
08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 1/11

Advanced Topics from Scienti�c Computing
TU Berlin Winter 2022/23
Notebook 07

 Jürgen Fuhrmann

Direct solution of linear systems of equations
LU Factorization for dense matrices
LU Factorization for sparse matrices

1D PDE problems
2D PDE problems
Complexity estimate for sparse direct solvers
One more thing: how to create a sparse matrix

Final remarks

Direct solution of linear systems of
equations

LU Factorization for dense matrices

Let aus create a matrix and solve the corresponding linear system:

n1 1000 =

A1 1000×1000 Matrix{Float64}:
0.693248 0.232691 0.748356 0.283001 … 0.667931 0.204756 0.306197
0.967957 0.82514 0.8328 0.237919 0.97181 0.201167 0.395003
0.29409 0.510149 0.990261 0.518299 0.138954 0.262015 0.641518
0.783424 0.955413 0.30494 0.881054 0.995383 0.451897 0.1188
0.522539 0.995946 0.627975 0.638433 0.00522948 0.956318 0.743116
0.785752 0.873038 0.501976 0.883699 … 0.700803 0.756529 0.865197
0.329995 0.230966 0.526016 0.105139 0.303009 0.0174611 0.336172
⋮ ⋱
0.00357113 0.364658 0.233611 0.141952 0.307982 0.495757 0.564955
0.348737 0.373673 0.506648 0.438111 … 0.287645 0.637436 0.357411
0.124254 0.723455 0.973879 0.482691 0.623194 0.133019 0.487457
0.213532 0.357382 0.470023 0.0166586 0.536065 0.299495 0.666153
0.888758 0.528283 0.995849 0.564579 0.605873 0.599814 0.603267
0.683135 0.615527 0.0306897 0.397419 0.0191046 0.321058 0.605768

 =

x1

[0.0835718, 0.570492, 0.457436, 0.800853, 0.197794, 0.697688, 0.132689, 0.0889008, 0.06345

 =

b1

[244.736, 246.721, 260.593, 251.688, 255.152, 264.101, 257.239, 254.639, 248.813, 249.344,

 =

2.1861401577893957e-12

The "\" operator provides a default solver for linear systems of equations based on the LU factorization
of the matrix into an upper and a lower triangular matrix, and the subsequent solution of the
triangular systems:

This approach is equivalent to the Gaussian elimination process. The algorithm is improved by
stability enhancing pivoting - reordering of the system of equations such that divisions by small main
diagonal elements is avoided.

We can demonstrate this process:

begin
 using LinearAlgebra
 using BenchmarkTools
 using Pkg
end

⋅
⋅
⋅
⋅
⋅

n1=1000⋅

A1=rand(n1,n1)⋅

x1=rand(n1)⋅

b1=A1*x1⋅

norm(A1\b1-x1, Inf)⋅

http://creativecommons.org/licenses/by-sa/4.0/

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 2/11

lu1 LU{Float64, Matrix{Float64}, Vector{Int64}}
L factor:
1000×1000 Matrix{Float64}:
 1.0 0.0 0.0 … 0.0 0.0 0.0 0.0
 0.0518669 1.0 0.0 0.0 0.0 0.0 0.0
 0.969827 -0.940419 1.0 0.0 0.0 0.0 0.0
 0.248192 -0.0403483 0.00202699 0.0 0.0 0.0 0.0
 0.468948 0.562996 -0.488007 0.0 0.0 0.0 0.0
 0.779174 -0.640945 0.939828 … 0.0 0.0 0.0 0.0
 0.969857 -0.0762975 0.374435 0.0 0.0 0.0 0.0
 ⋮ ⋱
 0.427535 -0.138868 0.215564 0.0 0.0 0.0 0.0
 0.956484 -0.710936 0.364323 … 0.0 0.0 0.0 0.0
 0.354957 0.173867 -0.16407 1.0 0.0 0.0 0.0
 0.462897 0.450184 0.052842 -0.925787 1.0 0.0 0.0
 0.149157 0.459136 -0.304943 -0.320925 -0.629319 1.0 0.0
 0.462981 -0.125944 0.557686 0.578528 0.144964 -0.256556 1.0
U factor:
1000×1000 Matrix{Float64}:
 0.99804 0.924528 0.424142 0.311441 … 0.0333858 0.136 0.0555658
 0.0 0.937384 0.916286 0.406637 0.642873 0.76253 0.633635
 0.0 0.0 1.31225 0.326986 0.984465 0.760908 0.946926
 0.0 0.0 0.0 0.898911 1.00976 0.26399 0.568143
 0.0 0.0 0.0 0.0 0.366248 0.489084 0.627371
 0.0 0.0 0.0 0.0 … -0.723896 0.55752 -0.0855989
 0.0 0.0 0.0 0.0 1.24888 -0.57103 0.104092
 ⋮ ⋱
 0.0 0.0 0.0 0.0 0.0820403 -2.4489 -2.5543
 0.0 0.0 0.0 0.0 … 4.22801 -2.91279 -5.37484
 0.0 0.0 0.0 0.0 4.08454 5.25878 -1.80898
 0.0 0.0 0.0 0.0 6.40455 3.42185 3.11135
 0.0 0.0 0.0 0.0 0.0 8.04945 2.83873
 0.0 0.0 0.0 0.0 0.0 0.0 -2.35751

