can beat direct solvers for problems stemming from the discretization
of PDEs in 3D
Convergence of iterative solvers needs more matrix properties than just nonsingularity
Parallelization is easier for iterative solvers than for sparse direct solvers

Julia packages

Iteration schemes
Krylov.jl (closer to current research)
IterativeSolvers.jl (used in this notebook)

Preconditioners
ILUZero.jl for zero �ll-in ILU decomposition
IncompleteLU.jl - ILU with drop tolerance
AlgebraicMultigrid.jl - Multigrid methods with automatic coarsening

LinearSolve.jl - Attempt on a "on-stop shop" for linear system solution
ExtendableSparse.jl - Simple+ e��cient sparse matrix building + integration with
preconditioners and various sparse direct solvers

pyplot (generic function with 1 method)

@benchmark A1\b1⋅

if hist_cg_ilu0.isconverged
 @benchmark cg(A1,b1; reltol=tol,log=true,maxiter,Pl=A1ILU0)
end

⋅
⋅
⋅

if hist_bicgstab_ilu0.isconverged
 @benchmark
bicgstabl(A1,b1,reltol=tol,log=true,max_mv_products=2*maxiter,Pl=A1ILU0)
end

⋅
⋅

⋅

10.11.22, 00:09 🎈 nb08-iterative-linear-solvers.jl — Pluto.jl

localhost:1238/edit?id=82c868fe-6076-11ed-0c06-b53d1c1373de# 11/11

Iterative methods for linear systems
Simple iteration scheme

General convergence theorem
Convergence estimate for symmetric positive de�nite A,M
Regular splittings

Preconditioners
Jacobi preconditioner
Incomplete LU factorization
Further preconditioners

Krylov subspace methods
The idea of the GMRES method
Conjugated Gradients

Complexity estimates
Examples

Test problem
Convergence simple+CG
Convergence: ILU + bicgstab
Solution times

Final remarks

Table of Contents