 =

Extract the pivoting permutation:

p

[994, 773, 325, 570, 948, 736, 2, 429, 777, 508, 203, 420, 757, 423, 78, 421, 45, 353, 829,

 =

Permute the right hand side vector:

b1_permuted

[263.805, 255.389, 254.666, 254.681, 245.603, 259.258, 246.721, 247.357, 260.931, 251.208,

 =

Solve the triangular systems with L and U

y

[263.805, 241.706, 226.125, 198.501, 103.531, -80.4637, 0.575317, 184.254, -135.836, 23.31

 =

x1_lu

[0.0835718, 0.570492, 0.457436, 0.800853, 0.197794, 0.697688, 0.132689, 0.0889008, 0.06345

 =

2.1861401577893957e-12

These steps are combined in the "\" operator for LU factorizations

[0.0835718, 0.570492, 0.457436, 0.800853, 0.197794, 0.697688, 0.132689, 0.0889008, 0.06345

[0.0835718, 0.570492, 0.457436, 0.800853, 0.197794, 0.697688, 0.132689, 0.0889008, 0.06345

LU factorization takes the most time in this approach, triangular solves are fast
LU factorization is signi�cantly faster than matrix inversion
Symmetry of the matrix can be utilized to speed up the resulting method is called
Cholesky factorization
For standard �loating point types, Julia uses highly optimized versions of LAPACK and
BLAS

Same for python/numpy and many other coding environments

LU Factorization for sparse matrices

As we focus in this course on partial di�ferential equations, we need discuss matrices which evolve
from the discretization of PDEs.

Are there any structural or numerical patterns in these matrices we can take advantage of with
regard to memory and time complexity when solving linear systems ?

In this lecture we introduce a relatively simple "drosophila" problem which we will use do discuss
these issues.

For the start we use simple structured disceretization grids and a �nite di�ference approach to the
discretization. Later, this will be generalized to more general grids and to �nite element and �nite
volume discretization methods.

lu1=lu(A1)⋅

p=lu1.p⋅

b1_permuted=b1[p]⋅

y=lu1.L\b1_permuted⋅

x1_lu=lu1.U\y⋅

norm(x1-x1_lu, Inf)⋅

A1\b1⋅

inv(A1)*b1⋅

http://www.netlib.org/lapack/
http://www.netlib.org/blas

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 3/11

�D PDE problems

Assume a one-dimensional rod

Heat source
: ambient temperatures

: boundary heat transfer coe��cient
Second order boundary value problem in :

The solution describes the equilibrium temperature distribution. Behind the second derivative
is Fouriers law and the continuity equation
In math, the boundary conditions are called "Robin" or "third kind". They describe a heat
in/out�lux proportional to the di�ference between rod end temperature and ambient
temperature
Fix a number of discretization points N
Let
Let be discretization points

We can approximate continuous functions by piecewise linear functions de�ned by the values
. Using more points yields a better approximation:

Let approximations for and
We can use a �nite di�ference approximation to approximate

Same approach for second derivative:
Finite di�ference approximation of the PDE:

Here, we introduced "mirror values" and in order to approximate the boundary
conditions accurately, such that the �nite di�ference formulas used to approximate or

 are centered around these values.
A�ter rearranging, these values can be expressed via the boundary conditions:

Finally, they can be replaced in

The resulting discretization matrix is

Outside of the three diagonals, the entries are zero.

N0=10;⋅

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 4/11

The right hand side is:

We want to solve

Let us de�ne functions assembling these:

heatmatrix1d! (generic function with 1 method)

heatrhs1d (generic function with 1 method)

α 100 =

N1 100 =

A1_heat
100×100 Matrix{Float64}:
199.0 -99.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0
-99.0 198.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 -99.0 198.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 -99.0 198.0 -99.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 -99.0 198.0 -99.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 -99.0 198.0 … 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 -99.0 0.0 0.0 0.0 0.0 0.0
 ⋮ ⋮ ⋱ ⋮
 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 … 198.0 -99.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 198.0 -99.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 198.0 -99.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 198.0 -99.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -99.0 199.0

 =

b1_heat

[0.00505051, 0.010101, 0.010101, 0.010101, 0.010101, 0.010101, 0.010101, 0.010101, 0.01010

 =

u1_heat

[0.005, 0.00999949, 0.0148969, 0.0196924, 0.0243858, 0.0289771, 0.0334665, 0.0378538, 0.04

 =

allN [20, 40, 80, 160, 320, 640, 1280, 2560, 5120, 10240] =

times_full
[1.2533e-5, 1.5776e-5, 4.1468e-5, 0.000155477, 0.000830601, 0.00497244, 0.0334687, 0.22564

 =

function heatmatrix1d!(A,N;α=1)
 h=1/(N-1)
 A[1,1]=1/h+α
 for i=2:N-1
 A[i,i]=2/h
 end
 for i=1:N-1
 A[i,i+1]=-1/h
 end
 for i=2:N
 A[i,i-1]=-1/h
 end
 A[N,N]=1/h+α
 A
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function heatrhs1d(N;vl=0,vr=0,func=x->0,α=1)
 h=1/(N-1)
 F=zeros(N)
 F[1]=h/2*func(0)+α*vl
 for i=2:N-1
 F[i]=h*func((i-1)*h)
 end
 F[N]=h/2*func(1)+α*vr
 F
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

α=100⋅

N1=100⋅

A1_heat=heatmatrix1d!(zeros(N1,N1),N1,α=α)⋅

b1_heat=heatrhs1d(N1,func=x->1,α=α)⋅

u1_heat=A1_heat\b1_heat⋅

times_full= let
 times=[]
 for N∈allN
 A=heatmatrix1d!(zeros(N,N),N,α=α)
 b=heatrhs1d(N,α=α)
 t=@elapsed u=A\b
 push!(times,t)
 end
 times
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 5/11

The complexity of the LU factorization of a dense matrix is estimated with

However, we can store only three diagonals of the matrix and apply methods tailored to this case:

Try tridiagonal

[2.147e-6, 1.366e-6, 2.222e-6, 3.502e-6, 7.768e-6, 1.353e-5, 2.6204e-5, 4.9427e-5, 9.513e-

We learn, that in this case, solution time is O(N), much better.

One caveat: Never calculate the inverse of a matrix from a PDE, as it neither tridiagonal nor sparse
anymore!

10×10 Matrix{Float64}:
0.00990196 0.00881264 0.00772331 … 0.00227669 0.00118736 9.80392e-5
0.00881264 0.106731 0.0935379 0.0275732 0.0143803 0.00118736
0.00772331 0.0935379 0.179352 0.0528698 0.0275732 0.00227669
0.00663399 0.080345 0.154056 0.0781663 0.0407662 0.00336601
0.00554466 0.067152 0.128759 0.103463 0.0539591 0.00445534
0.00445534 0.0539591 0.103463 … 0.128759 0.067152 0.00554466
0.00336601 0.0407662 0.0781663 0.154056 0.080345 0.00663399
0.00227669 0.0275732 0.0528698 0.179352 0.0935379 0.00772331
0.00118736 0.0143803 0.0275732 0.0935379 0.106731 0.00881264
9.80392e-5 0.00118736 0.00227669 0.00772331 0.00881264 0.00990196

�D PDE problems

Just pose the heat problem in a 2D domain :

We use 2D regular discretization grid with grid points . The �nite
di�ference approximation yields:

This just comes from summing up the 1D �nite di�ference formula for the and directions.

We do not discuss the boundary conditions here.

The grid leads to an matrix!

plotgrid2d (generic function with 1 method)

Matrix and right hand side assembly inspired by the �nite volume method which will be covered later
in the course. The result is the same as for the �nite di�ference method with the mirror trick for the
boundary condition.

if try_tridiagonal
 times_tridiagonal= let
 times=[]
 for N∈allN
 A=Tridiagonal(zeros(N-1),zeros(N),zeros(N-1))
 A=heatmatrix1d!(A,N,α=α)
 b=heatrhs1d(N,α=α)
 t=@elapsed u=A\b
 push!(times,t)
 end
 times
 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

let
 A=Tridiagonal(zeros(N0-1),zeros(N0),zeros(N0-1))
 A=heatmatrix1d!(A,N0,α=α)
 inv(A)
end

⋅
⋅
⋅
⋅
⋅

plotgrid2d(5)⋅

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 6/11

heatmatrix2d! (generic function with 1 method)

heatrhs2d (generic function with 1 method)

n 20 =

b2

[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0

 =

A2 400×400 Matrix{Float64}:
202.0 -1.0 0.0 0.0 0.0 0.0 … 0.0 0.0 0.0 0.0 0.0
 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 -1.0 103.0 … 0.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0 0.0
 ⋮ ⋮ ⋱ ⋮
 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 0.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 … 103.0 -1.0 0.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0
 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0 202.0

 =

function heatmatrix2d!(A,n;α=1)
 function update_pair(A,v,i,j)
 A[i,j]+=-v
 A[j,i]+=-v
 A[i,i]+=v
 A[j,j]+=v
 end
 N=n^2
 h=1.0/(n-1)
 l=1
 for j=1:n
 for i=1:n
 if i<n
 update_pair(A,1.0,l,l+1)
 end
 if i==1|| i==n
 A[l,l]+=α
 end
 if j<n
 update_pair(A,1,l,l+n)
 end
 if j==1|| j==n
 A[l,l]+=α
 end
 l=l+1
 end
 end
 A
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function heatrhs2d(n; rhs=(x,y)->0,bc=(x,y)->0,α=1.0)
 h=1.0/(n-1)
 x=collect(0:h:1)
 y=collect(0:h:1)
 N=n^2
 f=zeros(N)
 for i=1:n-1
 for j=1:n-1
 ij=(j-1)*n+i
 f[ij]+=h^2/4*rhs(x[i],y[j])
 f[ij+1]+=h^2/4*rhs(x[i+1],y[j])
 f[ij+n]+=h^2/4*rhs(x[i],y[j+1])
 f[ij+n+1]+=h^2/4*rhs(x[i+1],y[j+1])
 end
 end

 for i=1:n
 ij=i
 fac=h
 if i==1 || i==n
 fac=h/2
 end
 f[ij]+=fac*α*bc(x[i],0)
 ij=i+(n-1)*n
 f[ij]+=fac*α*bc(x[i],1)
 end
 for j=1:n
 fac=h
 if j==1 || j==n
 fac=h/2
 end
 ij=1+(j-1)*n
 f[ij]+=fac*α*bc(0,y[j])
 ij=n+(j-1)*n
 f[ij]+=fac*α*bc(1,y[j])
 end
 f
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

n=20⋅

b2=heatrhs2d(n,rhs=(x,y)->sin(3*π*x)*sin(3*π*y),α=α)⋅

A2=heatmatrix2d!(zeros(n^2,n^2),n,α=α)⋅

using Tables ⋅

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 7/11

202.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.0

-1.0 103.0 -1.0 0.0 0.0 0.0 0.0 0.0

0.0 -1.0 103.0 -1.0 0.0 0.0 0.0 0.0

0.0 0.0 -1.0 103.0 -1.0 0.0 0.0 0.0

0.0 0.0 0.0 -1.0 103.0 -1.0 0.0 0.0

0.0 0.0 0.0 0.0 -1.0 103.0 -1.0 0.0

0.0 0.0 0.0 0.0 0.0 -1.0 103.0 -1.0

0.0 0.0 0.0 0.0 0.0 0.0 -1.0 103.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1
2
3
4
5
6
7
8
9

10

more

u2

[1.28855e-7, 1.30143e-5, 2.28006e-5, 2.71143e-5, 2.49065e-5, 1.6704e-5, 4.48045e-6, -8.819

 =

n2d [8, 11, 15, 21, 29, 41, 57, 81] =

times_full2d
[4.1288e-5, 0.00012452, 0.000438527, 0.00219039, 0.0108819, 0.0671273, 0.475402, 3.31411]

 =

The matrix of this system has 5 nonzero diagonals. While it is possible to store just these �ve
diagonals, there is not much so�tware around which handles this case. But we can use the possibility
to store it as a sparse matrix.

Try sparse

[0.000141471, 0.00016211, 0.000290197, 0.000489928, 0.000903914, 0.00184265, 0.00249679, 0

In Julia, sparse matrices are stored in Compressed Column Storage (CSC) format.

Column1 Column2 Column3 Column4 Column5 Column6 Column7 Column8

Tables.table(A2)⋅

u2=A2\b2⋅

n2d=Int[ceil(5*sqrt(2)^i) for i=1:8]⋅

times_full2d= let
 times=[]
 for n∈n2d
 A=heatmatrix2d!(zeros(n^2,n^2),n,α=α)
 b=heatrhs2d(n,α=α)
 t=@elapsed u=A\b
 push!(times,t)
 end
 times
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

using SparseArrays ⋅

if try_sparse
times_sparse2d= let
 times=[]
 for n∈n2d
 A0=spzeros(n^2,n^2)
 A=heatmatrix2d!(A0,n,α=α)
 b=heatrhs2d(n,α=α)
 t=@elapsed u=A\b
 push!(times,t)
 end
 times
end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 8/11

A 5×5 Matrix{Float64}:
 1.0 0.0 5.0 8.0 0.0
 2.0 4.0 0.0 9.0 0.0
 3.0 0.0 6.0 0.0 11.0
 0.0 0.0 7.0 10.0 0.0
 0.0 0.0 0.0 0.0 12.0

 =

As 5×5 SparseMatrixCSC{Float64, Int64} with 12 stored entries:
1.0 ⋅ 5.0 8.0 ⋅
2.0 4.0 ⋅ 9.0 ⋅
3.0 ⋅ 6.0 ⋅ 11.0
 ⋅ ⋅ 7.0 10.0 ⋅
 ⋅ ⋅ ⋅ ⋅ 12.0

 =

The matrix is stored using three vectors:

nzval contains the values of the nonzero entries, stored contiguously column by column:

[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0]

rowval contains the row indices of the nonzero entries

[1, 2, 3, 2, 1, 3, 4, 1, 2, 4, 3, 5]

colptr points to the start of a column in rowval and nzval

[1, 4, 5, 8, 11, 13]

So we can access the nonzeros and the rowvals column by column:

[[1.0, 2.0, 3.0], [4.0], [5.0, 6.0, 7.0], [8.0, 9.0, 10.0], [11.0, 12.0]]

[[1, 2, 3], [2], [1, 3, 4], [1, 2, 4], [3, 5]]

Sparse direct solvers allow to handle LU factorizations for sparse matrices. For 2D problems, the
complexity of the LU factorization is

Np 100000 =

dim 2 =

np 317 =

100489×100489 SparseMatrixCSC{Float64, Int64} with 501177 stored entries:
⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦⡀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠻⣦

LUp SuiteSparse.UMFPACK.UmfpackLU{Float64, Int64}
L factor:
100489×100489 SparseMatrixCSC{Float64, Int64} with 3089774 stored entries:
⠷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠈⢳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠤⠤⠴⠺⠷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠼⠷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠛⢳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠷⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠐⠒⠒⠛⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠉⠳⣄⠀⠀⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠉⠷⣄⠀⠀⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠘⠳⣄⠀⠀⠀⠀
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠈⠳⣄⠀⠀
⣀⣀⣀⢀⢀⣀⣀⣀⣀⣀⣀⣤⡤⣄⣠⡤⠤⠤⣤⠤⣤⡤⠤⠤⠬⠭⠷⣄
U factor:
100489×100489 SparseMatrixCSC{Float64, Int64} with 3089774 stored entries:
⠙⢧⡀⠀⠀⡇⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⠀⠀⠙⢶⣰⡃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢘
⠀⠀⠀⠀⠙⢧⣀⡄⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢰
⠀⠀⠀⠀⠀⠀⠙⢧⣤⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⠀⠀⠀⠀⠀⠀⠀⠀⠙⢶⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢸
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⢰⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣼
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢧⣼⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⢯
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⣀⠀⡄⠀⠀⠀⠀⠀⠀⠀⠀⡾
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡇⠀⠀⠀⠀⠀⠀⠀⠀⡇
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡇⠀⠀⠀⠀⠀⠀⡟
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢧⣀⠀⠀⠀⠀⡿
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡀⠀⠀⡇
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢦⡆⡇
⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⢧

 =

12.330071012835784

A=Float64[1 0 5 8 0;
 2 4 0 9 0;
 3 0 6 0 11;
 0 0 7 10 0;
 0 0 0 0 12]

⋅
⋅
⋅
⋅
⋅

As=sparse(A)⋅

As.nzval⋅

As.rowval⋅

As.colptr⋅

[As.nzval[As.colptr[i]:As.colptr[i+1]-1] for i=1:size(A,1)]⋅

[As.rowval[As.colptr[i]:As.colptr[i+1]-1] for i=1:size(A,1)]⋅

Np=100_000⋅

dim=2⋅

np=Int(ceil(Np^(1/dim)))⋅

if dim==1
 Ap=heatmatrix1d!(spzeros(Np,Np),np)
elseif dim==2
 Ap=heatmatrix2d!(spzeros(np^2,np^2),np)
end

⋅
⋅
⋅
⋅
⋅

LUp=lu(Ap)⋅

nnz(LUp)/nnz(Ap)⋅

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 9/11

We observe that for space dimension>1 the number of nonzero entries of a sparse LU factorization is
signi�cantly larger than the number of nonzeros of the original matrix and depends on the ordering of
the unknowns. This phenomenon is called �ll-in.

Solution steps with sparse direct solvers

�. Pre-ordering
Decrease amount of non-zero elements generated by �ll-in by re-ordering of the matrix
Several, graph theory based heuristic algorithms exist
Julia uses resonable defaults with UMFPACK

�. Symbolic factorization
If pivoting is ignored, the indices of the non-zero elements are calculated and stored
Most expensive step wrt. computation time

�. Numerical factorization
Calculation of the numerical values of the nonzero entries
Moderately expensive, once the symbolic factors are available

�. Upper/lower triangular system solution
Fairly quick in comparison to the other steps

Separation of steps 2 and 3 allows to save computational costs for problems where the sparsity
structure remains unchanged, e.g. time dependent problems on �xed computational grids
With pivoting, steps 2 and 3 have to be performed together, and pivoting can increase �ll-in
Instead of pivoting, iterative re�nement may be used in order to maintain accuracy of the solution

Complexity estimate for sparse direct solvers

Complexity estimates depend on storage scheme, reordering etc.
Sparse matrix - vector multiplication has complexity
Some estimates can be given from graph theory for discretizations of heat equation with

 unknowns on close to cubic grids in space dimension
sparse LU factorization:

triangular solve: work dominated by storage complexity

Source: J. Poulson, Fast parallel solution of heterogeneous 3D time-harmonic wave equations (PhD
thesis, UT Austin, 2012)

One more thing: how to create a sparse matrix

N3 200 =

A sparse matrix A in Julia can be updated just by writing into A[i,j] , updating the nonzero entries is
done automatically. So start with a sparse matrix with no nonzero entries and just write into it...

BenchmarkTools.Trial: 9 samples with 1 evaluation.
Range (min … max): 546.810 ms … 619.819 ms ┊ GC (min … max): 0.00% … 0.00%
Time (median): 598.617 ms ┊ GC (median): 0.00%
Time (mean ± σ): 595.068 ms ± 20.878 ms ┊ GC (mean ± σ): 0.00% ± 0.00%

 ▁ ▁ ▁ ▁ █ ▁▁ ▁
 █▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁▁▁▁▁▁▁▁█▁█▁█▁▁▁▁▁▁▁██▁▁▁▁▁▁▁█ ▁
 547 ms Histogram: frequency by time 620 ms <

Memory estimate: 6.22 MiB, allocs estimate: 30.

BenchmarkTools.Trial: 124 samples with 1 evaluation.
Range (min … max): 38.695 ms … 46.067 ms ┊ GC (min … max): 0.00% … 0.00%
Time (median): 40.159 ms ┊ GC (median): 0.00%
Time (mean ± σ): 40.314 ms ± 1.139 ms ┊ GC (mean ± σ): 0.81% ± 1.35%

 ▄ ▂▂▆▂▂▂▂█ ▄▄ ▆▄▂ ▄ ▄
 ▄██▆████████▆██▆█████▄█▆█▁█▆█▆█▁▁▁██▆▆▄▄▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▁▄ ▄
 38.7 ms Histogram: frequency by time 44.1 ms <

Memory estimate: 34.30 MiB, allocs estimate: 66.

Matrix build-up is much more expensive than solution of the linear system.

... Re-arranging the internal structure is connected to shi�ting and re-allocating th the arrays many
times.

A frequent recommendation ist to use the "coordinate" or "triplet" format as an intermediate: Just
collect in three arrays I, J, A all updates of matrix entries and pass them to sparse :

N3=200⋅

@benchmark heatmatrix2d!(spzeros(N3^2,N3^2),N3)⋅

let
 A=heatmatrix2d!(spzeros(N3^2,N3^2),N3)
 b=rand(N3^2)
 @benchmark $A\$b
end

⋅
⋅
⋅
⋅
⋅

http://hdl.handle.net/2152/ETD-UT-2012-12-6622

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 10/11

heatmatrix2d_coo (generic function with 1 method)

true

BenchmarkTools.Trial: 511 samples with 1 evaluation.
Range (min … max): 8.256 ms … 13.592 ms ┊ GC (min … max): 0.00% … 9.22%
Time (median): 9.340 ms ┊ GC (median): 0.00%
Time (mean ± σ): 9.781 ms ± 1.369 ms ┊ GC (mean ± σ): 4.33% ± 6.76%

 ▂█▆▄▄▁
 ▅██████▅▅▄▄▄▇▆▄▅▄▄▅▇▄▄▄▂▄▄▃▃▄▄▅▄▄▄█▅▅▅▃▁▃▃▃▃▃▂▃▂▁▁▂▃▃▃▃▄▄▃ ▄
 8.26 ms Histogram: frequency by time 13.2 ms <

Memory estimate: 24.51 MiB, allocs estimate: 57.

This approach requires to modify the structure of the assembly loop. If we run through this loop once
this is ok. If one wants to update the nonzero entries, one needs to implement this loop twice.
Moreover, one loses the intuitive way of writing into a matrix.

The ExtendableSparse.jl packages provides a remedy. It uses a linked list internal representation to
build up the matrix and hides it behind the intuitive way of writing into a matrix. A flush! method
sets up a SparseMatrixCSC structure a�ter assembly.

BenchmarkTools.Trial: 482 samples with 1 evaluation.
Range (min … max): 8.766 ms … 13.052 ms ┊ GC (min … max): 0.00% … 17.28%
Time (median): 10.402 ms ┊ GC (median): 0.00%
Time (mean ± σ): 10.367 ms ± 942.968 μs ┊ GC (mean ± σ): 1.81% ± 4.31%

 ▅▆▃▅▃ ▁ ▁█▄ ▁▃ ▄ ▁▆▇▃▁▆▄▁▁ ▃
 ▄▅███████▅▆▅▅▃▅▅██▄▇██████████████████▄█▄▅▄▄▅▅▇▄▃▃▅▅▅▄▃▃▁▃▃▄ ▅
 8.77 ms Histogram: frequency by time 12.6 ms <

Memory estimate: 11.54 MiB, allocs estimate: 30.

This approach can be made faster by using updateindex! instead of += . In Julia issue 15630 it is
proposed that the compiler should detect this situation.

heatmatrix2d_update! (generic function with 1 method)

function heatmatrix2d_coo(n;α=1)
 I=Int[]
 J=Int[]
 A=Float64[]
 function addentry(i,j,v)
 push!(I,i)
 push!(J,j)
 push!(A,v)
 end
 function update_pair(i,j,v)
 addentry(i,j,-v)
 addentry(j,i,-v)
 addentry(i,i,v)
 addentry(j,j,v)
 end
 N=n^2
 h=1.0/(n-1)
 l=1
 for j=1:n
 for i=1:n
 if i<n
 update_pair(l,l+1,1)
 end
 if i==1|| i==n
 addentry(l,l,α)
 end
 if j<n
 update_pair(l,l+n,1)
 end
 if j==1|| j==n
 addentry(l,l,α)
 end
 l=l+1
 end
 end
 sparse(I,J,A)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

heatmatrix2d!(spzeros(N3^2,N3^2),N3)==heatmatrix2d_coo(N3)⋅

@benchmark heatmatrix2d_coo(N3)⋅

using ExtendableSparse ⋅

@benchmark begin
 Aext=heatmatrix2d!(ExtendableSparseMatrix(N3^2,N3^2),N3)
 flush!(Aext)
end

⋅
⋅
⋅
⋅

function heatmatrix2d_update!(A,n;α=1)
 function update_pair(A,v,i,j)
 updateindex!(A,+,-v,i,j)
 updateindex!(A,+,-v,j,i)
 updateindex!(A,+,v,i,i)
 updateindex!(A,+,v,j,j)
 end
 N=n^2
 h=1.0/(n-1)
 l=1
 for j=1:n
 for i=1:n
 if i<n
 update_pair(A,1.0,l,l+1)
 end
 if i==1|| i==n
 updateindex!(A,+,α,l,l)
 end
 if j<n
 update_pair(A,1.0,l,l+n)
 end
 if j==1|| j==n
 updateindex!(A,+,α,l,l)
 end
 l=l+1
 end
 end
 A
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

https://github.com/j-fu/ExtendableSparse.jl
https://github.com/JuliaLang/julia/issues/15630

08.11.22, 13:42 🎈 nb07-direct-linerar-solvers.jl — Pluto.jl

localhost:1235/edit?id=fb08c5cc-5f61-11ed-2815-f1cbc2843709 11/11

BenchmarkTools.Trial: 707 samples with 1 evaluation.
Range (min … max): 6.433 ms … 9.019 ms ┊ GC (min … max): 0.00% … 24.87%
Time (median): 6.799 ms ┊ GC (median): 0.00%
Time (mean ± σ): 7.066 ms ± 584.933 μs ┊ GC (mean ± σ): 2.49% ± 5.63%

 ▅▄▆█▇▄▃▂
 ▂▂▃█████████▅▅▅▄▄▄▃▂▃▃▂▂▂▂▃▁▂▃▃▃▃▃▄▆▅▅▄▅▄▃▃▂▂▃▂▁▁▁▁▁▂▁▃▁▃▃▃ ▃
 6.43 ms Histogram: frequency by time 8.82 ms <

Memory estimate: 11.54 MiB, allocs estimate: 30.

Final remarks

As a rule, direct solution of linear systems of equations is implemented via LU
factorization
Matrices from �nite di�ference methods for PDEs are sparse. True also for �nite
elements and �nite volume methods.
LU factorizations from sparse matrices su�fer from �ll-in: LU factors tend to have more
nonzeor entries than the original matrices. In 3D signi�cantly so.
Inverses of matrices from PDEs tend to be full matrices
The Julia \ operator by default maps to the UMFPACK sparse direct solver from the
Suitesparse collection by T. Davis.
Other sparse direct solvers (e.g. the thread-parallel Pardiso) are available as Julia
packages.

@benchmark begin
 Aext=heatmatrix2d_update!(ExtendableSparseMatrix(N3^2,N3^2),N3)
 flush!(Aext)
end

⋅
⋅
⋅
⋅

https://people.engr.tamu.edu/davis/suitesparse.html
https://people.engr.tamu.edu/davis/suitesparse.html

